1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
|
#
#
# Nimrod's Runtime Library
# (c) Copyright 2012 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
# Low level allocator for Nimrod. Has been designed to support the GC.
# TODO:
# - eliminate "used" field
# - make searching for block O(1)
# ------------ platform specific chunk allocation code -----------------------
when defined(posix):
const
PROT_READ = 1 # page can be read
PROT_WRITE = 2 # page can be written
MAP_PRIVATE = 2 # Changes are private
when defined(macosx) or defined(bsd):
const MAP_ANONYMOUS = 0x1000
elif defined(solaris):
const MAP_ANONYMOUS = 0x100
else:
var
MAP_ANONYMOUS {.importc: "MAP_ANONYMOUS", header: "<sys/mman.h>".}: cint
proc mmap(adr: pointer, len: int, prot, flags, fildes: cint,
off: int): pointer {.header: "<sys/mman.h>".}
proc munmap(adr: pointer, len: int) {.header: "<sys/mman.h>".}
proc osAllocPages(size: int): pointer {.inline.} =
result = mmap(nil, size, PROT_READ or PROT_WRITE,
MAP_PRIVATE or MAP_ANONYMOUS, -1, 0)
if result == nil or result == cast[pointer](-1):
raiseOutOfMem()
proc osDeallocPages(p: pointer, size: int) {.inline} =
when reallyOsDealloc: munmap(p, size)
elif defined(windows):
const
MEM_RESERVE = 0x2000
MEM_COMMIT = 0x1000
MEM_TOP_DOWN = 0x100000
PAGE_READWRITE = 0x04
MEM_DECOMMIT = 0x4000
MEM_RELEASE = 0x8000
proc VirtualAlloc(lpAddress: pointer, dwSize: int, flAllocationType,
flProtect: int32): pointer {.
header: "<windows.h>", stdcall.}
proc VirtualFree(lpAddress: pointer, dwSize: int,
dwFreeType: int32) {.header: "<windows.h>", stdcall.}
proc osAllocPages(size: int): pointer {.inline.} =
result = VirtualAlloc(nil, size, MEM_RESERVE or MEM_COMMIT,
PAGE_READWRITE)
if result == nil: raiseOutOfMem()
proc osDeallocPages(p: pointer, size: int) {.inline.} =
# according to Microsoft, 0 is the only correct value for MEM_RELEASE:
# This means that the OS has some different view over how big the block is
# that we want to free! So, we cannot reliably release the memory back to
# Windows :-(. We have to live with MEM_DECOMMIT instead.
when reallyOsDealloc: VirtualFree(p, size, MEM_DECOMMIT)
else:
{.error: "Port memory manager to your platform".}
# --------------------- end of non-portable code -----------------------------
# We manage *chunks* of memory. Each chunk is a multiple of the page size.
# Each chunk starts at an address that is divisible by the page size. Chunks
# that are bigger than ``ChunkOsReturn`` are returned back to the operating
# system immediately.
const
ChunkOsReturn = 256 * PageSize # 1 MB
InitialMemoryRequest = ChunkOsReturn div 2 # < ChunkOsReturn!
SmallChunkSize = PageSize
type
PTrunk = ptr TTrunk
TTrunk {.final.} = object
next: PTrunk # all nodes are connected with this pointer
key: int # start address at bit 0
bits: array[0..IntsPerTrunk-1, int] # a bit vector
TTrunkBuckets = array[0..255, PTrunk]
TIntSet {.final.} = object
data: TTrunkBuckets
type
TAlignType = biggestFloat
TFreeCell {.final, pure.} = object
next: ptr TFreeCell # next free cell in chunk (overlaid with refcount)
zeroField: int # 0 means cell is not used (overlaid with typ field)
# 1 means cell is manually managed pointer
# otherwise a PNimType is stored in there
PChunk = ptr TBaseChunk
PBigChunk = ptr TBigChunk
PSmallChunk = ptr TSmallChunk
TBaseChunk {.pure.} = object
prevSize: int # size of previous chunk; for coalescing
size: int # if < PageSize it is a small chunk
used: bool # later will be optimized into prevSize...
TSmallChunk = object of TBaseChunk
next, prev: PSmallChunk # chunks of the same size
freeList: ptr TFreeCell
free: int # how many bytes remain
acc: int # accumulator for small object allocation
data: TAlignType # start of usable memory
TBigChunk = object of TBaseChunk # not necessarily > PageSize!
next, prev: PBigChunk # chunks of the same (or bigger) size
align: int
data: TAlignType # start of usable memory
template smallChunkOverhead(): expr = sizeof(TSmallChunk)-sizeof(TAlignType)
template bigChunkOverhead(): expr = sizeof(TBigChunk)-sizeof(TAlignType)
proc roundup(x, v: int): int {.inline.} =
result = (x + (v-1)) and not (v-1)
sysAssert(result >= x, "roundup: result < x")
#return ((-x) and (v-1)) +% x
sysAssert(roundup(14, PageSize) == PageSize, "invalid PageSize")
sysAssert(roundup(15, 8) == 16, "roundup broken")
sysAssert(roundup(65, 8) == 72, "roundup broken 2")
# ------------- chunk table ---------------------------------------------------
# We use a PtrSet of chunk starts and a table[Page, chunksize] for chunk
# endings of big chunks. This is needed by the merging operation. The only
# remaining operation is best-fit for big chunks. Since there is a size-limit
# for big chunks (because greater than the limit means they are returned back
# to the OS), a fixed size array can be used.
type
PLLChunk = ptr TLLChunk
TLLChunk {.pure.} = object ## *low-level* chunk
size: int # remaining size
acc: int # accumulator
next: PLLChunk # next low-level chunk; only needed for dealloc
PAvlNode = ptr TAvlNode
TAvlNode {.pure, final.} = object
link: array[0..1, PAvlNode] # Left (0) and right (1) links
key, upperBound: int
level: int
TMemRegion {.final, pure.} = object
minLargeObj, maxLargeObj: int
freeSmallChunks: array[0..SmallChunkSize div MemAlign-1, PSmallChunk]
llmem: PLLChunk
currMem, maxMem, freeMem: int # memory sizes (allocated from OS)
lastSize: int # needed for the case that OS gives us pages linearly
freeChunksList: PBigChunk # XXX make this a datastructure with O(1) access
chunkStarts: TIntSet
root, deleted, last, freeAvlNodes: PAvlNode
# shared:
var
bottomData: TAvlNode
bottom: PAvlNode
proc initAllocator() =
bottom = addr(bottomData)
bottom.link[0] = bottom
bottom.link[1] = bottom
proc incCurrMem(a: var TMemRegion, bytes: int) {.inline.} =
inc(a.currMem, bytes)
proc decCurrMem(a: var TMemRegion, bytes: int) {.inline.} =
a.maxMem = max(a.maxMem, a.currMem)
dec(a.currMem, bytes)
proc getMaxMem(a: var TMemRegion): int =
# Since we update maxPagesCount only when freeing pages,
# maxPagesCount may not be up to date. Thus we use the
# maximum of these both values here:
result = max(a.currMem, a.maxMem)
proc llAlloc(a: var TMemRegion, size: int): pointer =
# *low-level* alloc for the memory managers data structures. Deallocation
# is done at he end of the allocator's life time.
if a.llmem == nil or size > a.llmem.size:
# the requested size is ``roundup(size+sizeof(TLLChunk), PageSize)``, but
# since we know ``size`` is a (small) constant, we know the requested size
# is one page:
sysAssert roundup(size+sizeof(TLLChunk), PageSize) == PageSize, "roundup 6"
var old = a.llmem # can be nil and is correct with nil
a.llmem = cast[PLLChunk](osAllocPages(PageSize))
incCurrMem(a, PageSize)
a.llmem.size = PageSize - sizeof(TLLChunk)
a.llmem.acc = sizeof(TLLChunk)
a.llmem.next = old
result = cast[pointer](cast[TAddress](a.llmem) + a.llmem.acc)
dec(a.llmem.size, size)
inc(a.llmem.acc, size)
zeroMem(result, size)
proc allocAvlNode(a: var TMemRegion, key, upperBound: int): PAvlNode =
if a.freeAvlNodes != nil:
result = a.freeAvlNodes
a.freeAvlNodes = a.freeAvlNodes.link[0]
else:
result = cast[PAvlNode](llAlloc(a, sizeof(TAvlNode)))
result.key = key
result.upperBound = upperBound
result.link[0] = bottom
result.link[1] = bottom
result.level = 1
sysAssert(bottom == addr(bottomData), "bottom data")
sysAssert(bottom.link[0] == bottom, "bottom link[0]")
sysAssert(bottom.link[1] == bottom, "bottom link[1]")
proc deallocAvlNode(a: var TMemRegion, n: PAvlNode) {.inline.} =
n.link[0] = a.freeAvlNodes
a.freeAvlNodes = n
include "system/avltree"
proc llDeallocAll(a: var TMemRegion) =
var it = a.llmem
while it != nil:
# we know each block in the list has the size of 1 page:
var next = it.next
osDeallocPages(it, PageSize)
it = next
proc IntSetGet(t: TIntSet, key: int): PTrunk =
var it = t.data[key and high(t.data)]
while it != nil:
if it.key == key: return it
it = it.next
result = nil
proc IntSetPut(a: var TMemRegion, t: var TIntSet, key: int): PTrunk =
result = IntSetGet(t, key)
if result == nil:
result = cast[PTrunk](llAlloc(a, sizeof(result[])))
result.next = t.data[key and high(t.data)]
t.data[key and high(t.data)] = result
result.key = key
proc Contains(s: TIntSet, key: int): bool =
var t = IntSetGet(s, key shr TrunkShift)
if t != nil:
var u = key and TrunkMask
result = (t.bits[u shr IntShift] and (1 shl (u and IntMask))) != 0
else:
result = false
proc Incl(a: var TMemRegion, s: var TIntSet, key: int) =
var t = IntSetPut(a, s, key shr TrunkShift)
var u = key and TrunkMask
t.bits[u shr IntShift] = t.bits[u shr IntShift] or (1 shl (u and IntMask))
proc Excl(s: var TIntSet, key: int) =
var t = IntSetGet(s, key shr TrunkShift)
if t != nil:
var u = key and TrunkMask
t.bits[u shr IntShift] = t.bits[u shr IntShift] and not
(1 shl (u and IntMask))
iterator elements(t: TIntSet): int {.inline.} =
# while traversing it is forbidden to change the set!
for h in 0..high(t.data):
var r = t.data[h]
while r != nil:
var i = 0
while i <= high(r.bits):
var w = r.bits[i] # taking a copy of r.bits[i] here is correct, because
# modifying operations are not allowed during traversation
var j = 0
while w != 0: # test all remaining bits for zero
if (w and 1) != 0: # the bit is set!
yield (r.key shl TrunkShift) or (i shl IntShift +% j)
inc(j)
w = w shr 1
inc(i)
r = r.next
# ------------- chunk management ----------------------------------------------
proc pageIndex(c: PChunk): int {.inline.} =
result = cast[TAddress](c) shr PageShift
proc pageIndex(p: pointer): int {.inline.} =
result = cast[TAddress](p) shr PageShift
proc pageAddr(p: pointer): PChunk {.inline.} =
result = cast[PChunk](cast[TAddress](p) and not PageMask)
#sysAssert(Contains(allocator.chunkStarts, pageIndex(result)))
proc requestOsChunks(a: var TMemRegion, size: int): PBigChunk =
incCurrMem(a, size)
inc(a.freeMem, size)
result = cast[PBigChunk](osAllocPages(size))
sysAssert((cast[TAddress](result) and PageMask) == 0, "requestOsChunks 1")
#zeroMem(result, size)
result.next = nil
result.prev = nil
result.used = false
result.size = size
# update next.prevSize:
var nxt = cast[TAddress](result) +% size
sysAssert((nxt and PageMask) == 0, "requestOsChunks 2")
var next = cast[PChunk](nxt)
if pageIndex(next) in a.chunkStarts:
#echo("Next already allocated!")
next.prevSize = size
# set result.prevSize:
var lastSize = if a.lastSize != 0: a.lastSize else: PageSize
var prv = cast[TAddress](result) -% lastSize
sysAssert((nxt and PageMask) == 0, "requestOsChunks 3")
var prev = cast[PChunk](prv)
if pageIndex(prev) in a.chunkStarts and prev.size == lastSize:
#echo("Prev already allocated!")
result.prevSize = lastSize
else:
result.prevSize = 0 # unknown
a.lastSize = size # for next request
proc freeOsChunks(a: var TMemRegion, p: pointer, size: int) =
# update next.prevSize:
var c = cast[PChunk](p)
var nxt = cast[TAddress](p) +% c.size
sysAssert((nxt and PageMask) == 0, "freeOsChunks")
var next = cast[PChunk](nxt)
if pageIndex(next) in a.chunkStarts:
next.prevSize = 0 # XXX used
excl(a.chunkStarts, pageIndex(p))
osDeallocPages(p, size)
decCurrMem(a, size)
dec(a.freeMem, size)
#c_fprintf(c_stdout, "[Alloc] back to OS: %ld\n", size)
proc isAccessible(a: TMemRegion, p: pointer): bool {.inline.} =
result = Contains(a.chunkStarts, pageIndex(p))
proc contains[T](list, x: T): bool =
var it = list
while it != nil:
if it == x: return true
it = it.next
proc writeFreeList(a: TMemRegion) =
var it = a.freeChunksList
c_fprintf(c_stdout, "freeChunksList: %p\n", it)
while it != nil:
c_fprintf(c_stdout, "it: %p, next: %p, prev: %p\n",
it, it.next, it.prev)
it = it.next
proc ListAdd[T](head: var T, c: T) {.inline.} =
sysAssert(c notin head, "listAdd 1")
sysAssert c.prev == nil, "listAdd 2"
sysAssert c.next == nil, "listAdd 3"
c.next = head
if head != nil:
sysAssert head.prev == nil, "listAdd 4"
head.prev = c
head = c
proc ListRemove[T](head: var T, c: T) {.inline.} =
sysAssert(c in head, "listRemove")
if c == head:
head = c.next
sysAssert c.prev == nil, "listRemove 2"
if head != nil: head.prev = nil
else:
sysAssert c.prev != nil, "listRemove 3"
c.prev.next = c.next
if c.next != nil: c.next.prev = c.prev
c.next = nil
c.prev = nil
proc isSmallChunk(c: PChunk): bool {.inline.} =
return c.size <= SmallChunkSize-smallChunkOverhead()
proc chunkUnused(c: PChunk): bool {.inline.} =
result = not c.used
proc updatePrevSize(a: var TMemRegion, c: PBigChunk,
prevSize: int) {.inline.} =
var ri = cast[PChunk](cast[TAddress](c) +% c.size)
sysAssert((cast[TAddress](ri) and PageMask) == 0, "updatePrevSize")
if isAccessible(a, ri):
ri.prevSize = prevSize
proc freeBigChunk(a: var TMemRegion, c: PBigChunk) =
var c = c
sysAssert(c.size >= PageSize, "freeBigChunk")
inc(a.freeMem, c.size)
when coalescRight:
var ri = cast[PChunk](cast[TAddress](c) +% c.size)
sysAssert((cast[TAddress](ri) and PageMask) == 0, "freeBigChunk 2")
if isAccessible(a, ri) and chunkUnused(ri):
sysAssert(not isSmallChunk(ri), "freeBigChunk 3")
if not isSmallChunk(ri):
ListRemove(a.freeChunksList, cast[PBigChunk](ri))
inc(c.size, ri.size)
excl(a.chunkStarts, pageIndex(ri))
when coalescLeft:
if c.prevSize != 0:
var le = cast[PChunk](cast[TAddress](c) -% c.prevSize)
sysAssert((cast[TAddress](le) and PageMask) == 0, "freeBigChunk 4")
if isAccessible(a, le) and chunkUnused(le):
sysAssert(not isSmallChunk(le), "freeBigChunk 5")
if not isSmallChunk(le):
ListRemove(a.freeChunksList, cast[PBigChunk](le))
inc(le.size, c.size)
excl(a.chunkStarts, pageIndex(c))
c = cast[PBigChunk](le)
if c.size < ChunkOsReturn:
incl(a, a.chunkStarts, pageIndex(c))
updatePrevSize(a, c, c.size)
ListAdd(a.freeChunksList, c)
c.used = false
else:
freeOsChunks(a, c, c.size)
proc splitChunk(a: var TMemRegion, c: PBigChunk, size: int) =
var rest = cast[PBigChunk](cast[TAddress](c) +% size)
sysAssert(rest notin a.freeChunksList, "splitChunk")
rest.size = c.size - size
rest.used = false
rest.next = nil
rest.prev = nil
rest.prevSize = size
updatePrevSize(a, c, rest.size)
c.size = size
incl(a, a.chunkStarts, pageIndex(rest))
ListAdd(a.freeChunksList, rest)
proc getBigChunk(a: var TMemRegion, size: int): PBigChunk =
# use first fit for now:
sysAssert((size and PageMask) == 0, "getBigChunk 1")
sysAssert(size > 0, "getBigChunk 2")
result = a.freeChunksList
block search:
while result != nil:
sysAssert chunkUnused(result), "getBigChunk 3"
if result.size == size:
ListRemove(a.freeChunksList, result)
break search
elif result.size > size:
ListRemove(a.freeChunksList, result)
splitChunk(a, result, size)
break search
result = result.next
sysAssert result != a.freeChunksList, "getBigChunk 4"
if size < InitialMemoryRequest:
result = requestOsChunks(a, InitialMemoryRequest)
splitChunk(a, result, size)
else:
result = requestOsChunks(a, size)
result.prevSize = 0 # XXX why is this needed?
result.used = true
incl(a, a.chunkStarts, pageIndex(result))
dec(a.freeMem, size)
proc getSmallChunk(a: var TMemRegion): PSmallChunk =
var res = getBigChunk(a, PageSize)
sysAssert res.prev == nil, "getSmallChunk 1"
sysAssert res.next == nil, "getSmallChunk 2"
result = cast[PSmallChunk](res)
# -----------------------------------------------------------------------------
proc isAllocatedPtr(a: TMemRegion, p: pointer): bool
proc allocInv(a: TMemRegion): bool =
## checks some (not all yet) invariants of the allocator's data structures.
for s in low(a.freeSmallChunks)..high(a.freeSmallChunks):
var c = a.freeSmallChunks[s]
while c != nil:
if c.next == c: return false
if c.size != s * MemAlign: return false
var it = c.freeList
while it != nil:
if it.zeroField != 0: return false
it = it.next
c = c.next
result = true
proc rawAlloc(a: var TMemRegion, requestedSize: int): pointer =
sysAssert(allocInv(a), "rawAlloc: begin")
sysAssert(roundup(65, 8) == 72, "rawAlloc 1")
sysAssert requestedSize >= sizeof(TFreeCell), "rawAlloc 2"
var size = roundup(requestedSize, MemAlign)
sysAssert(size >= requestedSize, "insufficient allocated size!")
#c_fprintf(c_stdout, "alloc; size: %ld; %ld\n", requestedSize, size)
if size <= SmallChunkSize-smallChunkOverhead():
# allocate a small block: for small chunks, we use only its next pointer
var s = size div MemAlign
var c = a.freeSmallChunks[s]
if c == nil:
c = getSmallChunk(a)
c.freeList = nil
sysAssert c.size == PageSize, "rawAlloc 3"
c.size = size
c.acc = size
c.free = SmallChunkSize - smallChunkOverhead() - size
c.next = nil
c.prev = nil
ListAdd(a.freeSmallChunks[s], c)
result = addr(c.data)
sysAssert((cast[TAddress](result) and (MemAlign-1)) == 0, "rawAlloc 4")
else:
sysAssert(allocInv(a), "rawAlloc: begin c != nil")
sysAssert c.next != c, "rawAlloc 5"
#if c.size != size:
# c_fprintf(c_stdout, "csize: %lld; size %lld\n", c.size, size)
sysAssert c.size == size, "rawAlloc 6"
if c.freeList == nil:
sysAssert(c.acc + smallChunkOverhead() + size <= SmallChunkSize,
"rawAlloc 7")
result = cast[pointer](cast[TAddress](addr(c.data)) +% c.acc)
inc(c.acc, size)
else:
result = c.freeList
sysAssert(c.freeList.zeroField == 0, "rawAlloc 8")
c.freeList = c.freeList.next
dec(c.free, size)
sysAssert((cast[TAddress](result) and (MemAlign-1)) == 0, "rawAlloc 9")
sysAssert(allocInv(a), "rawAlloc: end c != nil")
sysAssert(allocInv(a), "rawAlloc: before c.free < size")
if c.free < size:
sysAssert(allocInv(a), "rawAlloc: before listRemove test")
ListRemove(a.freeSmallChunks[s], c)
sysAssert(allocInv(a), "rawAlloc: end listRemove test")
sysAssert(((cast[TAddress](result) and PageMask) -% smallChunkOverhead()) %%
size == 0, "rawAlloc 21")
sysAssert(allocInv(a), "rawAlloc: end small size")
else:
size = roundup(requestedSize+bigChunkOverhead(), PageSize)
# allocate a large block
var c = getBigChunk(a, size)
sysAssert c.prev == nil, "rawAlloc 10"
sysAssert c.next == nil, "rawAlloc 11"
sysAssert c.size == size, "rawAlloc 12"
result = addr(c.data)
sysAssert((cast[TAddress](result) and (MemAlign-1)) == 0, "rawAlloc 13")
if a.root == nil: a.root = bottom
add(a, a.root, cast[TAddress](result), cast[TAddress](result)+%size)
sysAssert(isAccessible(a, result), "rawAlloc 14")
sysAssert(allocInv(a), "rawAlloc: end")
proc rawAlloc0(a: var TMemRegion, requestedSize: int): pointer =
result = rawAlloc(a, requestedSize)
zeroMem(result, requestedSize)
proc rawDealloc(a: var TMemRegion, p: pointer) =
#sysAssert(isAllocatedPtr(a, p), "rawDealloc: no allocated pointer")
sysAssert(allocInv(a), "rawDealloc: begin")
var c = pageAddr(p)
if isSmallChunk(c):
# `p` is within a small chunk:
var c = cast[PSmallChunk](c)
var s = c.size
sysAssert(((cast[TAddress](p) and PageMask) -% smallChunkOverhead()) %%
s == 0, "rawDealloc 3")
var f = cast[ptr TFreeCell](p)
#echo("setting to nil: ", $cast[TAddress](addr(f.zeroField)))
sysAssert(f.zeroField != 0, "rawDealloc 1")
f.zeroField = 0
f.next = c.freeList
c.freeList = f
when overwriteFree:
# set to 0xff to check for usage after free bugs:
c_memset(cast[pointer](cast[int](p) +% sizeof(TFreeCell)), -1'i32,
s -% sizeof(TFreeCell))
# check if it is not in the freeSmallChunks[s] list:
if c.free < s:
# add it to the freeSmallChunks[s] array:
ListAdd(a.freeSmallChunks[s div memAlign], c)
inc(c.free, s)
else:
inc(c.free, s)
if c.free == SmallChunkSize-smallChunkOverhead():
ListRemove(a.freeSmallChunks[s div memAlign], c)
c.size = SmallChunkSize
freeBigChunk(a, cast[PBigChunk](c))
sysAssert(((cast[TAddress](p) and PageMask) -% smallChunkOverhead()) %%
s == 0, "rawDealloc 2")
else:
# set to 0xff to check for usage after free bugs:
when overwriteFree: c_memset(p, -1'i32, c.size -% bigChunkOverhead())
# free big chunk
var c = cast[PBigChunk](c)
a.deleted = bottom
del(a, a.root, cast[int](addr(c.data)))
freeBigChunk(a, c)
sysAssert(allocInv(a), "rawDealloc: end")
proc isAllocatedPtr(a: TMemRegion, p: pointer): bool =
if isAccessible(a, p):
var c = pageAddr(p)
if not chunkUnused(c):
if isSmallChunk(c):
var c = cast[PSmallChunk](c)
var offset = (cast[TAddress](p) and (PageSize-1)) -%
smallChunkOverhead()
result = (c.acc >% offset) and (offset %% c.size == 0) and
(cast[ptr TFreeCell](p).zeroField >% 1)
else:
var c = cast[PBigChunk](c)
result = p == addr(c.data) and cast[ptr TFreeCell](p).zeroField >% 1
proc prepareForInteriorPointerChecking(a: var TMemRegion) {.inline.} =
a.minLargeObj = lowGauge(a.root)
a.maxLargeObj = highGauge(a.root)
proc interiorAllocatedPtr(a: TMemRegion, p: pointer): pointer =
if isAccessible(a, p):
var c = pageAddr(p)
if not chunkUnused(c):
if isSmallChunk(c):
var c = cast[PSmallChunk](c)
var offset = (cast[TAddress](p) and (PageSize-1)) -%
smallChunkOverhead()
if c.acc >% offset:
sysAssert(cast[TAddress](addr(c.data)) +% offset ==
cast[TAddress](p), "offset is not what you think it is")
var d = cast[ptr TFreeCell](cast[TAddress](addr(c.data)) +%
offset -% (offset %% c.size))
if d.zeroField >% 1:
result = d
sysAssert isAllocatedPtr(a, result), " result wrong pointer!"
else:
var c = cast[PBigChunk](c)
var d = addr(c.data)
if p >= d and cast[ptr TFreeCell](d).zeroField >% 1:
result = d
sysAssert isAllocatedPtr(a, result), " result wrong pointer!"
else:
var q = cast[int](p)
if q >=% a.minLargeObj and q <=% a.maxLargeObj:
# this check is highly effective! Test fails for 99,96% of all checks on
# an x86-64.
var avlNode = inRange(a.root, q)
if avlNode != nil:
var k = cast[pointer](avlNode.key)
var c = cast[PBigChunk](pageAddr(k))
sysAssert(addr(c.data) == k, " k is not the same as addr(c.data)!")
if cast[ptr TFreeCell](k).zeroField >% 1:
result = k
sysAssert isAllocatedPtr(a, result), " result wrong pointer!"
proc ptrSize(p: pointer): int =
var x = cast[pointer](cast[TAddress](p) -% sizeof(TFreeCell))
var c = pageAddr(p)
sysAssert(not chunkUnused(c), "ptrSize")
result = c.size -% sizeof(TFreeCell)
if not isSmallChunk(c):
dec result, bigChunkOverhead()
proc alloc(allocator: var TMemRegion, size: int): pointer =
result = rawAlloc(allocator, size+sizeof(TFreeCell))
cast[ptr TFreeCell](result).zeroField = 1 # mark it as used
sysAssert(not isAllocatedPtr(allocator, result), "alloc")
result = cast[pointer](cast[TAddress](result) +% sizeof(TFreeCell))
proc alloc0(allocator: var TMemRegion, size: int): pointer =
result = alloc(allocator, size)
zeroMem(result, size)
proc dealloc(allocator: var TMemRegion, p: pointer) =
var x = cast[pointer](cast[TAddress](p) -% sizeof(TFreeCell))
sysAssert(cast[ptr TFreeCell](x).zeroField == 1, "dealloc 1")
rawDealloc(allocator, x)
sysAssert(not isAllocatedPtr(allocator, x), "dealloc 2")
proc realloc(allocator: var TMemRegion, p: pointer, newsize: int): pointer =
if newsize > 0:
result = alloc0(allocator, newsize)
if p != nil:
copyMem(result, p, ptrSize(p))
dealloc(allocator, p)
elif p != nil:
dealloc(allocator, p)
proc deallocOsPages(a: var TMemRegion) =
# we free every 'ordinarily' allocated page by iterating over the page bits:
for p in elements(a.chunkStarts):
var page = cast[PChunk](p shl pageShift)
var size = if page.size < PageSize: PageSize else: page.size
osDeallocPages(page, size)
# And then we free the pages that are in use for the page bits:
llDeallocAll(a)
proc getFreeMem(a: TMemRegion): int {.inline.} = result = a.freeMem
proc getTotalMem(a: TMemRegion): int {.inline.} = result = a.currMem
proc getOccupiedMem(a: TMemRegion): int {.inline.} =
result = a.currMem - a.freeMem
# ---------------------- thread memory region -------------------------------
template InstantiateForRegion(allocator: expr) =
when false:
proc interiorAllocatedPtr*(p: pointer): pointer =
result = interiorAllocatedPtr(allocator, p)
proc isAllocatedPtr*(p: pointer): bool =
result = isAllocatedPtr(allocator, p)
proc deallocOsPages = deallocOsPages(allocator)
proc alloc(size: int): pointer =
result = alloc(allocator, size)
proc alloc0(size: int): pointer =
result = alloc0(allocator, size)
proc dealloc(p: pointer) =
dealloc(allocator, p)
proc realloc(p: pointer, newsize: int): pointer =
result = realloc(allocator, p, newsize)
when false:
proc countFreeMem(): int =
# only used for assertions
var it = allocator.freeChunksList
while it != nil:
inc(result, it.size)
it = it.next
proc getFreeMem(): int =
result = allocator.freeMem
#sysAssert(result == countFreeMem())
proc getTotalMem(): int = return allocator.currMem
proc getOccupiedMem(): int = return getTotalMem() - getFreeMem()
# -------------------- shared heap region ----------------------------------
when hasThreadSupport:
var sharedHeap: TMemRegion
var heapLock: TSysLock
InitSysLock(HeapLock)
proc allocShared(size: int): pointer =
when hasThreadSupport:
AcquireSys(HeapLock)
result = alloc(sharedHeap, size)
ReleaseSys(HeapLock)
else:
result = alloc(size)
proc allocShared0(size: int): pointer =
result = allocShared(size)
zeroMem(result, size)
proc deallocShared(p: pointer) =
when hasThreadSupport:
AcquireSys(HeapLock)
dealloc(sharedHeap, p)
ReleaseSys(HeapLock)
else:
dealloc(p)
proc reallocShared(p: pointer, newsize: int): pointer =
when hasThreadSupport:
AcquireSys(HeapLock)
result = realloc(sharedHeap, p, newsize)
ReleaseSys(HeapLock)
else:
result = realloc(p, newsize)
|