1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
|
#
#
# Nimrod's Runtime Library
# (c) Copyright 2009 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
# Low level allocator for Nimrod. Has been designed to support the GC.
# TODO:
# - eliminate "used" field
# - make searching for block O(1)
# ------------ platform specific chunk allocation code -----------------------
when defined(posix):
const
PROT_READ = 1 # page can be read
PROT_WRITE = 2 # page can be written
MAP_PRIVATE = 2 # Changes are private
when defined(linux) or defined(aix):
const MAP_ANONYMOUS = 0x20 # don't use a file
elif defined(macosx) or defined(bsd):
const MAP_ANONYMOUS = 0x1000
elif defined(solaris):
const MAP_ANONYMOUS = 0x100
else:
{.error: "Port memory manager to your platform".}
proc mmap(adr: pointer, len: int, prot, flags, fildes: cint,
off: int): pointer {.header: "<sys/mman.h>".}
proc munmap(adr: pointer, len: int) {.header: "<sys/mman.h>".}
proc osAllocPages(size: int): pointer {.inline.} =
result = mmap(nil, size, PROT_READ or PROT_WRITE,
MAP_PRIVATE or MAP_ANONYMOUS, -1, 0)
if result == nil or result == cast[pointer](-1):
raiseOutOfMem()
proc osDeallocPages(p: pointer, size: int) {.inline} =
when reallyOsDealloc: munmap(p, size)
elif defined(windows):
const
MEM_RESERVE = 0x2000
MEM_COMMIT = 0x1000
MEM_TOP_DOWN = 0x100000
PAGE_READWRITE = 0x04
MEM_DECOMMIT = 0x4000
MEM_RELEASE = 0x8000
proc VirtualAlloc(lpAddress: pointer, dwSize: int, flAllocationType,
flProtect: int32): pointer {.
header: "<windows.h>", stdcall.}
proc VirtualFree(lpAddress: pointer, dwSize: int,
dwFreeType: int32) {.header: "<windows.h>", stdcall.}
proc osAllocPages(size: int): pointer {.inline.} =
result = VirtualAlloc(nil, size, MEM_RESERVE or MEM_COMMIT,
PAGE_READWRITE)
if result == nil: raiseOutOfMem()
proc osDeallocPages(p: pointer, size: int) {.inline.} =
# according to Microsoft, 0 is the only correct value here:
when reallyOsDealloc: VirtualFree(p, 0, MEM_RELEASE)
else:
{.error: "Port memory manager to your platform".}
# --------------------- end of non-portable code -----------------------------
# We manage *chunks* of memory. Each chunk is a multiple of the page size.
# Each chunk starts at an address that is divisible by the page size. Chunks
# that are bigger than ``ChunkOsReturn`` are returned back to the operating
# system immediately.
const
ChunkOsReturn = 256 * PageSize
InitialMemoryRequest = ChunkOsReturn div 2 # < ChunkOsReturn!
SmallChunkSize = PageSize
type
PTrunk = ptr TTrunk
TTrunk {.final.} = object
next: PTrunk # all nodes are connected with this pointer
key: int # start address at bit 0
bits: array[0..IntsPerTrunk-1, int] # a bit vector
TTrunkBuckets = array[0..1023, PTrunk]
TIntSet {.final.} = object
data: TTrunkBuckets
type
TAlignType = biggestFloat
TFreeCell {.final, pure.} = object
next: ptr TFreeCell # next free cell in chunk (overlaid with refcount)
zeroField: int # 0 means cell is not used (overlaid with typ field)
# 1 means cell is manually managed pointer
PChunk = ptr TBaseChunk
PBigChunk = ptr TBigChunk
PSmallChunk = ptr TSmallChunk
TBaseChunk {.pure.} = object
prevSize: int # size of previous chunk; for coalescing
size: int # if < PageSize it is a small chunk
used: bool # later will be optimized into prevSize...
TSmallChunk = object of TBaseChunk
next, prev: PSmallChunk # chunks of the same size
freeList: ptr TFreeCell
free: int # how many bytes remain
acc: int # accumulator for small object allocation
data: TAlignType # start of usable memory
TBigChunk = object of TBaseChunk # not necessarily > PageSize!
next: PBigChunk # chunks of the same (or bigger) size
prev: PBigChunk
align: int
data: TAlignType # start of usable memory
template smallChunkOverhead(): expr = sizeof(TSmallChunk)-sizeof(TAlignType)
template bigChunkOverhead(): expr = sizeof(TBigChunk)-sizeof(TAlignType)
proc roundup(x, v: int): int {.inline.} =
result = (x + (v-1)) and not (v-1)
assert(result >= x)
#return ((-x) and (v-1)) +% x
assert(roundup(14, PageSize) == PageSize)
assert(roundup(15, 8) == 16)
assert(roundup(65, 8) == 72)
# ------------- chunk table ---------------------------------------------------
# We use a PtrSet of chunk starts and a table[Page, chunksize] for chunk
# endings of big chunks. This is needed by the merging operation. The only
# remaining operation is best-fit for big chunks. Since there is a size-limit
# for big chunks (because greater than the limit means they are returned back
# to the OS), a fixed size array can be used.
type
PLLChunk = ptr TLLChunk
TLLChunk {.pure.} = object ## *low-level* chunk
size: int # remaining size
acc: int # accumulator
TAllocator {.final, pure.} = object
llmem: PLLChunk
currMem, maxMem, freeMem: int # memory sizes (allocated from OS)
freeSmallChunks: array[0..SmallChunkSize div MemAlign-1, PSmallChunk]
freeChunksList: PBigChunk # XXX make this a datastructure with O(1) access
chunkStarts: TIntSet
proc incCurrMem(a: var TAllocator, bytes: int) {.inline.} =
inc(a.currMem, bytes)
proc decCurrMem(a: var TAllocator, bytes: int) {.inline.} =
a.maxMem = max(a.maxMem, a.currMem)
dec(a.currMem, bytes)
proc getMaxMem(a: var TAllocator): int =
# Since we update maxPagesCount only when freeing pages,
# maxPagesCount may not be up to date. Thus we use the
# maximum of these both values here:
return max(a.currMem, a.maxMem)
var
allocator: TAllocator
proc llAlloc(a: var TAllocator, size: int): pointer =
# *low-level* alloc for the memory managers data structures. Deallocation
# is never done.
if a.llmem == nil or size > a.llmem.size:
var request = roundup(size+sizeof(TLLChunk), PageSize)
a.llmem = cast[PLLChunk](osAllocPages(request))
incCurrMem(a, request)
a.llmem.size = request - sizeof(TLLChunk)
a.llmem.acc = sizeof(TLLChunk)
result = cast[pointer](cast[TAddress](a.llmem) + a.llmem.acc)
dec(a.llmem.size, size)
inc(a.llmem.acc, size)
zeroMem(result, size)
proc IntSetGet(t: TIntSet, key: int): PTrunk =
var it = t.data[key and high(t.data)]
while it != nil:
if it.key == key: return it
it = it.next
result = nil
proc IntSetPut(t: var TIntSet, key: int): PTrunk =
result = IntSetGet(t, key)
if result == nil:
result = cast[PTrunk](llAlloc(allocator, sizeof(result[])))
result.next = t.data[key and high(t.data)]
t.data[key and high(t.data)] = result
result.key = key
proc Contains(s: TIntSet, key: int): bool =
var t = IntSetGet(s, key shr TrunkShift)
if t != nil:
var u = key and TrunkMask
result = (t.bits[u shr IntShift] and (1 shl (u and IntMask))) != 0
else:
result = false
proc Incl(s: var TIntSet, key: int) =
var t = IntSetPut(s, key shr TrunkShift)
var u = key and TrunkMask
t.bits[u shr IntShift] = t.bits[u shr IntShift] or (1 shl (u and IntMask))
proc Excl(s: var TIntSet, key: int) =
var t = IntSetGet(s, key shr TrunkShift)
if t != nil:
var u = key and TrunkMask
t.bits[u shr IntShift] = t.bits[u shr IntShift] and not
(1 shl (u and IntMask))
proc ContainsOrIncl(s: var TIntSet, key: int): bool =
var t = IntSetGet(s, key shr TrunkShift)
if t != nil:
var u = key and TrunkMask
result = (t.bits[u shr IntShift] and (1 shl (u and IntMask))) != 0
if not result:
t.bits[u shr IntShift] = t.bits[u shr IntShift] or
(1 shl (u and IntMask))
else:
Incl(s, key)
result = false
# ------------- chunk management ----------------------------------------------
proc pageIndex(c: PChunk): int {.inline.} =
result = cast[TAddress](c) shr PageShift
proc pageIndex(p: pointer): int {.inline.} =
result = cast[TAddress](p) shr PageShift
proc pageAddr(p: pointer): PChunk {.inline.} =
result = cast[PChunk](cast[TAddress](p) and not PageMask)
assert(Contains(allocator.chunkStarts, pageIndex(result)))
var lastSize = PageSize
proc requestOsChunks(a: var TAllocator, size: int): PBigChunk =
incCurrMem(a, size)
inc(a.freeMem, size)
result = cast[PBigChunk](osAllocPages(size))
assert((cast[TAddress](result) and PageMask) == 0)
#zeroMem(result, size)
result.next = nil
result.prev = nil
result.used = false
result.size = size
# update next.prevSize:
var nxt = cast[TAddress](result) +% size
assert((nxt and PageMask) == 0)
var next = cast[PChunk](nxt)
if pageIndex(next) in a.chunkStarts:
#echo("Next already allocated!")
next.prevSize = size
# set result.prevSize:
var prv = cast[TAddress](result) -% lastSize
assert((nxt and PageMask) == 0)
var prev = cast[PChunk](prv)
if pageIndex(prev) in a.chunkStarts and prev.size == lastSize:
#echo("Prev already allocated!")
result.prevSize = lastSize
else:
result.prevSize = 0 # unknown
lastSize = size # for next request
proc freeOsChunks(a: var TAllocator, p: pointer, size: int) =
# update next.prevSize:
var c = cast[PChunk](p)
var nxt = cast[TAddress](p) +% c.size
assert((nxt and PageMask) == 0)
var next = cast[PChunk](nxt)
if pageIndex(next) in a.chunkStarts:
next.prevSize = 0 # XXX used
excl(a.chunkStarts, pageIndex(p))
osDeallocPages(p, size)
decCurrMem(a, size)
dec(a.freeMem, size)
#c_fprintf(c_stdout, "[Alloc] back to OS: %ld\n", size)
proc isAccessible(p: pointer): bool {.inline.} =
result = Contains(allocator.chunkStarts, pageIndex(p))
proc contains[T](list, x: T): bool =
var it = list
while it != nil:
if it == x: return true
it = it.next
proc writeFreeList(a: TAllocator) =
var it = a.freeChunksList
c_fprintf(c_stdout, "freeChunksList: %p\n", it)
while it != nil:
c_fprintf(c_stdout, "it: %p, next: %p, prev: %p\n",
it, it.next, it.prev)
it = it.next
proc ListAdd[T](head: var T, c: T) {.inline.} =
assert(c notin head)
assert c.prev == nil
assert c.next == nil
c.next = head
if head != nil:
assert head.prev == nil
head.prev = c
head = c
proc ListRemove[T](head: var T, c: T) {.inline.} =
assert(c in head)
if c == head:
head = c.next
assert c.prev == nil
if head != nil: head.prev = nil
else:
assert c.prev != nil
c.prev.next = c.next
if c.next != nil: c.next.prev = c.prev
c.next = nil
c.prev = nil
proc isSmallChunk(c: PChunk): bool {.inline.} =
return c.size <= SmallChunkSize-smallChunkOverhead()
proc chunkUnused(c: PChunk): bool {.inline.} =
result = not c.used
proc updatePrevSize(a: var TAllocator, c: PBigChunk,
prevSize: int) {.inline.} =
var ri = cast[PChunk](cast[TAddress](c) +% c.size)
assert((cast[TAddress](ri) and PageMask) == 0)
if isAccessible(ri):
ri.prevSize = prevSize
proc freeBigChunk(a: var TAllocator, c: PBigChunk) =
var c = c
assert(c.size >= PageSize)
inc(a.freeMem, c.size)
when coalescRight:
var ri = cast[PChunk](cast[TAddress](c) +% c.size)
assert((cast[TAddress](ri) and PageMask) == 0)
if isAccessible(ri) and chunkUnused(ri):
assert(not isSmallChunk(ri))
if not isSmallChunk(ri):
ListRemove(a.freeChunksList, cast[PBigChunk](ri))
inc(c.size, ri.size)
excl(a.chunkStarts, pageIndex(ri))
when coalescLeft:
if c.prevSize != 0:
var le = cast[PChunk](cast[TAddress](c) -% c.prevSize)
assert((cast[TAddress](le) and PageMask) == 0)
if isAccessible(le) and chunkUnused(le):
assert(not isSmallChunk(le))
if not isSmallChunk(le):
ListRemove(a.freeChunksList, cast[PBigChunk](le))
inc(le.size, c.size)
excl(a.chunkStarts, pageIndex(c))
c = cast[PBigChunk](le)
if c.size < ChunkOsReturn:
incl(a.chunkStarts, pageIndex(c))
updatePrevSize(a, c, c.size)
ListAdd(a.freeChunksList, c)
c.used = false
else:
freeOsChunks(a, c, c.size)
proc splitChunk(a: var TAllocator, c: PBigChunk, size: int) =
var rest = cast[PBigChunk](cast[TAddress](c) +% size)
assert(rest notin a.freeChunksList)
rest.size = c.size - size
rest.used = false
rest.next = nil
rest.prev = nil
rest.prevSize = size
updatePrevSize(a, c, rest.size)
c.size = size
incl(a.chunkStarts, pageIndex(rest))
ListAdd(a.freeChunksList, rest)
proc getBigChunk(a: var TAllocator, size: int): PBigChunk =
# use first fit for now:
assert((size and PageMask) == 0)
assert(size > 0)
result = a.freeChunksList
block search:
while result != nil:
assert chunkUnused(result)
if result.size == size:
ListRemove(a.freeChunksList, result)
break search
elif result.size > size:
ListRemove(a.freeChunksList, result)
splitChunk(a, result, size)
break search
result = result.next
assert result != a.freeChunksList
if size < InitialMemoryRequest:
result = requestOsChunks(a, InitialMemoryRequest)
splitChunk(a, result, size)
else:
result = requestOsChunks(a, size)
result.prevSize = 0 # XXX why is this needed?
result.used = true
incl(a.chunkStarts, pageIndex(result))
dec(a.freeMem, size)
proc getSmallChunk(a: var TAllocator): PSmallChunk =
var res = getBigChunk(a, PageSize)
assert res.prev == nil
assert res.next == nil
result = cast[PSmallChunk](res)
# -----------------------------------------------------------------------------
proc getCellSize(p: pointer): int {.inline.} =
var c = pageAddr(p)
result = c.size
proc rawAlloc(a: var TAllocator, requestedSize: int): pointer =
assert(roundup(65, 8) == 72)
assert requestedSize >= sizeof(TFreeCell)
var size = roundup(requestedSize, MemAlign)
#c_fprintf(c_stdout, "alloc; size: %ld; %ld\n", requestedSize, size)
if size <= SmallChunkSize-smallChunkOverhead():
# allocate a small block: for small chunks, we use only its next pointer
var s = size div MemAlign
var c = a.freeSmallChunks[s]
if c == nil:
c = getSmallChunk(a)
c.freeList = nil
assert c.size == PageSize
c.size = size
c.acc = size
c.free = SmallChunkSize - smallChunkOverhead() - size
c.next = nil
c.prev = nil
ListAdd(a.freeSmallChunks[s], c)
result = addr(c.data)
assert((cast[TAddress](result) and (MemAlign-1)) == 0)
else:
assert c.next != c
#if c.size != size:
# c_fprintf(c_stdout, "csize: %lld; size %lld\n", c.size, size)
assert c.size == size
if c.freeList == nil:
assert(c.acc + smallChunkOverhead() + size <= SmallChunkSize)
result = cast[pointer](cast[TAddress](addr(c.data)) +% c.acc)
inc(c.acc, size)
else:
result = c.freeList
assert(c.freeList.zeroField == 0)
c.freeList = c.freeList.next
dec(c.free, size)
assert((cast[TAddress](result) and (MemAlign-1)) == 0)
if c.free < size:
ListRemove(a.freeSmallChunks[s], c)
else:
size = roundup(requestedSize+bigChunkOverhead(), PageSize)
# allocate a large block
var c = getBigChunk(a, size)
assert c.prev == nil
assert c.next == nil
assert c.size == size
result = addr(c.data)
assert((cast[TAddress](result) and (MemAlign-1)) == 0)
assert(isAccessible(result))
proc rawDealloc(a: var TAllocator, p: pointer) =
var c = pageAddr(p)
if isSmallChunk(c):
# `p` is within a small chunk:
var c = cast[PSmallChunk](c)
var s = c.size
var f = cast[ptr TFreeCell](p)
#echo("setting to nil: ", $cast[TAddress](addr(f.zeroField)))
assert(f.zeroField != 0)
f.zeroField = 0
f.next = c.freeList
c.freeList = f
when overwriteFree:
# set to 0xff to check for usage after free bugs:
c_memset(cast[pointer](cast[int](p) +% sizeof(TFreeCell)), -1'i32,
s -% sizeof(TFreeCell))
# check if it is not in the freeSmallChunks[s] list:
if c.free < s:
assert c notin a.freeSmallChunks[s div memAlign]
# add it to the freeSmallChunks[s] array:
ListAdd(a.freeSmallChunks[s div memAlign], c)
inc(c.free, s)
else:
inc(c.free, s)
if c.free == SmallChunkSize-smallChunkOverhead():
ListRemove(a.freeSmallChunks[s div memAlign], c)
c.size = SmallChunkSize
freeBigChunk(a, cast[PBigChunk](c))
else:
# set to 0xff to check for usage after free bugs:
when overwriteFree: c_memset(p, -1'i32, c.size -% bigChunkOverhead())
# free big chunk
freeBigChunk(a, cast[PBigChunk](c))
proc isAllocatedPtr(a: TAllocator, p: pointer): bool =
if isAccessible(p):
var c = pageAddr(p)
if not chunkUnused(c):
if isSmallChunk(c):
var c = cast[PSmallChunk](c)
var offset = (cast[TAddress](p) and (PageSize-1)) -%
smallChunkOverhead()
result = (c.acc >% offset) and (offset %% c.size == 0) and
(cast[ptr TFreeCell](p).zeroField >% 1)
else:
var c = cast[PBigChunk](c)
result = p == addr(c.data) and cast[ptr TFreeCell](p).zeroField >% 1
# ---------------------- interface to programs -------------------------------
when not defined(useNimRtl):
proc alloc(size: int): pointer =
result = rawAlloc(allocator, size+sizeof(TFreeCell))
cast[ptr TFreeCell](result).zeroField = 1 # mark it as used
assert(not isAllocatedPtr(allocator, result))
result = cast[pointer](cast[TAddress](result) +% sizeof(TFreeCell))
proc alloc0(size: int): pointer =
result = alloc(size)
zeroMem(result, size)
proc dealloc(p: pointer) =
var x = cast[pointer](cast[TAddress](p) -% sizeof(TFreeCell))
assert(cast[ptr TFreeCell](x).zeroField == 1)
rawDealloc(allocator, x)
assert(not isAllocatedPtr(allocator, x))
proc ptrSize(p: pointer): int =
var x = cast[pointer](cast[TAddress](p) -% sizeof(TFreeCell))
result = pageAddr(x).size - sizeof(TFreeCell)
proc realloc(p: pointer, newsize: int): pointer =
if newsize > 0:
result = alloc(newsize)
if p != nil:
copyMem(result, p, ptrSize(p))
dealloc(p)
elif p != nil:
dealloc(p)
proc countFreeMem(): int =
# only used for assertions
var it = allocator.freeChunksList
while it != nil:
inc(result, it.size)
it = it.next
proc getFreeMem(): int =
result = allocator.freeMem
#assert(result == countFreeMem())
proc getTotalMem(): int = return allocator.currMem
proc getOccupiedMem(): int = return getTotalMem() - getFreeMem()
when isMainModule:
const iterations = 4000_000
incl(allocator.chunkStarts, 11)
assert 11 in allocator.chunkStarts
excl(allocator.chunkStarts, 11)
assert 11 notin allocator.chunkStarts
var p: array [1..iterations, pointer]
for i in 7..7:
var x = i * 8
for j in 1.. iterations:
p[j] = alloc(allocator, x)
for j in 1..iterations:
assert isAllocatedPtr(allocator, p[j])
echo($i, " used memory: ", $(allocator.currMem))
for j in countdown(iterations, 1):
#echo("j: ", $j)
dealloc(allocator, p[j])
assert(not isAllocatedPtr(allocator, p[j]))
echo($i, " after freeing: ", $(allocator.currMem))
|