1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
|
#
#
# Nim's Runtime Library
# (c) Copyright 2012 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
# simple integer arithmetic with overflow checking
proc raiseOverflow {.compilerproc, noinline, noreturn.} =
# a single proc to reduce code size to a minimum
sysFatal(OverflowError, "over- or underflow")
proc raiseDivByZero {.compilerproc, noinline, noreturn.} =
sysFatal(DivByZeroError, "division by zero")
proc addInt64(a, b: int64): int64 {.compilerProc, inline.} =
result = a +% b
if (result xor a) >= int64(0) or (result xor b) >= int64(0):
return result
raiseOverflow()
proc subInt64(a, b: int64): int64 {.compilerProc, inline.} =
result = a -% b
if (result xor a) >= int64(0) or (result xor not b) >= int64(0):
return result
raiseOverflow()
proc negInt64(a: int64): int64 {.compilerProc, inline.} =
if a != low(int64): return -a
raiseOverflow()
proc absInt64(a: int64): int64 {.compilerProc, inline.} =
if a != low(int64):
if a >= 0: return a
else: return -a
raiseOverflow()
proc divInt64(a, b: int64): int64 {.compilerProc, inline.} =
if b == int64(0):
raiseDivByZero()
if a == low(int64) and b == int64(-1):
raiseOverflow()
return a div b
proc modInt64(a, b: int64): int64 {.compilerProc, inline.} =
if b == int64(0):
raiseDivByZero()
return a mod b
#
# This code has been inspired by Python's source code.
# The native int product x*y is either exactly right or *way* off, being
# just the last n bits of the true product, where n is the number of bits
# in an int (the delivered product is the true product plus i*2**n for
# some integer i).
#
# The native float64 product x*y is subject to three
# rounding errors: on a sizeof(int)==8 box, each cast to double can lose
# info, and even on a sizeof(int)==4 box, the multiplication can lose info.
# But, unlike the native int product, it's not in *range* trouble: even
# if sizeof(int)==32 (256-bit ints), the product easily fits in the
# dynamic range of a float64. So the leading 50 (or so) bits of the float64
# product are correct.
#
# We check these two ways against each other, and declare victory if they're
# approximately the same. Else, because the native int product is the only
# one that can lose catastrophic amounts of information, it's the native int
# product that must have overflowed.
#
proc mulInt64(a, b: int64): int64 {.compilerproc.} =
var
resAsFloat, floatProd: float64
result = a *% b
floatProd = toBiggestFloat(a) # conversion
floatProd = floatProd * toBiggestFloat(b)
resAsFloat = toBiggestFloat(result)
# Fast path for normal case: small multiplicands, and no info
# is lost in either method.
if resAsFloat == floatProd: return result
# Somebody somewhere lost info. Close enough, or way off? Note
# that a != 0 and b != 0 (else resAsFloat == floatProd == 0).
# The difference either is or isn't significant compared to the
# true value (of which floatProd is a good approximation).
# abs(diff)/abs(prod) <= 1/32 iff
# 32 * abs(diff) <= abs(prod) -- 5 good bits is "close enough"
if 32.0 * abs(resAsFloat - floatProd) <= abs(floatProd):
return result
raiseOverflow()
proc absInt(a: int): int {.compilerProc, inline.} =
if a != low(int):
if a >= 0: return a
else: return -a
raiseOverflow()
const
asmVersion = defined(I386) and (defined(vcc) or defined(wcc) or
defined(dmc) or defined(gcc) or defined(llvm_gcc))
# my Version of Borland C++Builder does not have
# tasm32, which is needed for assembler blocks
# this is why Borland is not included in the 'when'
when asmVersion and not defined(gcc) and not defined(llvm_gcc):
# assembler optimized versions for compilers that
# have an intel syntax assembler:
proc addInt(a, b: int): int {.compilerProc, asmNoStackFrame.} =
# a in eax, and b in edx
asm """
mov eax, ecx
add eax, edx
jno theEnd
call `raiseOverflow`
theEnd:
ret
"""
proc subInt(a, b: int): int {.compilerProc, asmNoStackFrame.} =
asm """
mov eax, ecx
sub eax, edx
jno theEnd
call `raiseOverflow`
theEnd:
ret
"""
proc negInt(a: int): int {.compilerProc, asmNoStackFrame.} =
asm """
mov eax, ecx
neg eax
jno theEnd
call `raiseOverflow`
theEnd:
ret
"""
proc divInt(a, b: int): int {.compilerProc, asmNoStackFrame.} =
asm """
mov eax, ecx
mov ecx, edx
xor edx, edx
idiv ecx
jno theEnd
call `raiseOverflow`
theEnd:
ret
"""
proc modInt(a, b: int): int {.compilerProc, asmNoStackFrame.} =
asm """
mov eax, ecx
mov ecx, edx
xor edx, edx
idiv ecx
jno theEnd
call `raiseOverflow`
theEnd:
mov eax, edx
ret
"""
proc mulInt(a, b: int): int {.compilerProc, asmNoStackFrame.} =
asm """
mov eax, ecx
mov ecx, edx
xor edx, edx
imul ecx
jno theEnd
call `raiseOverflow`
theEnd:
ret
"""
elif false: # asmVersion and (defined(gcc) or defined(llvm_gcc)):
proc addInt(a, b: int): int {.compilerProc, inline.} =
# don't use a pure proc here!
asm """
"addl %%ecx, %%eax\n"
"jno 1\n"
"call _raiseOverflow\n"
"1: \n"
:"=a"(`result`)
:"a"(`a`), "c"(`b`)
"""
#".intel_syntax noprefix"
#/* Intel syntax here */
#".att_syntax"
proc subInt(a, b: int): int {.compilerProc, inline.} =
asm """ "subl %%ecx,%%eax\n"
"jno 1\n"
"call _raiseOverflow\n"
"1: \n"
:"=a"(`result`)
:"a"(`a`), "c"(`b`)
"""
proc mulInt(a, b: int): int {.compilerProc, inline.} =
asm """ "xorl %%edx, %%edx\n"
"imull %%ecx\n"
"jno 1\n"
"call _raiseOverflow\n"
"1: \n"
:"=a"(`result`)
:"a"(`a`), "c"(`b`)
:"%edx"
"""
proc negInt(a: int): int {.compilerProc, inline.} =
asm """ "negl %%eax\n"
"jno 1\n"
"call _raiseOverflow\n"
"1: \n"
:"=a"(`result`)
:"a"(`a`)
"""
proc divInt(a, b: int): int {.compilerProc, inline.} =
asm """ "xorl %%edx, %%edx\n"
"idivl %%ecx\n"
"jno 1\n"
"call _raiseOverflow\n"
"1: \n"
:"=a"(`result`)
:"a"(`a`), "c"(`b`)
:"%edx"
"""
proc modInt(a, b: int): int {.compilerProc, inline.} =
asm """ "xorl %%edx, %%edx\n"
"idivl %%ecx\n"
"jno 1\n"
"call _raiseOverflow\n"
"1: \n"
"movl %%edx, %%eax"
:"=a"(`result`)
:"a"(`a`), "c"(`b`)
:"%edx"
"""
# Platform independent versions of the above (slower!)
when not declared(addInt):
proc addInt(a, b: int): int {.compilerProc, inline.} =
result = a +% b
if (result xor a) >= 0 or (result xor b) >= 0:
return result
raiseOverflow()
when not declared(subInt):
proc subInt(a, b: int): int {.compilerProc, inline.} =
result = a -% b
if (result xor a) >= 0 or (result xor not b) >= 0:
return result
raiseOverflow()
when not declared(negInt):
proc negInt(a: int): int {.compilerProc, inline.} =
if a != low(int): return -a
raiseOverflow()
when not declared(divInt):
proc divInt(a, b: int): int {.compilerProc, inline.} =
if b == 0:
raiseDivByZero()
if a == low(int) and b == -1:
raiseOverflow()
return a div b
when not declared(modInt):
proc modInt(a, b: int): int {.compilerProc, inline.} =
if b == 0:
raiseDivByZero()
return a mod b
when not declared(mulInt):
#
# This code has been inspired by Python's source code.
# The native int product x*y is either exactly right or *way* off, being
# just the last n bits of the true product, where n is the number of bits
# in an int (the delivered product is the true product plus i*2**n for
# some integer i).
#
# The native float64 product x*y is subject to three
# rounding errors: on a sizeof(int)==8 box, each cast to double can lose
# info, and even on a sizeof(int)==4 box, the multiplication can lose info.
# But, unlike the native int product, it's not in *range* trouble: even
# if sizeof(int)==32 (256-bit ints), the product easily fits in the
# dynamic range of a float64. So the leading 50 (or so) bits of the float64
# product are correct.
#
# We check these two ways against each other, and declare victory if
# they're approximately the same. Else, because the native int product is
# the only one that can lose catastrophic amounts of information, it's the
# native int product that must have overflowed.
#
proc mulInt(a, b: int): int {.compilerProc.} =
var
resAsFloat, floatProd: float
result = a *% b
floatProd = toFloat(a) * toFloat(b)
resAsFloat = toFloat(result)
# Fast path for normal case: small multiplicands, and no info
# is lost in either method.
if resAsFloat == floatProd: return result
# Somebody somewhere lost info. Close enough, or way off? Note
# that a != 0 and b != 0 (else resAsFloat == floatProd == 0).
# The difference either is or isn't significant compared to the
# true value (of which floatProd is a good approximation).
# abs(diff)/abs(prod) <= 1/32 iff
# 32 * abs(diff) <= abs(prod) -- 5 good bits is "close enough"
if 32.0 * abs(resAsFloat - floatProd) <= abs(floatProd):
return result
raiseOverflow()
# We avoid setting the FPU control word here for compatibility with libraries
# written in other languages.
proc raiseFloatInvalidOp {.noinline, noreturn.} =
sysFatal(FloatInvalidOpError, "FPU operation caused a NaN result")
proc nanCheck(x: float64) {.compilerProc, inline.} =
if x != x: raiseFloatInvalidOp()
proc raiseFloatOverflow(x: float64) {.noinline, noreturn.} =
if x > 0.0:
sysFatal(FloatOverflowError, "FPU operation caused an overflow")
else:
sysFatal(FloatUnderflowError, "FPU operations caused an underflow")
proc infCheck(x: float64) {.compilerProc, inline.} =
if x != 0.0 and x*0.5 == x: raiseFloatOverflow(x)
|