1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
|
proc succ*[T, V: Ordinal](x: T, y: V = 1): T {.magic: "Succ", noSideEffect.} =
## Returns the `y`-th successor (default: 1) of the value `x`.
##
## If such a value does not exist, `OverflowDefect` is raised
## or a compile time error occurs.
runnableExamples:
assert succ(5) == 6
assert succ(5, 3) == 8
proc pred*[T, V: Ordinal](x: T, y: V = 1): T {.magic: "Pred", noSideEffect.} =
## Returns the `y`-th predecessor (default: 1) of the value `x`.
##
## If such a value does not exist, `OverflowDefect` is raised
## or a compile time error occurs.
runnableExamples:
assert pred(5) == 4
assert pred(5, 3) == 2
proc inc*[T, V: Ordinal](x: var T, y: V = 1) {.magic: "Inc", noSideEffect.} =
## Increments the ordinal `x` by `y`.
##
## If such a value does not exist, `OverflowDefect` is raised or a compile
## time error occurs. This is a short notation for: `x = succ(x, y)`.
runnableExamples:
var i = 2
inc(i)
assert i == 3
inc(i, 3)
assert i == 6
proc dec*[T, V: Ordinal](x: var T, y: V = 1) {.magic: "Dec", noSideEffect.} =
## Decrements the ordinal `x` by `y`.
##
## If such a value does not exist, `OverflowDefect` is raised or a compile
## time error occurs. This is a short notation for: `x = pred(x, y)`.
runnableExamples:
var i = 2
dec(i)
assert i == 1
dec(i, 3)
assert i == -2
# --------------------------------------------------------------------------
# built-in operators
# integer calculations:
proc `+`*(x: int): int {.magic: "UnaryPlusI", noSideEffect.}
## Unary `+` operator for an integer. Has no effect.
proc `+`*(x: int8): int8 {.magic: "UnaryPlusI", noSideEffect.}
proc `+`*(x: int16): int16 {.magic: "UnaryPlusI", noSideEffect.}
proc `+`*(x: int32): int32 {.magic: "UnaryPlusI", noSideEffect.}
proc `+`*(x: int64): int64 {.magic: "UnaryPlusI", noSideEffect.}
proc `-`*(x: int): int {.magic: "UnaryMinusI", noSideEffect.}
## Unary `-` operator for an integer. Negates `x`.
proc `-`*(x: int8): int8 {.magic: "UnaryMinusI", noSideEffect.}
proc `-`*(x: int16): int16 {.magic: "UnaryMinusI", noSideEffect.}
proc `-`*(x: int32): int32 {.magic: "UnaryMinusI", noSideEffect.}
proc `-`*(x: int64): int64 {.magic: "UnaryMinusI64", noSideEffect.}
proc `not`*(x: int): int {.magic: "BitnotI", noSideEffect.} =
## Computes the `bitwise complement` of the integer `x`.
runnableExamples:
assert not 0'u8 == 255
assert not 0'i8 == -1
assert not 1000'u16 == 64535
assert not 1000'i16 == -1001
proc `not`*(x: int8): int8 {.magic: "BitnotI", noSideEffect.}
proc `not`*(x: int16): int16 {.magic: "BitnotI", noSideEffect.}
proc `not`*(x: int32): int32 {.magic: "BitnotI", noSideEffect.}
proc `not`*(x: int64): int64 {.magic: "BitnotI", noSideEffect.}
proc `+`*(x, y: int): int {.magic: "AddI", noSideEffect.}
## Binary `+` operator for an integer.
proc `+`*(x, y: int8): int8 {.magic: "AddI", noSideEffect.}
proc `+`*(x, y: int16): int16 {.magic: "AddI", noSideEffect.}
proc `+`*(x, y: int32): int32 {.magic: "AddI", noSideEffect.}
proc `+`*(x, y: int64): int64 {.magic: "AddI", noSideEffect.}
proc `-`*(x, y: int): int {.magic: "SubI", noSideEffect.}
## Binary `-` operator for an integer.
proc `-`*(x, y: int8): int8 {.magic: "SubI", noSideEffect.}
proc `-`*(x, y: int16): int16 {.magic: "SubI", noSideEffect.}
proc `-`*(x, y: int32): int32 {.magic: "SubI", noSideEffect.}
proc `-`*(x, y: int64): int64 {.magic: "SubI", noSideEffect.}
proc `*`*(x, y: int): int {.magic: "MulI", noSideEffect.}
## Binary `*` operator for an integer.
proc `*`*(x, y: int8): int8 {.magic: "MulI", noSideEffect.}
proc `*`*(x, y: int16): int16 {.magic: "MulI", noSideEffect.}
proc `*`*(x, y: int32): int32 {.magic: "MulI", noSideEffect.}
proc `*`*(x, y: int64): int64 {.magic: "MulI", noSideEffect.}
proc `div`*(x, y: int): int {.magic: "DivI", noSideEffect.} =
## Computes the integer division.
##
## This is roughly the same as `math.trunc(x/y).int`.
runnableExamples:
assert (1 div 2) == 0
assert (2 div 2) == 1
assert (3 div 2) == 1
assert (7 div 3) == 2
assert (-7 div 3) == -2
assert (7 div -3) == -2
assert (-7 div -3) == 2
proc `div`*(x, y: int8): int8 {.magic: "DivI", noSideEffect.}
proc `div`*(x, y: int16): int16 {.magic: "DivI", noSideEffect.}
proc `div`*(x, y: int32): int32 {.magic: "DivI", noSideEffect.}
proc `div`*(x, y: int64): int64 {.magic: "DivI", noSideEffect.}
proc `mod`*(x, y: int): int {.magic: "ModI", noSideEffect.} =
## Computes the integer modulo operation (remainder).
##
## This is the same as `x - (x div y) * y`.
runnableExamples:
assert (7 mod 5) == 2
assert (-7 mod 5) == -2
assert (7 mod -5) == 2
assert (-7 mod -5) == -2
proc `mod`*(x, y: int8): int8 {.magic: "ModI", noSideEffect.}
proc `mod`*(x, y: int16): int16 {.magic: "ModI", noSideEffect.}
proc `mod`*(x, y: int32): int32 {.magic: "ModI", noSideEffect.}
proc `mod`*(x, y: int64): int64 {.magic: "ModI", noSideEffect.}
when defined(nimOldShiftRight):
const shrDepMessage = "`shr` will become sign preserving."
proc `shr`*(x: int, y: SomeInteger): int {.magic: "ShrI", noSideEffect, deprecated: shrDepMessage.}
proc `shr`*(x: int8, y: SomeInteger): int8 {.magic: "ShrI", noSideEffect, deprecated: shrDepMessage.}
proc `shr`*(x: int16, y: SomeInteger): int16 {.magic: "ShrI", noSideEffect, deprecated: shrDepMessage.}
proc `shr`*(x: int32, y: SomeInteger): int32 {.magic: "ShrI", noSideEffect, deprecated: shrDepMessage.}
proc `shr`*(x: int64, y: SomeInteger): int64 {.magic: "ShrI", noSideEffect, deprecated: shrDepMessage.}
else:
proc `shr`*(x: int, y: SomeInteger): int {.magic: "AshrI", noSideEffect.} =
## Computes the `shift right` operation of `x` and `y`, filling
## vacant bit positions with the sign bit.
##
## **Note**: `Operator precedence <manual.html#syntax-precedence>`_
## is different than in *C*.
##
## See also:
## * `ashr func<#ashr,int,SomeInteger>`_ for arithmetic shift right
runnableExamples:
assert 0b0001_0000'i8 shr 2 == 0b0000_0100'i8
assert 0b0000_0001'i8 shr 1 == 0b0000_0000'i8
assert 0b1000_0000'i8 shr 4 == 0b1111_1000'i8
assert -1 shr 5 == -1
assert 1 shr 5 == 0
assert 16 shr 2 == 4
assert -16 shr 2 == -4
proc `shr`*(x: int8, y: SomeInteger): int8 {.magic: "AshrI", noSideEffect.}
proc `shr`*(x: int16, y: SomeInteger): int16 {.magic: "AshrI", noSideEffect.}
proc `shr`*(x: int32, y: SomeInteger): int32 {.magic: "AshrI", noSideEffect.}
proc `shr`*(x: int64, y: SomeInteger): int64 {.magic: "AshrI", noSideEffect.}
proc `shl`*(x: int, y: SomeInteger): int {.magic: "ShlI", noSideEffect.} =
## Computes the `shift left` operation of `x` and `y`.
##
## **Note**: `Operator precedence <manual.html#syntax-precedence>`_
## is different than in *C*.
runnableExamples:
assert 1'i32 shl 4 == 0x0000_0010
assert 1'i64 shl 4 == 0x0000_0000_0000_0010
proc `shl`*(x: int8, y: SomeInteger): int8 {.magic: "ShlI", noSideEffect.}
proc `shl`*(x: int16, y: SomeInteger): int16 {.magic: "ShlI", noSideEffect.}
proc `shl`*(x: int32, y: SomeInteger): int32 {.magic: "ShlI", noSideEffect.}
proc `shl`*(x: int64, y: SomeInteger): int64 {.magic: "ShlI", noSideEffect.}
proc ashr*(x: int, y: SomeInteger): int {.magic: "AshrI", noSideEffect.} =
## Shifts right by pushing copies of the leftmost bit in from the left,
## and let the rightmost bits fall off.
##
## Note that `ashr` is not an operator so use the normal function
## call syntax for it.
##
## See also:
## * `shr func<#shr,int,SomeInteger>`_
runnableExamples:
assert ashr(0b0001_0000'i8, 2) == 0b0000_0100'i8
assert ashr(0b1000_0000'i8, 8) == 0b1111_1111'i8
assert ashr(0b1000_0000'i8, 1) == 0b1100_0000'i8
proc ashr*(x: int8, y: SomeInteger): int8 {.magic: "AshrI", noSideEffect.}
proc ashr*(x: int16, y: SomeInteger): int16 {.magic: "AshrI", noSideEffect.}
proc ashr*(x: int32, y: SomeInteger): int32 {.magic: "AshrI", noSideEffect.}
proc ashr*(x: int64, y: SomeInteger): int64 {.magic: "AshrI", noSideEffect.}
proc `and`*(x, y: int): int {.magic: "BitandI", noSideEffect.} =
## Computes the `bitwise and` of numbers `x` and `y`.
runnableExamples:
assert (0b0011 and 0b0101) == 0b0001
assert (0b0111 and 0b1100) == 0b0100
proc `and`*(x, y: int8): int8 {.magic: "BitandI", noSideEffect.}
proc `and`*(x, y: int16): int16 {.magic: "BitandI", noSideEffect.}
proc `and`*(x, y: int32): int32 {.magic: "BitandI", noSideEffect.}
proc `and`*(x, y: int64): int64 {.magic: "BitandI", noSideEffect.}
proc `or`*(x, y: int): int {.magic: "BitorI", noSideEffect.} =
## Computes the `bitwise or` of numbers `x` and `y`.
runnableExamples:
assert (0b0011 or 0b0101) == 0b0111
assert (0b0111 or 0b1100) == 0b1111
proc `or`*(x, y: int8): int8 {.magic: "BitorI", noSideEffect.}
proc `or`*(x, y: int16): int16 {.magic: "BitorI", noSideEffect.}
proc `or`*(x, y: int32): int32 {.magic: "BitorI", noSideEffect.}
proc `or`*(x, y: int64): int64 {.magic: "BitorI", noSideEffect.}
proc `xor`*(x, y: int): int {.magic: "BitxorI", noSideEffect.} =
## Computes the `bitwise xor` of numbers `x` and `y`.
runnableExamples:
assert (0b0011 xor 0b0101) == 0b0110
assert (0b0111 xor 0b1100) == 0b1011
proc `xor`*(x, y: int8): int8 {.magic: "BitxorI", noSideEffect.}
proc `xor`*(x, y: int16): int16 {.magic: "BitxorI", noSideEffect.}
proc `xor`*(x, y: int32): int32 {.magic: "BitxorI", noSideEffect.}
proc `xor`*(x, y: int64): int64 {.magic: "BitxorI", noSideEffect.}
# unsigned integer operations:
proc `not`*(x: uint): uint {.magic: "BitnotI", noSideEffect.}
## Computes the `bitwise complement` of the integer `x`.
proc `not`*(x: uint8): uint8 {.magic: "BitnotI", noSideEffect.}
proc `not`*(x: uint16): uint16 {.magic: "BitnotI", noSideEffect.}
proc `not`*(x: uint32): uint32 {.magic: "BitnotI", noSideEffect.}
proc `not`*(x: uint64): uint64 {.magic: "BitnotI", noSideEffect.}
proc `shr`*(x: uint, y: SomeInteger): uint {.magic: "ShrI", noSideEffect.}
## Computes the `shift right` operation of `x` and `y`.
proc `shr`*(x: uint8, y: SomeInteger): uint8 {.magic: "ShrI", noSideEffect.}
proc `shr`*(x: uint16, y: SomeInteger): uint16 {.magic: "ShrI", noSideEffect.}
proc `shr`*(x: uint32, y: SomeInteger): uint32 {.magic: "ShrI", noSideEffect.}
proc `shr`*(x: uint64, y: SomeInteger): uint64 {.magic: "ShrI", noSideEffect.}
proc `shl`*(x: uint, y: SomeInteger): uint {.magic: "ShlI", noSideEffect.}
## Computes the `shift left` operation of `x` and `y`.
proc `shl`*(x: uint8, y: SomeInteger): uint8 {.magic: "ShlI", noSideEffect.}
proc `shl`*(x: uint16, y: SomeInteger): uint16 {.magic: "ShlI", noSideEffect.}
proc `shl`*(x: uint32, y: SomeInteger): uint32 {.magic: "ShlI", noSideEffect.}
proc `shl`*(x: uint64, y: SomeInteger): uint64 {.magic: "ShlI", noSideEffect.}
proc `and`*(x, y: uint): uint {.magic: "BitandI", noSideEffect.}
## Computes the `bitwise and` of numbers `x` and `y`.
proc `and`*(x, y: uint8): uint8 {.magic: "BitandI", noSideEffect.}
proc `and`*(x, y: uint16): uint16 {.magic: "BitandI", noSideEffect.}
proc `and`*(x, y: uint32): uint32 {.magic: "BitandI", noSideEffect.}
proc `and`*(x, y: uint64): uint64 {.magic: "BitandI", noSideEffect.}
proc `or`*(x, y: uint): uint {.magic: "BitorI", noSideEffect.}
## Computes the `bitwise or` of numbers `x` and `y`.
proc `or`*(x, y: uint8): uint8 {.magic: "BitorI", noSideEffect.}
proc `or`*(x, y: uint16): uint16 {.magic: "BitorI", noSideEffect.}
proc `or`*(x, y: uint32): uint32 {.magic: "BitorI", noSideEffect.}
proc `or`*(x, y: uint64): uint64 {.magic: "BitorI", noSideEffect.}
proc `xor`*(x, y: uint): uint {.magic: "BitxorI", noSideEffect.}
## Computes the `bitwise xor` of numbers `x` and `y`.
proc `xor`*(x, y: uint8): uint8 {.magic: "BitxorI", noSideEffect.}
proc `xor`*(x, y: uint16): uint16 {.magic: "BitxorI", noSideEffect.}
proc `xor`*(x, y: uint32): uint32 {.magic: "BitxorI", noSideEffect.}
proc `xor`*(x, y: uint64): uint64 {.magic: "BitxorI", noSideEffect.}
proc `+`*(x, y: uint): uint {.magic: "AddU", noSideEffect.}
## Binary `+` operator for unsigned integers.
proc `+`*(x, y: uint8): uint8 {.magic: "AddU", noSideEffect.}
proc `+`*(x, y: uint16): uint16 {.magic: "AddU", noSideEffect.}
proc `+`*(x, y: uint32): uint32 {.magic: "AddU", noSideEffect.}
proc `+`*(x, y: uint64): uint64 {.magic: "AddU", noSideEffect.}
proc `-`*(x, y: uint): uint {.magic: "SubU", noSideEffect.}
## Binary `-` operator for unsigned integers.
proc `-`*(x, y: uint8): uint8 {.magic: "SubU", noSideEffect.}
proc `-`*(x, y: uint16): uint16 {.magic: "SubU", noSideEffect.}
proc `-`*(x, y: uint32): uint32 {.magic: "SubU", noSideEffect.}
proc `-`*(x, y: uint64): uint64 {.magic: "SubU", noSideEffect.}
proc `*`*(x, y: uint): uint {.magic: "MulU", noSideEffect.}
## Binary `*` operator for unsigned integers.
proc `*`*(x, y: uint8): uint8 {.magic: "MulU", noSideEffect.}
proc `*`*(x, y: uint16): uint16 {.magic: "MulU", noSideEffect.}
proc `*`*(x, y: uint32): uint32 {.magic: "MulU", noSideEffect.}
proc `*`*(x, y: uint64): uint64 {.magic: "MulU", noSideEffect.}
proc `div`*(x, y: uint): uint {.magic: "DivU", noSideEffect.}
## Computes the integer division for unsigned integers.
## This is roughly the same as `trunc(x/y)`.
proc `div`*(x, y: uint8): uint8 {.magic: "DivU", noSideEffect.}
proc `div`*(x, y: uint16): uint16 {.magic: "DivU", noSideEffect.}
proc `div`*(x, y: uint32): uint32 {.magic: "DivU", noSideEffect.}
proc `div`*(x, y: uint64): uint64 {.magic: "DivU", noSideEffect.}
proc `mod`*(x, y: uint): uint {.magic: "ModU", noSideEffect.}
## Computes the integer modulo operation (remainder) for unsigned integers.
## This is the same as `x - (x div y) * y`.
proc `mod`*(x, y: uint8): uint8 {.magic: "ModU", noSideEffect.}
proc `mod`*(x, y: uint16): uint16 {.magic: "ModU", noSideEffect.}
proc `mod`*(x, y: uint32): uint32 {.magic: "ModU", noSideEffect.}
proc `mod`*(x, y: uint64): uint64 {.magic: "ModU", noSideEffect.}
proc `+=`*[T: SomeInteger](x: var T, y: T) {.
magic: "Inc", noSideEffect.}
## Increments an integer.
proc `-=`*[T: SomeInteger](x: var T, y: T) {.
magic: "Dec", noSideEffect.}
## Decrements an integer.
proc `*=`*[T: SomeInteger](x: var T, y: T) {.
inline, noSideEffect.} =
## Binary `*=` operator for integers.
x = x * y
# floating point operations:
proc `+`*(x: float32): float32 {.magic: "UnaryPlusF64", noSideEffect.}
proc `-`*(x: float32): float32 {.magic: "UnaryMinusF64", noSideEffect.}
proc `+`*(x, y: float32): float32 {.magic: "AddF64", noSideEffect.}
proc `-`*(x, y: float32): float32 {.magic: "SubF64", noSideEffect.}
proc `*`*(x, y: float32): float32 {.magic: "MulF64", noSideEffect.}
proc `/`*(x, y: float32): float32 {.magic: "DivF64", noSideEffect.}
proc `+`*(x: float): float {.magic: "UnaryPlusF64", noSideEffect.}
proc `-`*(x: float): float {.magic: "UnaryMinusF64", noSideEffect.}
proc `+`*(x, y: float): float {.magic: "AddF64", noSideEffect.}
proc `-`*(x, y: float): float {.magic: "SubF64", noSideEffect.}
proc `*`*(x, y: float): float {.magic: "MulF64", noSideEffect.}
proc `/`*(x, y: float): float {.magic: "DivF64", noSideEffect.}
proc `+=`*[T: float|float32|float64] (x: var T, y: T) {.
inline, noSideEffect.} =
## Increments in place a floating point number.
x = x + y
proc `-=`*[T: float|float32|float64] (x: var T, y: T) {.
inline, noSideEffect.} =
## Decrements in place a floating point number.
x = x - y
proc `*=`*[T: float|float32|float64] (x: var T, y: T) {.
inline, noSideEffect.} =
## Multiplies in place a floating point number.
x = x * y
proc `/=`*(x: var float64, y: float64) {.inline, noSideEffect.} =
## Divides in place a floating point number.
x = x / y
proc `/=`*[T: float|float32](x: var T, y: T) {.inline, noSideEffect.} =
## Divides in place a floating point number.
x = x / y
# the following have to be included in system, not imported for some reason:
proc `+%`*(x, y: int): int {.inline.} =
## Treats `x` and `y` as unsigned and adds them.
##
## The result is truncated to fit into the result.
## This implements modulo arithmetic. No overflow errors are possible.
cast[int](cast[uint](x) + cast[uint](y))
proc `+%`*(x, y: int8): int8 {.inline.} = cast[int8](cast[uint8](x) + cast[uint8](y))
proc `+%`*(x, y: int16): int16 {.inline.} = cast[int16](cast[uint16](x) + cast[uint16](y))
proc `+%`*(x, y: int32): int32 {.inline.} = cast[int32](cast[uint32](x) + cast[uint32](y))
proc `+%`*(x, y: int64): int64 {.inline.} = cast[int64](cast[uint64](x) + cast[uint64](y))
proc `-%`*(x, y: int): int {.inline.} =
## Treats `x` and `y` as unsigned and subtracts them.
##
## The result is truncated to fit into the result.
## This implements modulo arithmetic. No overflow errors are possible.
cast[int](cast[uint](x) - cast[uint](y))
proc `-%`*(x, y: int8): int8 {.inline.} = cast[int8](cast[uint8](x) - cast[uint8](y))
proc `-%`*(x, y: int16): int16 {.inline.} = cast[int16](cast[uint16](x) - cast[uint16](y))
proc `-%`*(x, y: int32): int32 {.inline.} = cast[int32](cast[uint32](x) - cast[uint32](y))
proc `-%`*(x, y: int64): int64 {.inline.} = cast[int64](cast[uint64](x) - cast[uint64](y))
proc `*%`*(x, y: int): int {.inline.} =
## Treats `x` and `y` as unsigned and multiplies them.
##
## The result is truncated to fit into the result.
## This implements modulo arithmetic. No overflow errors are possible.
cast[int](cast[uint](x) * cast[uint](y))
proc `*%`*(x, y: int8): int8 {.inline.} = cast[int8](cast[uint8](x) * cast[uint8](y))
proc `*%`*(x, y: int16): int16 {.inline.} = cast[int16](cast[uint16](x) * cast[uint16](y))
proc `*%`*(x, y: int32): int32 {.inline.} = cast[int32](cast[uint32](x) * cast[uint32](y))
proc `*%`*(x, y: int64): int64 {.inline.} = cast[int64](cast[uint64](x) * cast[uint64](y))
proc `/%`*(x, y: int): int {.inline.} =
## Treats `x` and `y` as unsigned and divides them.
##
## The result is truncated to fit into the result.
## This implements modulo arithmetic. No overflow errors are possible.
cast[int](cast[uint](x) div cast[uint](y))
proc `/%`*(x, y: int8): int8 {.inline.} = cast[int8](cast[uint8](x) div cast[uint8](y))
proc `/%`*(x, y: int16): int16 {.inline.} = cast[int16](cast[uint16](x) div cast[uint16](y))
proc `/%`*(x, y: int32): int32 {.inline.} = cast[int32](cast[uint32](x) div cast[uint32](y))
proc `/%`*(x, y: int64): int64 {.inline.} = cast[int64](cast[uint64](x) div cast[uint64](y))
proc `%%`*(x, y: int): int {.inline.} =
## Treats `x` and `y` as unsigned and compute the modulo of `x` and `y`.
##
## The result is truncated to fit into the result.
## This implements modulo arithmetic. No overflow errors are possible.
cast[int](cast[uint](x) mod cast[uint](y))
proc `%%`*(x, y: int8): int8 {.inline.} = cast[int8](cast[uint8](x) mod cast[uint8](y))
proc `%%`*(x, y: int16): int16 {.inline.} = cast[int16](cast[uint16](x) mod cast[uint16](y))
proc `%%`*(x, y: int32): int32 {.inline.} = cast[int32](cast[uint32](x) mod cast[uint32](y))
proc `%%`*(x, y: int64): int64 {.inline.} = cast[int64](cast[uint64](x) mod cast[uint64](y))
when not defined(nimPreviewSlimSystem):
proc ze*(x: int8): int {.deprecated.} =
## zero extends a smaller integer type to `int`. This treats `x` as
## unsigned.
## **Deprecated since version 0.19.9**: Use unsigned integers instead.
cast[int](uint(cast[uint8](x)))
proc ze*(x: int16): int {.deprecated.} =
## zero extends a smaller integer type to `int`. This treats `x` as
## unsigned.
## **Deprecated since version 0.19.9**: Use unsigned integers instead.
cast[int](uint(cast[uint16](x)))
proc ze64*(x: int8): int64 {.deprecated.} =
## zero extends a smaller integer type to `int64`. This treats `x` as
## unsigned.
## **Deprecated since version 0.19.9**: Use unsigned integers instead.
cast[int64](uint64(cast[uint8](x)))
proc ze64*(x: int16): int64 {.deprecated.} =
## zero extends a smaller integer type to `int64`. This treats `x` as
## unsigned.
## **Deprecated since version 0.19.9**: Use unsigned integers instead.
cast[int64](uint64(cast[uint16](x)))
proc ze64*(x: int32): int64 {.deprecated.} =
## zero extends a smaller integer type to `int64`. This treats `x` as
## unsigned.
## **Deprecated since version 0.19.9**: Use unsigned integers instead.
cast[int64](uint64(cast[uint32](x)))
proc ze64*(x: int): int64 {.deprecated.} =
## zero extends a smaller integer type to `int64`. This treats `x` as
## unsigned. Does nothing if the size of an `int` is the same as `int64`.
## (This is the case on 64 bit processors.)
## **Deprecated since version 0.19.9**: Use unsigned integers instead.
cast[int64](uint64(cast[uint](x)))
proc toU8*(x: int): int8 {.deprecated.} =
## treats `x` as unsigned and converts it to a byte by taking the last 8 bits
## from `x`.
## **Deprecated since version 0.19.9**: Use unsigned integers instead.
cast[int8](x)
proc toU16*(x: int): int16 {.deprecated.} =
## treats `x` as unsigned and converts it to an `int16` by taking the last
## 16 bits from `x`.
## **Deprecated since version 0.19.9**: Use unsigned integers instead.
cast[int16](x)
proc toU32*(x: int64): int32 {.deprecated.} =
## treats `x` as unsigned and converts it to an `int32` by taking the
## last 32 bits from `x`.
## **Deprecated since version 0.19.9**: Use unsigned integers instead.
cast[int32](x)
|