(define make-previous
(let ((glob 'first-time))
(lambda ()
(let ((old 'first-time))
(lambda (msg)
(cond ((eq? msg 'local)
(lambda (arg)
(let ((result old))
(set! old arg)
result)))
((eq? msg 'global)
(lambdapre { line-height: 125%; }
td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; }
span.linenos { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; }
td.linenos .special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; }
span.linenos.special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; }
.highlight .hll { background-color: #ffffcc }
.highlight .c { color: #888888 } /* Comment */
.highlight .err { color: #a61717; background-color: #e3d2d2 } /* Error */
.highlight .k { color: #008800; font-weight: bold } /* Keyword */
.highlight .ch { color: #888888 } /* Comment.Hashbang */
.highlight .cm { color: #888888 } /* Comment.Multiline */
.highlight .cp { color: #cc0000; font-weight: bold } /* Comment.Preproc */
.highlight .cpf { color: #888888 } /* Comment.PreprocFile */
.highlight .c1 { color: #888888 } /* Comment.Single */
.highlight .cs { color: #cc0000; font-weight: bold; background-color: #fff0f0 } /* Comment.Special */
.highlight .gd { color: #000000; background-color: #ffdddd } /* Generic.Deleted */
.highlight .ge { font-style: italic } /* Generic.Emph */
.highlight .ges { font-weight: bold; font-style: italic } /* Generic.EmphStrong */
.highlight .gr { color: #aa0000 } /* Generic.Error */
.highlight .gh { color: #333333 } /* Generic.Heading */
.highlight .gi { color: #000000; background-color: #ddffdd } /* Generic.Inserted */
.highlight .go { color: #888888 } /* Generic.Output */
.highlight .gp { color: #555555 } /* Generic.Prompt */
.highlight .gs { font-weight: bold } /* Generic.Strong */
.highlight .gu { color: #666666 } /* Generic.Subheading */
.highlight .gt { color: #aa0000 } /* Generic.Traceback */
.highlight .kc { color: #008800; font-weight: bold } /* Keyword.Constant */
.highlight .kd { color: #008800; font-weight: bold } /* Keyword.Declaration */
.highlight .kn { color: #008800; font-weight: bold } /* Keyword.Namespace */
.highlight .kp { color: #008800 } /* Keyword.Pseudo */
.highlight .kr { color: #008800; font-weight: bold } /* Keyword.Reserved */
.highlight .kt { color: #888888; font-weight: bold } /* Keyword.Type */
.highlight .m { color: #0000DD; font-weight: bold } /* Literal.Number */
.highlight .s { color: #dd2200; background-color: #fff0f0 } /* Literal.String */
.highlight .na { color: #336699 } /* Name.Attribute */
.highlight .nb { color: #003388 } /* Name.Builtin */
.highlight .nc { color: #bb0066; font-weight: bold } /* Name.Class */
.highlight .no { color: #003366; font-weight: bold } /* Name.Constant */
.highlight .nd { color: #555555 } /* Name.Decorator */
.highlight .ne { color: #bb0066; font-weight: bold } /* Name.Exception */
.highlight .nf { color: #0066bb; font-weight: bold } /* Name.Function */
.highlight .nl { color: #336699; font-style: italic } /* Name.Label */
.highlight .nn { color: #bb0066; font-weight: bold } /* Name.Namespace */
.highlight .py { color: #336699; font-weight: bold } /* Name.Property */
.highlight .nt { color: #bb0066; font-weight: bold } /* Name.Tag */
.highlight .nv { color: #336699 } /* Name.Variable */
.highlight .ow { color: #008800 } /* Operator.Word */
.highlight .w { color: #bbbbbb } /* Text.Whitespace */
.highlight .mb { color: #0000DD; font-weight: bold } /* Literal.Number.Bin */
.highlight .mf { color: #0000DD; font-weight: bold } /* Literal.Number.Float */
.highlight .mh { color: #0000DD; font-weight: bold } /* Literal.Number.Hex */
.highlight .mi { color: #0000DD; font-weight: bold } /* Literal.Number.Integer */
.highlight .mo { color: #0000DD; font-weight: bold } /* Literal.Number.Oct */
.highlight .sa { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Affix */
.highlight .sb { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Backtick */
.highlight .sc { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Char */
.highlight .dl { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Delimiter */
.highlight .sd { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Doc */
.highlight .s2 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Double */
.highlight .se { color: #0044dd; background-color: #fff0f0 } /* Literal.String.Escape */
.highlight .sh { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Heredoc */
.highlight .si { color: #3333bb; background-color: #fff0f0 } /* Literal.String.Interpol */
.highlight .sx { color: #22bb22; background-color: #f0fff0 } /* Literal.String.Other */
.highlight .sr { color: #008800; background-color: #fff0ff } /* Literal.String.Regex */
.highlight .s1 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Single */
.highlight .ss { color: #aa6600; background-color: #fff0f0 } /* Literal.String.Symbol */
.highlight .bp { color: #003388 } /* Name.Builtin.Pseudo */
.highlight .fm { color: #0066bb; font-weight: bold } /* Name.Function.Magic */
.highlight .vc { color: #336699 } /* Name.Variable.Class */
.highlight .vg { color: #dd7700 } /* Name.Variable.Global */
.highlight .vi { color: #3333bb } /* Name.Variable.Instance */
.highlight .vm { color: #336699 } /* Name.Variable.Magic */
.highlight .il { color: #0000DD; font-weight: bold } /* Literal.Number.Integer.Long */#
#
# Nim's Runtime Library
# (c) Copyright 2015 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
# Atomic operations for Nim.
{.push stackTrace:off.}
const someGcc = defined(gcc) or defined(llvm_gcc) or defined(clang)
when someGcc and hasThreadSupport:
type AtomMemModel* = distinct cint
var ATOMIC_RELAXED* {.importc: "__ATOMIC_RELAXED", nodecl.}: AtomMemModel
## No barriers or synchronization.
var ATOMIC_CONSUME* {.importc: "__ATOMIC_CONSUME", nodecl.}: AtomMemModel
## Data dependency only for both barrier and
## synchronization with another thread.
var ATOMIC_ACQUIRE* {.importc: "__ATOMIC_ACQUIRE", nodecl.}: AtomMemModel
## Barrier to hoisting of code and synchronizes with
## release (or stronger)
## semantic stores from another thread.
var ATOMIC_RELEASE* {.importc: "__ATOMIC_RELEASE", nodecl.}: AtomMemModel
## Barrier to sinking of code and synchronizes with
## acquire (or stronger)
## semantic loads from another thread.
var ATOMIC_ACQ_REL* {.importc: "__ATOMIC_ACQ_REL", nodecl.}: AtomMemModel
## Full barrier in both directions and synchronizes
## with acquire loads
## and release stores in another thread.
var ATOMIC_SEQ_CST* {.importc: "__ATOMIC_SEQ_CST", nodecl.}: AtomMemModel
## Full barrier in both directions and synchronizes
## with acquire loads
## and release stores in all threads.
type
AtomType* = SomeNumber|pointer|ptr|char|bool
## Type Class representing valid types for use with atomic procs
{.deprecated: [TAtomType: AtomType].}
proc atomicLoadN*[T: AtomType](p: ptr T, mem: AtomMemModel): T {.
importc: "__atomic_load_n", nodecl.}
## This proc implements an atomic load operation. It returns the contents at p.
## ATOMIC_RELAXED, ATOMIC_SEQ_CST, ATOMIC_ACQUIRE, ATOMIC_CONSUME.
proc atomicLoad*[T: AtomType](p, ret: ptr T, mem: AtomMemModel) {.
importc: "__atomic_load", nodecl.}
## This is the generic version of an atomic load. It returns the contents at p in ret.
proc atomicStoreN*[T: AtomType](p: ptr T, val: T, mem: AtomMemModel) {.
importc: "__atomic_store_n", nodecl.}
## This proc implements an atomic store operation. It writes val at p.
## ATOMIC_RELAXED, ATOMIC_SEQ_CST, and ATOMIC_RELEASE.
proc atomicStore*[T: AtomType](p, val: ptr T, mem: AtomMemModel) {.
importc: "__atomic_store", nodecl.}
## This is the generic version of an atomic store. It stores the value of val at p
proc atomicExchangeN*[T: AtomType](p: ptr T, val: T, mem: AtomMemModel): T {.
importc: "__atomic_exchange_n", nodecl.}
## This proc implements an atomic exchange operation. It writes val at p,
## and returns the previous contents at p.
## ATOMIC_RELAXED, ATOMIC_SEQ_CST, ATOMIC_ACQUIRE, ATOMIC_RELEASE, ATOMIC_ACQ_REL
proc atomicExchange*[T: AtomType](p, val, ret: ptr T, mem: AtomMemModel) {.
importc: "__atomic_exchange", nodecl.}
## This is the generic version of an atomic exchange. It stores the contents at val at p.
## The original value at p is copied into ret.
proc atomicCompareExchangeN*[T: AtomType](p, expected: ptr T, desired: T,
weak: bool, success_memmodel: AtomMemModel, failure_memmodel: AtomMemModel): bool {.
importc: "__atomic_compare_exchange_n ", nodecl.}
## This proc implements an atomic compare and exchange operation. This compares the
## contents at p with the contents at expected and if equal, writes desired at p.
## If they are not equal, the current contents at p is written into expected.
## Weak is true for weak compare_exchange, and false for the strong variation.
## Many targets only offer the strong variation and ignore the parameter.
## When in doubt, use the strong variation.
## True is returned if desired is written at p and the execution is considered
## to conform to the memory model specified by success_memmodel. There are no
## restrictions on what memory model can be used here. False is returned otherwise,
## and the execution is considered to conform to failure_memmodel. This memory model
## cannot be __ATOMIC_RELEASE nor __ATOMIC_ACQ_REL. It also cannot be a stronger model
## than that specified by success_memmodel.
proc atomicCompareExchange*[T: AtomType](p, expected, desired: ptr T,
weak: bool, success_memmodel: AtomMemModel, failure_memmodel: AtomMemModel): bool {.
importc: "__atomic_compare_exchange", nodecl.}
## This proc implements the generic version of atomic_compare_exchange.
## The proc is virtually identical to atomic_compare_exchange_n, except the desired
## value is also a pointer.
## Perform the operation return the new value, all memory models are valid
proc atomicAddFetch*[T: AtomType](p: ptr T, val: T, mem: AtomMemModel): T {.
importc: "__atomic_add_fetch", nodecl.}
proc atomicSubFetch*[T: AtomType](p: ptr T, val: T, mem: AtomMemModel): T {.
importc: "__atomic_sub_fetch", nodecl.}
proc atomicOrFetch*[T: AtomType](p: ptr T, val: T, mem: AtomMemModel): T {.
importc: "__atomic_or_fetch ", nodecl.}
proc atomicAndFetch*[T: AtomType](p: ptr T, val: T, mem: AtomMemModel): T {.
importc: "__atomic_and_fetch", nodecl.}
proc atomicXorFetch*[T: AtomType](p: ptr T, val: T, mem: AtomMemModel): T {.
importc: "__atomic_xor_fetch", nodecl.}
proc atomicNandFetch*[T: AtomType](p: ptr T, val: T, mem: AtomMemModel): T {.
importc: "__atomic_nand_fetch ", nodecl.}
## Perform the operation return the old value, all memory models are valid
proc atomicFetchAdd*[T: AtomType](p: ptr T, val: T, mem: AtomMemModel): T {.
importc: "__atomic_fetch_add", nodecl.}
proc atomicFetchSub*[T: AtomType](p: ptr T, val: T, mem: AtomMemModel): T {.
importc: "__atomic_fetch_sub", nodecl.}
proc atomicFetchOr*[T: AtomType](p: ptr T, val: T, mem: AtomMemModel): T {.
importc: "__atomic_fetch_or", nodecl.}
proc atomicFetchAnd*[T: AtomType](p: ptr T, val: T, mem: AtomMemModel): T {.
importc: "__atomic_fetch_and", nodecl.}
proc atomicFetchXor*[T: AtomType](p: ptr T, val: T, mem: AtomMemModel): T {.
importc: "__atomic_fetch_xor", nodecl.}
proc atomicFetchNand*[T: AtomType](p: ptr T, val: T, mem: AtomMemModel): T {.
importc: "__atomic_fetch_nand", nodecl.}
proc atomicTestAndSet*(p: pointer, mem: AtomMemModel): bool {.
importc: "__atomic_test_and_set", nodecl.}
## This built-in function performs an atomic test-and-set operation on the byte at p.
## The byte is set to some implementation defined nonzero “set” value and the return
## value is true if and only if the previous contents were “set”.
## All memory models are valid.
proc atomicClear*(p: pointer, mem: AtomMemModel) {.
importc: "__atomic_clear", nodecl.}
## This built-in function performs an atomic clear operation at p.
## After the operation, at p contains 0.
## ATOMIC_RELAXED, ATOMIC_SEQ_CST, ATOMIC_RELEASE
proc atomicThreadFence*(mem: AtomMemModel) {.
importc: "__atomic_thread_fence", nodecl.}
## This built-in function acts as a synchronization fence between threads based
## on the specified memory model. All memory orders are valid.
proc atomicSignalFence*(mem: AtomMemModel) {.
importc: "__atomic_signal_fence", nodecl.}
## This built-in function acts as a synchronization fence between a thread and
## signal handlers based in the same thread. All memory orders are valid.
proc atomicAlwaysLockFree*(size: int, p: pointer): bool {.
importc: "__atomic_always_lock_free", nodecl.}
## This built-in function returns true if objects of size bytes always generate
## lock free atomic instructions for the target architecture. size must resolve
## to a compile-time constant and the result also resolves to a compile-time constant.
## ptr is an optional pointer to the object that may be used to determine alignment.
## A value of 0 indicates typical alignment should be used. The compiler may also
## ignore this parameter.
proc atomicIsLockFree*(size: int, p: pointer): bool {.
importc: "__atomic_is_lock_free", nodecl.}
## This built-in function returns true if objects of size bytes always generate
## lock free atomic instructions for the target architecture. If it is not known
## to be lock free a call is made to a runtime routine named __atomic_is_lock_free.
## ptr is an optional pointer to the object that may be used to determine alignment.
## A value of 0 indicates typical alignment should be used. The compiler may also
## ignore this parameter.
template fence*() = atomicThreadFence(ATOMIC_SEQ_CST)
elif defined(vcc) and hasThreadSupport:
proc addAndFetch*(p: ptr int, val: int): int {.
importc: "NimXadd", nodecl.}
proc fence*() {.importc: "_ReadWriteBarrier", header: "<intrin.h>".}
else:
proc addAndFetch*(p: ptr int, val: int): int {.inline.} =
inc(p[], val)
result = p[]
proc atomicInc*(memLoc: var int, x: int = 1): int =
when someGcc and hasThreadSupport:
result = atomic_add_fetch(memLoc.addr, x, ATOMIC_RELAXED)
else:
inc(memLoc, x)
result = memLoc
proc atomicDec*(memLoc: var int, x: int = 1): int =
when someGcc and hasThreadSupport:
when declared(atomic_sub_fetch):
result = atomic_sub_fetch(memLoc.addr, x, ATOMIC_RELAXED)
else:
result = atomic_add_fetch(memLoc.addr, -x, ATOMIC_RELAXED)
else:
dec(memLoc, x)
result = memLoc
when defined(windows) and not someGcc:
proc interlockedCompareExchange(p: pointer; exchange, comparand: int): int
{.importc: "InterlockedCompareExchange", header: "<windows.h>", cdecl.}
proc cas*[T: bool|int|ptr](p: ptr T; oldValue, newValue: T): bool =
interlockedCompareExchange(p, cast[int](newValue), cast[int](oldValue)) != 0
# XXX fix for 64 bit build
elif defined(tcc) and not defined(windows):
when defined(amd64):
{.emit:"""
static int __tcc_cas(int *ptr, int oldVal, int newVal)
{
unsigned char ret;
__asm__ __volatile__ (
" lock\n"
" cmpxchgq %2,%1\n"
" sete %0\n"
: "=q" (ret), "=m" (*ptr)
: "r" (newVal), "m" (*ptr), "a" (oldVal)
: "memory");
if (ret)
return 0;
else
return 1;
}
""".}
else:
assert sizeof(int) == 4
{.emit:"""
static int __tcc_cas(int *ptr, int oldVal, int newVal)
{
unsigned char ret;
__asm__ __volatile__ (
" lock\n"
" cmpxchgl %2,%1\n"
" sete %0\n"
: "=q" (ret), "=m" (*ptr)
: "r" (newVal), "m" (*ptr), "a" (oldVal)
: "memory");
if (ret)
return 0;
else
return 1;
}
""".}
proc tcc_cas(p: ptr int; oldValue, newValue: int): bool
{.importc: "__tcc_cas", nodecl.}
proc cas*[T: bool|int|ptr](p: ptr T; oldValue, newValue: T): bool =
tcc_cas(cast[ptr int](p), cast[int](oldValue), cast[int](newValue))
else:
# this is valid for GCC and Intel C++
proc cas*[T: bool|int|ptr](p: ptr T; oldValue, newValue: T): bool
{.importc: "__sync_bool_compare_and_swap", nodecl.}
# XXX is this valid for 'int'?
when (defined(x86) or defined(amd64)) and someGcc:
proc cpuRelax* {.inline.} =
{.emit: """asm volatile("pause" ::: "memory");""".}
elif someGcc or defined(tcc):
proc cpuRelax* {.inline.} =
{.emit: """asm volatile("" ::: "memory");""".}
elif (defined(x86) or defined(amd64)) and defined(vcc):
proc cpuRelax* {.importc: "YieldProcessor", header: "<windows.h>".}
elif defined(icl):
proc cpuRelax* {.importc: "_mm_pause", header: "xmmintrin.h".}
elif false:
from os import sleep
proc cpuRelax* {.inline.} = os.sleep(1)
when not declared(fence) and hasThreadSupport:
# XXX fixme
proc fence*() {.inline.} =
var dummy: bool
discard cas(addr dummy, false, true)
{.pop.}