1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
|
#
#
# Nim's Runtime Library
# (c) Copyright 2015 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## Channel support for threads.
##
## **Note**: This is part of the system module. Do not import it directly.
## To activate thread support compile with the ``--threads:on`` command line switch.
##
## **Note:** Channels are designed for the ``Thread`` type. They are unstable when
## used with ``spawn``
##
## **Note:** The current implementation of message passing does
## not work with cyclic data structures.
##
## **Note:** Channels cannot be passed between threads. Use globals or pass
## them by `ptr`.
##
## Example
## =======
## The following is a simple example of two different ways to use channels:
## blocking and non-blocking.
##
## .. code-block :: Nim
## # Be sure to compile with --threads:on.
## # The channels and threads modules are part of system and should not be
## # imported.
## import os
##
## # Channels can either be:
## # - declared at the module level, or
## # - passed to procedures by ptr (raw pointer) -- see note on safety.
## #
## # For simplicity, in this example a channel is declared at module scope.
## # Channels are generic, and they include support for passing objects between
## # threads.
## # Note that objects passed through channels will be deeply copied.
## var chan: Channel[string]
##
## # This proc will be run in another thread using the threads module.
## proc firstWorker() =
## chan.send("Hello World!")
##
## # This is another proc to run in a background thread. This proc takes a while
## # to send the message since it sleeps for 2 seconds (or 2000 milliseconds).
## proc secondWorker() =
## sleep(2000)
## chan.send("Another message")
##
## # Initialize the channel.
## chan.open()
##
## # Launch the worker.
## var worker1: Thread[void]
## createThread(worker1, firstWorker)
##
## # Block until the message arrives, then print it out.
## echo chan.recv() # "Hello World!"
##
## # Wait for the thread to exit before moving on to the next example.
## worker1.joinThread()
##
## # Launch the other worker.
## var worker2: Thread[void]
## createThread(worker2, secondWorker)
## # This time, use a non-blocking approach with tryRecv.
## # Since the main thread is not blocked, it could be used to perform other
## # useful work while it waits for data to arrive on the channel.
## while true:
## let tried = chan.tryRecv()
## if tried.dataAvailable:
## echo tried.msg # "Another message"
## break
##
## echo "Pretend I'm doing useful work..."
## # For this example, sleep in order not to flood stdout with the above
## # message.
## sleep(400)
##
## # Wait for the second thread to exit before cleaning up the channel.
## worker2.joinThread()
##
## # Clean up the channel.
## chan.close()
##
## Sample output
## -------------
## The program should output something similar to this, but keep in mind that
## exact results may vary in the real world::
## Hello World!
## Pretend I'm doing useful work...
## Pretend I'm doing useful work...
## Pretend I'm doing useful work...
## Pretend I'm doing useful work...
## Pretend I'm doing useful work...
## Another message
##
## Passing Channels Safely
## -----------------------
## Note that when passing objects to procedures on another thread by pointer
## (for example through a thread's argument), objects created using the default
## allocator will use thread-local, GC-managed memory. Thus it is generally
## safer to store channel objects in global variables (as in the above example),
## in which case they will use a process-wide (thread-safe) shared heap.
##
## However, it is possible to manually allocate shared memory for channels
## using e.g. ``system.allocShared0`` and pass these pointers through thread
## arguments:
##
## .. code-block :: Nim
## proc worker(channel: ptr Channel[string]) =
## let greeting = channel[].recv()
## echo greeting
##
## proc localChannelExample() =
## # Use allocShared0 to allocate some shared-heap memory and zero it.
## # The usual warnings about dealing with raw pointers apply. Exercise caution.
## var channel = cast[ptr Channel[string]](
## allocShared0(sizeof(Channel[string]))
## )
## channel[].open()
## # Create a thread which will receive the channel as an argument.
## var thread: Thread[ptr Channel[string]]
## createThread(thread, worker, channel)
## channel[].send("Hello from the main thread!")
## # Clean up resources.
## thread.joinThread()
## channel[].close()
## deallocShared(channel)
##
## localChannelExample() # "Hello from the main thread!"
when not declared(ThisIsSystem):
{.error: "You must not import this module explicitly".}
type
pbytes = ptr UncheckedArray[byte]
RawChannel {.pure, final.} = object ## msg queue for a thread
rd, wr, count, mask, maxItems: int
data: pbytes
lock: SysLock
cond: SysCond
elemType: PNimType
ready: bool
when not usesDestructors:
region: MemRegion
PRawChannel = ptr RawChannel
LoadStoreMode = enum mStore, mLoad
Channel*[TMsg] {.gcsafe.} = RawChannel ## a channel for thread communication
const ChannelDeadMask = -2
proc initRawChannel(p: pointer, maxItems: int) =
var c = cast[PRawChannel](p)
initSysLock(c.lock)
initSysCond(c.cond)
c.mask = -1
c.maxItems = maxItems
proc deinitRawChannel(p: pointer) =
var c = cast[PRawChannel](p)
# we need to grab the lock to be safe against sending threads!
acquireSys(c.lock)
c.mask = ChannelDeadMask
when not usesDestructors:
deallocOsPages(c.region)
else:
if c.data != nil: deallocShared(c.data)
deinitSys(c.lock)
deinitSysCond(c.cond)
when not usesDestructors:
proc storeAux(dest, src: pointer, mt: PNimType, t: PRawChannel,
mode: LoadStoreMode) {.benign.}
proc storeAux(dest, src: pointer, n: ptr TNimNode, t: PRawChannel,
mode: LoadStoreMode) {.benign.} =
var
d = cast[ByteAddress](dest)
s = cast[ByteAddress](src)
case n.kind
of nkSlot: storeAux(cast[pointer](d +% n.offset),
cast[pointer](s +% n.offset), n.typ, t, mode)
of nkList:
for i in 0..n.len-1: storeAux(dest, src, n.sons[i], t, mode)
of nkCase:
copyMem(cast[pointer](d +% n.offset), cast[pointer](s +% n.offset),
n.typ.size)
var m = selectBranch(src, n)
if m != nil: storeAux(dest, src, m, t, mode)
of nkNone: sysAssert(false, "storeAux")
proc storeAux(dest, src: pointer, mt: PNimType, t: PRawChannel,
mode: LoadStoreMode) =
template `+!`(p: pointer; x: int): pointer =
cast[pointer](cast[int](p) +% x)
var
d = cast[ByteAddress](dest)
s = cast[ByteAddress](src)
sysAssert(mt != nil, "mt == nil")
case mt.kind
of tyString:
if mode == mStore:
var x = cast[PPointer](dest)
var s2 = cast[PPointer](s)[]
if s2 == nil:
x[] = nil
else:
var ss = cast[NimString](s2)
var ns = cast[NimString](alloc(t.region, GenericSeqSize + ss.len+1))
copyMem(ns, ss, ss.len+1 + GenericSeqSize)
x[] = ns
else:
var x = cast[PPointer](dest)
var s2 = cast[PPointer](s)[]
if s2 == nil:
unsureAsgnRef(x, s2)
else:
let y = copyDeepString(cast[NimString](s2))
#echo "loaded ", cast[int](y), " ", cast[string](y)
unsureAsgnRef(x, y)
dealloc(t.region, s2)
of tySequence:
var s2 = cast[PPointer](src)[]
var seq = cast[PGenericSeq](s2)
var x = cast[PPointer](dest)
if s2 == nil:
if mode == mStore:
x[] = nil
else:
unsureAsgnRef(x, nil)
else:
sysAssert(dest != nil, "dest == nil")
if mode == mStore:
x[] = alloc0(t.region, align(GenericSeqSize, mt.base.align) +% seq.len *% mt.base.size)
else:
unsureAsgnRef(x, newSeq(mt, seq.len))
var dst = cast[ByteAddress](cast[PPointer](dest)[])
var dstseq = cast[PGenericSeq](dst)
dstseq.len = seq.len
dstseq.reserved = seq.len
for i in 0..seq.len-1:
storeAux(
cast[pointer](dst +% align(GenericSeqSize, mt.base.align) +% i *% mt.base.size),
cast[pointer](cast[ByteAddress](s2) +% align(GenericSeqSize, mt.base.align) +%
i *% mt.base.size),
mt.base, t, mode)
if mode != mStore: dealloc(t.region, s2)
of tyObject:
if mt.base != nil:
storeAux(dest, src, mt.base, t, mode)
else:
# copy type field:
var pint = cast[ptr PNimType](dest)
pint[] = cast[ptr PNimType](src)[]
storeAux(dest, src, mt.node, t, mode)
of tyTuple:
storeAux(dest, src, mt.node, t, mode)
of tyArray, tyArrayConstr:
for i in 0..(mt.size div mt.base.size)-1:
storeAux(cast[pointer](d +% i *% mt.base.size),
cast[pointer](s +% i *% mt.base.size), mt.base, t, mode)
of tyRef:
var s = cast[PPointer](src)[]
var x = cast[PPointer](dest)
if s == nil:
if mode == mStore:
x[] = nil
else:
unsureAsgnRef(x, nil)
else:
#let size = if mt.base.kind == tyObject: cast[ptr PNimType](s)[].size
# else: mt.base.size
if mode == mStore:
let dyntype = when declared(usrToCell): usrToCell(s).typ
else: mt
let size = dyntype.base.size
# we store the real dynamic 'ref type' at offset 0, so that
# no information is lost
let a = alloc0(t.region, size+sizeof(pointer))
x[] = a
cast[PPointer](a)[] = dyntype
storeAux(a +! sizeof(pointer), s, dyntype.base, t, mode)
else:
let dyntype = cast[ptr PNimType](s)[]
var obj = newObj(dyntype, dyntype.base.size)
unsureAsgnRef(x, obj)
storeAux(x[], s +! sizeof(pointer), dyntype.base, t, mode)
dealloc(t.region, s)
else:
copyMem(dest, src, mt.size) # copy raw bits
proc rawSend(q: PRawChannel, data: pointer, typ: PNimType) =
## Adds an `item` to the end of the queue `q`.
var cap = q.mask+1
if q.count >= cap:
# start with capacity for 2 entries in the queue:
if cap == 0: cap = 1
when not usesDestructors:
var n = cast[pbytes](alloc0(q.region, cap*2*typ.size))
else:
var n = cast[pbytes](allocShared0(cap*2*typ.size))
var z = 0
var i = q.rd
var c = q.count
while c > 0:
dec c
copyMem(addr(n[z*typ.size]), addr(q.data[i*typ.size]), typ.size)
i = (i + 1) and q.mask
inc z
if q.data != nil:
when not usesDestructors:
dealloc(q.region, q.data)
else:
deallocShared(q.data)
q.data = n
q.mask = cap*2 - 1
q.wr = q.count
q.rd = 0
when not usesDestructors:
storeAux(addr(q.data[q.wr * typ.size]), data, typ, q, mStore)
else:
copyMem(addr(q.data[q.wr * typ.size]), data, typ.size)
inc q.count
q.wr = (q.wr + 1) and q.mask
proc rawRecv(q: PRawChannel, data: pointer, typ: PNimType) =
sysAssert q.count > 0, "rawRecv"
dec q.count
when not usesDestructors:
storeAux(data, addr(q.data[q.rd * typ.size]), typ, q, mLoad)
else:
copyMem(data, addr(q.data[q.rd * typ.size]), typ.size)
q.rd = (q.rd + 1) and q.mask
template lockChannel(q, action): untyped =
acquireSys(q.lock)
action
releaseSys(q.lock)
proc sendImpl(q: PRawChannel, typ: PNimType, msg: pointer, noBlock: bool): bool =
if q.mask == ChannelDeadMask:
sysFatal(DeadThreadDefect, "cannot send message; thread died")
acquireSys(q.lock)
if q.maxItems > 0:
# Wait until count is less than maxItems
if noBlock and q.count >= q.maxItems:
releaseSys(q.lock)
return
while q.count >= q.maxItems:
waitSysCond(q.cond, q.lock)
rawSend(q, msg, typ)
q.elemType = typ
releaseSys(q.lock)
signalSysCond(q.cond)
result = true
proc send*[TMsg](c: var Channel[TMsg], msg: sink TMsg) {.inline.} =
## Sends a message to a thread. `msg` is deeply copied.
discard sendImpl(cast[PRawChannel](addr c), cast[PNimType](getTypeInfo(msg)), unsafeAddr(msg), false)
when defined(gcDestructors):
wasMoved(msg)
proc trySend*[TMsg](c: var Channel[TMsg], msg: sink TMsg): bool {.inline.} =
## Tries to send a message to a thread.
##
## `msg` is deeply copied. Doesn't block.
##
## Returns `false` if the message was not sent because number of pending items
## in the channel exceeded `maxItems`.
result = sendImpl(cast[PRawChannel](addr c), cast[PNimType](getTypeInfo(msg)), unsafeAddr(msg), true)
when defined(gcDestructors):
if result:
wasMoved(msg)
proc llRecv(q: PRawChannel, res: pointer, typ: PNimType) =
q.ready = true
while q.count <= 0:
waitSysCond(q.cond, q.lock)
q.ready = false
if typ != q.elemType:
releaseSys(q.lock)
sysFatal(ValueError, "cannot receive message of wrong type")
rawRecv(q, res, typ)
if q.maxItems > 0 and q.count == q.maxItems - 1:
# Parent thread is awaiting in send. Wake it up.
signalSysCond(q.cond)
proc recv*[TMsg](c: var Channel[TMsg]): TMsg =
## Receives a message from the channel `c`.
##
## This blocks until a message has arrived!
## You may use `peek proc <#peek,Channel[TMsg]>`_ to avoid the blocking.
var q = cast[PRawChannel](addr(c))
acquireSys(q.lock)
llRecv(q, addr(result), cast[PNimType](getTypeInfo(result)))
releaseSys(q.lock)
proc tryRecv*[TMsg](c: var Channel[TMsg]): tuple[dataAvailable: bool,
msg: TMsg] =
## Tries to receive a message from the channel `c`, but this can fail
## for all sort of reasons, including contention.
##
## If it fails, it returns ``(false, default(msg))`` otherwise it
## returns ``(true, msg)``.
var q = cast[PRawChannel](addr(c))
if q.mask != ChannelDeadMask:
if tryAcquireSys(q.lock):
if q.count > 0:
llRecv(q, addr(result.msg), cast[PNimType](getTypeInfo(result.msg)))
result.dataAvailable = true
releaseSys(q.lock)
proc peek*[TMsg](c: var Channel[TMsg]): int =
## Returns the current number of messages in the channel `c`.
##
## Returns -1 if the channel has been closed.
##
## **Note**: This is dangerous to use as it encourages races.
## It's much better to use `tryRecv proc <#tryRecv,Channel[TMsg]>`_ instead.
var q = cast[PRawChannel](addr(c))
if q.mask != ChannelDeadMask:
lockChannel(q):
result = q.count
else:
result = -1
proc open*[TMsg](c: var Channel[TMsg], maxItems: int = 0) =
## Opens a channel `c` for inter thread communication.
##
## The `send` operation will block until number of unprocessed items is
## less than `maxItems`.
##
## For unlimited queue set `maxItems` to 0.
initRawChannel(addr(c), maxItems)
proc close*[TMsg](c: var Channel[TMsg]) =
## Closes a channel `c` and frees its associated resources.
deinitRawChannel(addr(c))
proc ready*[TMsg](c: var Channel[TMsg]): bool =
## Returns true if some thread is waiting on the channel `c` for
## new messages.
var q = cast[PRawChannel](addr(c))
result = q.ready
|