summary refs log tree commit diff stats
path: root/lib/system/comparisons.nim
blob: c57cfa96554377682298b8c36947957a623b1f70 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
# comparison operators:
proc `==`*[Enum: enum](x, y: Enum): bool {.magic: "EqEnum", noSideEffect.} =
  ## Checks whether values within the *same enum* have the same underlying value.
  runnableExamples:
    type
      Enum1 = enum
        field1 = 3, field2
      Enum2 = enum
        place1, place2 = 3
    var
      e1 = field1
      e2 = Enum1(place2)
    assert e1 == e2
    assert not compiles(e1 == place2) # raises error
proc `==`*(x, y: pointer): bool {.magic: "EqRef", noSideEffect.} =
  ## Checks for equality between two `pointer` variables.
  runnableExamples:
    var # this is a wildly dangerous example
      a = cast[pointer](0)
      b = cast[pointer](nil)
    assert a == b # true due to the special meaning of `nil`/0 as a pointer
proc `==`*(x, y: string): bool {.magic: "EqStr", noSideEffect.}
  ## Checks for equality between two `string` variables.

proc `==`*(x, y: char): bool {.magic: "EqCh", noSideEffect.}
  ## Checks for equality between two `char` variables.
proc `==`*(x, y: bool): bool {.magic: "EqB", noSideEffect.}
  ## Checks for equality between two `bool` variables.
proc `==`*[T](x, y: set[T]): bool {.magic: "EqSet", noSideEffect.} =
  ## Checks for equality between two variables of type `set`.
  runnableExamples:
    assert {1, 2, 2, 3} == {1, 2, 3} # duplication in sets is ignored

proc `==`*[T](x, y: ref T): bool {.magic: "EqRef", noSideEffect.}
  ## Checks that two `ref` variables refer to the same item.
proc `==`*[T](x, y: ptr T): bool {.magic: "EqRef", noSideEffect.}
  ## Checks that two `ptr` variables refer to the same item.
proc `==`*[T: proc](x, y: T): bool {.magic: "EqProc", noSideEffect.}
  ## Checks that two `proc` variables refer to the same procedure.

proc `<=`*[Enum: enum](x, y: Enum): bool {.magic: "LeEnum", noSideEffect.}
proc `<=`*(x, y: string): bool {.magic: "LeStr", noSideEffect.} =
  ## Compares two strings and returns true if `x` is lexicographically
  ## before `y` (uppercase letters come before lowercase letters).
  runnableExamples:
    let
      a = "abc"
      b = "abd"
      c = "ZZZ"
    assert a <= b
    assert a <= a
    assert not (a <= c)

proc `<=`*(x, y: char): bool {.magic: "LeCh", noSideEffect.} =
  ## Compares two chars and returns true if `x` is lexicographically
  ## before `y` (uppercase letters come before lowercase letters).
  runnableExamples:
    let
      a = 'a'
      b = 'b'
      c = 'Z'
    assert a <= b
    assert a <= a
    assert not (a <= c)

proc `<=`*[T](x, y: set[T]): bool {.magic: "LeSet", noSideEffect.} =
  ## Returns true if `x` is a subset of `y`.
  ##
  ## A subset `x` has all of its members in `y` and `y` doesn't necessarily
  ## have more members than `x`. That is, `x` can be equal to `y`.
  runnableExamples:
    let
      a = {3, 5}
      b = {1, 3, 5, 7}
      c = {2}
    assert a <= b
    assert a <= a
    assert not (a <= c)

proc `<=`*(x, y: bool): bool {.magic: "LeB", noSideEffect.}
proc `<=`*[T](x, y: ref T): bool {.magic: "LePtr", noSideEffect.}
proc `<=`*(x, y: pointer): bool {.magic: "LePtr", noSideEffect.}

proc `<`*[Enum: enum](x, y: Enum): bool {.magic: "LtEnum", noSideEffect.}
proc `<`*(x, y: string): bool {.magic: "LtStr", noSideEffect.} =
  ## Compares two strings and returns true if `x` is lexicographically
  ## before `y` (uppercase letters come before lowercase letters).
  runnableExamples:
    let
      a = "abc"
      b = "abd"
      c = "ZZZ"
    assert a < b
    assert not (a < a)
    assert not (a < c)

proc `<`*(x, y: char): bool {.magic: "LtCh", noSideEffect.} =
  ## Compares two chars and returns true if `x` is lexicographically
  ## before `y` (uppercase letters come before lowercase letters).
  runnableExamples:
    let
      a = 'a'
      b = 'b'
      c = 'Z'
    assert a < b
    assert not (a < a)
    assert not (a < c)

proc `<`*[T](x, y: set[T]): bool {.magic: "LtSet", noSideEffect.} =
  ## Returns true if `x` is a strict or proper subset of `y`.
  ##
  ## A strict or proper subset `x` has all of its members in `y` but `y` has
  ## more elements than `y`.
  runnableExamples:
    let
      a = {3, 5}
      b = {1, 3, 5, 7}
      c = {2}
    assert a < b
    assert not (a < a)
    assert not (a < c)

proc `<`*(x, y: bool): bool {.magic: "LtB", noSideEffect.}
proc `<`*[T](x, y: ref T): bool {.magic: "LtPtr", noSideEffect.}
proc `<`*[T](x, y: ptr T): bool {.magic: "LtPtr", noSideEffect.}
proc `<`*(x, y: pointer): bool {.magic: "LtPtr", noSideEffect.}

template `!=`*(x, y: untyped): untyped =
  ## Unequals operator. This is a shorthand for ``not (x == y)``.
  not (x == y)

template `>=`*(x, y: untyped): untyped =
  ## "is greater or equals" operator. This is the same as ``y <= x``.
  y <= x

template `>`*(x, y: untyped): untyped =
  ## "is greater" operator. This is the same as ``y < x``.
  y < x


proc `==`*(x, y: int): bool {.magic: "EqI", noSideEffect.}
  ## Compares two integers for equality.
proc `==`*(x, y: int8): bool {.magic: "EqI", noSideEffect.}
proc `==`*(x, y: int16): bool {.magic: "EqI", noSideEffect.}
proc `==`*(x, y: int32): bool {.magic: "EqI", noSideEffect.}
proc `==`*(x, y: int64): bool {.magic: "EqI", noSideEffect.}

proc `<=`*(x, y: int): bool {.magic: "LeI", noSideEffect.}
  ## Returns true if `x` is less than or equal to `y`.
proc `<=`*(x, y: int8): bool {.magic: "LeI", noSideEffect.}
proc `<=`*(x, y: int16): bool {.magic: "LeI", noSideEffect.}
proc `<=`*(x, y: int32): bool {.magic: "LeI", noSideEffect.}
proc `<=`*(x, y: int64): bool {.magic: "LeI", noSideEffect.}

proc `<`*(x, y: int): bool {.magic: "LtI", noSideEffect.}
  ## Returns true if `x` is less than `y`.
proc `<`*(x, y: int8): bool {.magic: "LtI", noSideEffect.}
proc `<`*(x, y: int16): bool {.magic: "LtI", noSideEffect.}
proc `<`*(x, y: int32): bool {.magic: "LtI", noSideEffect.}
proc `<`*(x, y: int64): bool {.magic: "LtI", noSideEffect.}

proc `<=`*(x, y: uint): bool {.magic: "LeU", noSideEffect.}
  ## Returns true if ``x <= y``.
proc `<=`*(x, y: uint8): bool {.magic: "LeU", noSideEffect.}
proc `<=`*(x, y: uint16): bool {.magic: "LeU", noSideEffect.}
proc `<=`*(x, y: uint32): bool {.magic: "LeU", noSideEffect.}
proc `<=`*(x, y: uint64): bool {.magic: "LeU", noSideEffect.}

proc `<`*(x, y: uint): bool {.magic: "LtU", noSideEffect.}
  ## Returns true if ``x < y``.
proc `<`*(x, y: uint8): bool {.magic: "LtU", noSideEffect.}
proc `<`*(x, y: uint16): bool {.magic: "LtU", noSideEffect.}
proc `<`*(x, y: uint32): bool {.magic: "LtU", noSideEffect.}
proc `<`*(x, y: uint64): bool {.magic: "LtU", noSideEffect.}

proc `<=%`*(x, y: int): bool {.inline.} =
  ## Treats `x` and `y` as unsigned and compares them.
  ## Returns true if ``unsigned(x) <= unsigned(y)``.
  cast[uint](x) <= cast[uint](y)
proc `<=%`*(x, y: int8): bool {.inline.} = cast[uint8](x) <= cast[uint8](y)
proc `<=%`*(x, y: int16): bool {.inline.} = cast[uint16](x) <= cast[uint16](y)
proc `<=%`*(x, y: int32): bool {.inline.} = cast[uint32](x) <= cast[uint32](y)
proc `<=%`*(x, y: int64): bool {.inline.} = cast[uint64](x) <= cast[uint64](y)

proc `<%`*(x, y: int): bool {.inline.} =
  ## Treats `x` and `y` as unsigned and compares them.
  ## Returns true if ``unsigned(x) < unsigned(y)``.
  cast[uint](x) < cast[uint](y)
proc `<%`*(x, y: int8): bool {.inline.} = cast[uint8](x) < cast[uint8](y)
proc `<%`*(x, y: int16): bool {.inline.} = cast[uint16](x) < cast[uint16](y)
proc `<%`*(x, y: int32): bool {.inline.} = cast[uint32](x) < cast[uint32](y)
proc `<%`*(x, y: int64): bool {.inline.} = cast[uint64](x) < cast[uint64](y)

template `>=%`*(x, y: untyped): untyped = y <=% x
  ## Treats `x` and `y` as unsigned and compares them.
  ## Returns true if ``unsigned(x) >= unsigned(y)``.

template `>%`*(x, y: untyped): untyped = y <% x
  ## Treats `x` and `y` as unsigned and compares them.
  ## Returns true if ``unsigned(x) > unsigned(y)``.

proc `==`*(x, y: uint): bool {.magic: "EqI", noSideEffect.}
  ## Compares two unsigned integers for equality.
proc `==`*(x, y: uint8): bool {.magic: "EqI", noSideEffect.}
proc `==`*(x, y: uint16): bool {.magic: "EqI", noSideEffect.}
proc `==`*(x, y: uint32): bool {.magic: "EqI", noSideEffect.}
proc `==`*(x, y: uint64): bool {.magic: "EqI", noSideEffect.}


{.push stackTrace: off.}

proc min*(x, y: int): int {.magic: "MinI", noSideEffect.} =
  if x <= y: x else: y
proc min*(x, y: int8): int8 {.magic: "MinI", noSideEffect.} =
  if x <= y: x else: y
proc min*(x, y: int16): int16 {.magic: "MinI", noSideEffect.} =
  if x <= y: x else: y
proc min*(x, y: int32): int32 {.magic: "MinI", noSideEffect.} =
  if x <= y: x else: y
proc min*(x, y: int64): int64 {.magic: "MinI", noSideEffect.} =
  ## The minimum value of two integers.
  if x <= y: x else: y

proc max*(x, y: int): int {.magic: "MaxI", noSideEffect.} =
  if y <= x: x else: y
proc max*(x, y: int8): int8 {.magic: "MaxI", noSideEffect.} =
  if y <= x: x else: y
proc max*(x, y: int16): int16 {.magic: "MaxI", noSideEffect.} =
  if y <= x: x else: y
proc max*(x, y: int32): int32 {.magic: "MaxI", noSideEffect.} =
  if y <= x: x else: y
proc max*(x, y: int64): int64 {.magic: "MaxI", noSideEffect.} =
  ## The maximum value of two integers.
  if y <= x: x else: y


proc min*[T](x: openArray[T]): T =
  ## The minimum value of `x`. ``T`` needs to have a ``<`` operator.
  result = x[0]
  for i in 1..high(x):
    if x[i] < result: result = x[i]

proc max*[T](x: openArray[T]): T =
  ## The maximum value of `x`. ``T`` needs to have a ``<`` operator.
  result = x[0]
  for i in 1..high(x):
    if result < x[i]: result = x[i]

{.pop.} # stackTrace: off


proc clamp*[T](x, a, b: T): T =
  ## Limits the value `x` within the interval [a, b].
  ## This proc is equivalent to but fatser than `max(a, min(b, x))`.
  ## 
  ## **Note:** `a <= b` is assumed and will not be checked.
  runnableExamples:
    assert (1.4).clamp(0.0, 1.0) == 1.0
    assert (0.5).clamp(0.0, 1.0) == 0.5
    assert 4.clamp(1, 3) == max(1, min(3, 4))
  if x < a: return a
  if x > b: return b
  return x


proc `==`*[I, T](x, y: array[I, T]): bool =
  for f in low(x)..high(x):
    if x[f] != y[f]:
      return
  result = true

proc `==`*[T](x, y: openArray[T]): bool =
  if x.len != y.len:
    return false
  for f in low(x)..high(x):
    if x[f] != y[f]:
      return false
  result = true


proc `==`*[T](x, y: seq[T]): bool {.noSideEffect.} =
  ## Generic equals operator for sequences: relies on a equals operator for
  ## the element type `T`.
  when nimvm:
    when not defined(nimNoNil):
      if x.isNil and y.isNil:
        return true
    else:
      if x.len == 0 and y.len == 0:
        return true
  else:
    when not defined(js):
      proc seqToPtr[T](x: seq[T]): pointer {.inline, noSideEffect.} =
        when defined(nimSeqsV2):
          result = cast[NimSeqV2[T]](x).p
        else:
          result = cast[pointer](x)

      if seqToPtr(x) == seqToPtr(y):
        return true
    else:
      var sameObject = false
      asm """`sameObject` = `x` === `y`"""
      if sameObject: return true

  when not defined(nimNoNil):
    if x.isNil or y.isNil:
      return false

  if x.len != y.len:
    return false

  for i in 0..x.len-1:
    if x[i] != y[i]:
      return false

  return true