1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
|
#
#
# Nimrod's Runtime Library
# (c) Copyright 2012 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
# Garbage Collector
#
# The basic algorithm is *Deferrent Reference Counting* with cycle detection.
# This is achieved by combining a Deutsch-Bobrow garbage collector
# together with Christoper's partial mark-sweep garbage collector.
#
# Special care has been taken to avoid recursion as far as possible to avoid
# stack overflows when traversing deep datastructures. This is comparable to
# an incremental and generational GC. It should be well-suited for soft real
# time applications (like games).
const
CycleIncrease = 2 # is a multiplicative increase
InitialCycleThreshold = 4*1024*1024 # X MB because cycle checking is slow
ZctThreshold = 500 # we collect garbage if the ZCT's size
# reaches this threshold
# this seems to be a good value
const
rcIncrement = 0b1000 # so that lowest 3 bits are not touched
# NOTE: Most colors are currently unused
rcBlack = 0b000 # cell is colored black; in use or free
rcGray = 0b001 # possible member of a cycle
rcWhite = 0b010 # member of a garbage cycle
rcPurple = 0b011 # possible root of a cycle
rcZct = 0b100 # in ZCT
rcRed = 0b101 # Candidate cycle undergoing sigma-computation
rcOrange = 0b110 # Candidate cycle awaiting epoch boundary
rcShift = 3 # shift by rcShift to get the reference counter
colorMask = 0b111
type
TWalkOp = enum
waZctDecRef, waPush, waCycleDecRef
TFinalizer {.compilerproc.} = proc (self: pointer)
# A ref type can have a finalizer that is called before the object's
# storage is freed.
TGcStat {.final, pure.} = object
stackScans: int # number of performed stack scans (for statistics)
cycleCollections: int # number of performed full collections
maxThreshold: int # max threshold that has been set
maxStackSize: int # max stack size
maxStackCells: int # max stack cells in ``decStack``
cycleTableSize: int # max entries in cycle table
TGcHeap {.final, pure.} = object # this contains the zero count and
# non-zero count table
stackBottom: pointer
cycleThreshold: int
zct: TCellSeq # the zero count table
decStack: TCellSeq # cells in the stack that are to decref again
cycleRoots: TCellSet
tempStack: TCellSeq # temporary stack for recursion elimination
recGcLock: int # prevent recursion via finalizers; no thread lock
region: TMemRegion # garbage collected region
stat: TGcStat
var
gch {.rtlThreadVar.}: TGcHeap
when not defined(useNimRtl):
InstantiateForRegion(gch.region)
proc acquire(gch: var TGcHeap) {.inline.} =
when hasThreadSupport and hasSharedHeap:
AcquireSys(HeapLock)
proc release(gch: var TGcHeap) {.inline.} =
when hasThreadSupport and hasSharedHeap:
releaseSys(HeapLock)
proc addZCT(s: var TCellSeq, c: PCell) {.noinline.} =
if (c.refcount and rcZct) == 0:
c.refcount = c.refcount and not colorMask or rcZct
add(s, c)
proc cellToUsr(cell: PCell): pointer {.inline.} =
# convert object (=pointer to refcount) to pointer to userdata
result = cast[pointer](cast[TAddress](cell)+%TAddress(sizeof(TCell)))
proc usrToCell(usr: pointer): PCell {.inline.} =
# convert pointer to userdata to object (=pointer to refcount)
result = cast[PCell](cast[TAddress](usr)-%TAddress(sizeof(TCell)))
proc canbeCycleRoot(c: PCell): bool {.inline.} =
result = ntfAcyclic notin c.typ.flags
proc extGetCellType(c: pointer): PNimType {.compilerproc.} =
# used for code generation concerning debugging
result = usrToCell(c).typ
proc internRefcount(p: pointer): int {.exportc: "getRefcount".} =
result = int(usrToCell(p).refcount) shr rcShift
# this that has to equals zero, otherwise we have to round up UnitsPerPage:
when BitsPerPage mod (sizeof(int)*8) != 0:
{.error: "(BitsPerPage mod BitsPerUnit) should be zero!".}
when debugGC:
proc writeCell(msg: CString, c: PCell) =
var kind = -1
if c.typ != nil: kind = ord(c.typ.kind)
when debugGC:
c_fprintf(c_stdout, "[GC] %s: %p %d rc=%ld from %s(%ld)\n",
msg, c, kind, c.refcount shr rcShift, c.filename, c.line)
else:
c_fprintf(c_stdout, "[GC] %s: %p %d rc=%ld\n",
msg, c, kind, c.refcount shr rcShift)
when traceGC:
# traceGC is a special switch to enable extensive debugging
type
TCellState = enum
csAllocated, csZctFreed, csCycFreed
var
states: array[TCellState, TCellSet]
proc traceCell(c: PCell, state: TCellState) =
case state
of csAllocated:
if c in states[csAllocated]:
writeCell("attempt to alloc an already allocated cell", c)
sysAssert(false, "traceCell 1")
excl(states[csCycFreed], c)
excl(states[csZctFreed], c)
of csZctFreed:
if c in states[csZctFreed]:
writeCell("attempt to free zct cell twice", c)
sysAssert(false, "traceCell 2")
if c in states[csCycFreed]:
writeCell("attempt to free with zct, but already freed with cyc", c)
sysAssert(false, "traceCell 3")
if c notin states[csAllocated]:
writeCell("attempt to free not an allocated cell", c)
sysAssert(false, "traceCell 4")
excl(states[csAllocated], c)
of csCycFreed:
if c notin states[csAllocated]:
writeCell("attempt to free a not allocated cell", c)
sysAssert(false, "traceCell 5")
if c in states[csCycFreed]:
writeCell("attempt to free cyc cell twice", c)
sysAssert(false, "traceCell 6")
if c in states[csZctFreed]:
writeCell("attempt to free with cyc, but already freed with zct", c)
sysAssert(false, "traceCell 7")
excl(states[csAllocated], c)
incl(states[state], c)
proc writeLeakage() =
var z = 0
var y = 0
var e = 0
for c in elements(states[csAllocated]):
inc(e)
if c in states[csZctFreed]: inc(z)
elif c in states[csCycFreed]: inc(y)
else: writeCell("leak", c)
cfprintf(cstdout, "Allocations: %ld; ZCT freed: %ld; CYC freed: %ld\n",
e, z, y)
template gcTrace(cell, state: expr): stmt =
when traceGC: traceCell(cell, state)
# -----------------------------------------------------------------------------
# forward declarations:
proc collectCT(gch: var TGcHeap)
proc IsOnStack*(p: pointer): bool {.noinline.}
proc forAllChildren(cell: PCell, op: TWalkOp)
proc doOperation(p: pointer, op: TWalkOp)
proc forAllChildrenAux(dest: Pointer, mt: PNimType, op: TWalkOp)
# we need the prototype here for debugging purposes
when hasThreadSupport and hasSharedHeap:
template `--`(x: expr): expr = atomicDec(x, rcIncrement) <% rcIncrement
template `++`(x: expr): stmt = discard atomicInc(x, rcIncrement)
else:
template `--`(x: expr): expr =
Dec(x, rcIncrement)
x <% rcIncrement
template `++`(x: expr): stmt = Inc(x, rcIncrement)
proc prepareDealloc(cell: PCell) =
if cell.typ.finalizer != nil:
# the finalizer could invoke something that
# allocates memory; this could trigger a garbage
# collection. Since we are already collecting we
# prevend recursive entering here by a lock.
# XXX: we should set the cell's children to nil!
inc(gch.recGcLock)
(cast[TFinalizer](cell.typ.finalizer))(cellToUsr(cell))
dec(gch.recGcLock)
proc rtlAddCycleRoot(c: PCell) {.rtl, inl.} =
# we MUST access gch as a global here, because this crosses DLL boundaries!
when hasThreadSupport and hasSharedHeap:
AcquireSys(HeapLock)
incl(gch.cycleRoots, c)
when hasThreadSupport and hasSharedHeap:
ReleaseSys(HeapLock)
proc rtlAddZCT(c: PCell) {.rtl, inl.} =
# we MUST access gch as a global here, because this crosses DLL boundaries!
when hasThreadSupport and hasSharedHeap:
AcquireSys(HeapLock)
addZCT(gch.zct, c)
when hasThreadSupport and hasSharedHeap:
ReleaseSys(HeapLock)
proc decRef(c: PCell) {.inline.} =
sysAssert(isAllocatedPtr(gch.region, c), "decRef: interiorPtr")
sysAssert(c.refcount >=% rcIncrement, "decRef")
if --c.refcount:
rtlAddZCT(c)
elif canBeCycleRoot(c):
# unfortunately this is necessary here too, because a cycle might just
# have been broken up and we could recycle it.
rtlAddCycleRoot(c)
proc incRef(c: PCell) {.inline.} =
sysAssert(isAllocatedPtr(gch.region, c), "incRef: interiorPtr")
++c.refcount
if canBeCycleRoot(c):
rtlAddCycleRoot(c)
proc nimGCref(p: pointer) {.compilerProc, inline.} = incRef(usrToCell(p))
proc nimGCunref(p: pointer) {.compilerProc, inline.} = decRef(usrToCell(p))
proc nimGCunrefNoCycle(p: pointer) {.compilerProc, inline.} =
sysAssert(allocInv(gch.region), "begin nimGCunrefNoCycle")
var c = usrToCell(p)
sysAssert(isAllocatedPtr(gch.region, c), "nimGCunrefNoCycle: isAllocatedPtr")
if --c.refcount:
rtlAddZCT(c)
sysAssert(allocInv(gch.region), "end nimGCunrefNoCycle 2")
sysAssert(allocInv(gch.region), "end nimGCunrefNoCycle 5")
proc asgnRef(dest: ppointer, src: pointer) {.compilerProc, inline.} =
# the code generator calls this proc!
sysAssert(not isOnStack(dest), "asgnRef")
# BUGFIX: first incRef then decRef!
if src != nil: incRef(usrToCell(src))
if dest[] != nil: decRef(usrToCell(dest[]))
dest[] = src
proc asgnRefNoCycle(dest: ppointer, src: pointer) {.compilerProc, inline.} =
# the code generator calls this proc if it is known at compile time that no
# cycle is possible.
if src != nil:
var c = usrToCell(src)
++c.refcount
if dest[] != nil:
var c = usrToCell(dest[])
if --c.refcount:
rtlAddZCT(c)
dest[] = src
proc unsureAsgnRef(dest: ppointer, src: pointer) {.compilerProc.} =
# unsureAsgnRef updates the reference counters only if dest is not on the
# stack. It is used by the code generator if it cannot decide wether a
# reference is in the stack or not (this can happen for var parameters).
if not IsOnStack(dest):
if src != nil: incRef(usrToCell(src))
# XXX finally use assembler for the stack checking instead!
# the test for '!= nil' is correct, but I got tired of the segfaults
# resulting from the crappy stack checking:
if cast[int](dest[]) >=% PageSize: decRef(usrToCell(dest[]))
dest[] = src
proc initGC() =
when not defined(useNimRtl):
when traceGC:
for i in low(TCellState)..high(TCellState): Init(states[i])
gch.cycleThreshold = InitialCycleThreshold
gch.stat.stackScans = 0
gch.stat.cycleCollections = 0
gch.stat.maxThreshold = 0
gch.stat.maxStackSize = 0
gch.stat.maxStackCells = 0
gch.stat.cycleTableSize = 0
# init the rt
init(gch.zct)
init(gch.tempStack)
Init(gch.cycleRoots)
Init(gch.decStack)
proc forAllSlotsAux(dest: pointer, n: ptr TNimNode, op: TWalkOp) =
var d = cast[TAddress](dest)
case n.kind
of nkSlot: forAllChildrenAux(cast[pointer](d +% n.offset), n.typ, op)
of nkList:
for i in 0..n.len-1:
# inlined for speed
if n.sons[i].kind == nkSlot:
if n.sons[i].typ.kind in {tyRef, tyString, tySequence}:
doOperation(cast[ppointer](d +% n.sons[i].offset)[], op)
else:
forAllChildrenAux(cast[pointer](d +% n.sons[i].offset),
n.sons[i].typ, op)
else:
forAllSlotsAux(dest, n.sons[i], op)
of nkCase:
var m = selectBranch(dest, n)
if m != nil: forAllSlotsAux(dest, m, op)
of nkNone: sysAssert(false, "forAllSlotsAux")
proc forAllChildrenAux(dest: Pointer, mt: PNimType, op: TWalkOp) =
var d = cast[TAddress](dest)
if dest == nil: return # nothing to do
if ntfNoRefs notin mt.flags:
case mt.Kind
of tyRef, tyString, tySequence: # leaf:
doOperation(cast[ppointer](d)[], op)
of tyObject, tyTuple:
forAllSlotsAux(dest, mt.node, op)
of tyArray, tyArrayConstr, tyOpenArray:
for i in 0..(mt.size div mt.base.size)-1:
forAllChildrenAux(cast[pointer](d +% i *% mt.base.size), mt.base, op)
else: nil
proc forAllChildren(cell: PCell, op: TWalkOp) =
sysAssert(cell != nil, "forAllChildren: 1")
sysAssert(cell.typ != nil, "forAllChildren: 2")
sysAssert cell.typ.kind in {tyRef, tySequence, tyString}, "forAllChildren: 3"
case cell.typ.Kind
of tyRef: # common case
forAllChildrenAux(cellToUsr(cell), cell.typ.base, op)
of tySequence:
var d = cast[TAddress](cellToUsr(cell))
var s = cast[PGenericSeq](d)
if s != nil:
for i in 0..s.len-1:
forAllChildrenAux(cast[pointer](d +% i *% cell.typ.base.size +%
GenericSeqSize), cell.typ.base, op)
else: nil
proc addNewObjToZCT(res: PCell, gch: var TGcHeap) {.inline.} =
# we check the last 8 entries (cache line) for a slot that could be reused.
# In 63% of all cases we succeed here! But we have to optimize the heck
# out of this small linear search so that ``newObj`` is not slowed down.
#
# Slots to try cache hit
# 1 32%
# 4 59%
# 8 63%
# 16 66%
# all slots 68%
var L = gch.zct.len
var d = gch.zct.d
when true:
# loop unrolled for performance:
template replaceZctEntry(i: expr) =
c = d[i]
if c.refcount >=% rcIncrement:
c.refcount = c.refcount and not colorMask
d[i] = res
return
if L > 8:
var c: PCell
replaceZctEntry(L-1)
replaceZctEntry(L-2)
replaceZctEntry(L-3)
replaceZctEntry(L-4)
replaceZctEntry(L-5)
replaceZctEntry(L-6)
replaceZctEntry(L-7)
replaceZctEntry(L-8)
add(gch.zct, res)
else:
d[L] = res
inc(gch.zct.len)
else:
for i in countdown(L-1, max(0, L-8)):
var c = d[i]
if c.refcount >=% rcIncrement:
c.refcount = c.refcount and not colorMask
d[i] = res
return
add(gch.zct, res)
proc rawNewObj(typ: PNimType, size: int, gch: var TGcHeap): pointer =
# generates a new object and sets its reference counter to 0
acquire(gch)
sysAssert(typ.kind in {tyRef, tyString, tySequence}, "newObj: 1")
collectCT(gch)
sysAssert(allocInv(gch.region), "rawNewObj begin")
var res = cast[PCell](rawAlloc(gch.region, size + sizeof(TCell)))
sysAssert((cast[TAddress](res) and (MemAlign-1)) == 0, "newObj: 2")
# now it is buffered in the ZCT
res.typ = typ
when debugGC and not hasThreadSupport:
if framePtr != nil and framePtr.prev != nil:
res.filename = framePtr.prev.filename
res.line = framePtr.prev.line
res.refcount = rcZct # refcount is zero, but mark it to be in the ZCT
sysAssert(isAllocatedPtr(gch.region, res), "newObj: 3")
# its refcount is zero, so add it to the ZCT:
addNewObjToZCT(res, gch)
when logGC: writeCell("new cell", res)
gcTrace(res, csAllocated)
release(gch)
result = cellToUsr(res)
sysAssert(allocInv(gch.region), "rawNewObj end")
proc newObj(typ: PNimType, size: int): pointer {.compilerRtl.} =
result = rawNewObj(typ, size, gch)
zeroMem(result, size)
proc newSeq(typ: PNimType, len: int): pointer {.compilerRtl.} =
# `newObj` already uses locks, so no need for them here.
result = newObj(typ, addInt(mulInt(len, typ.base.size), GenericSeqSize))
cast[PGenericSeq](result).len = len
cast[PGenericSeq](result).space = len
proc newObjRC1(typ: PNimType, size: int): pointer {.compilerRtl.} =
# generates a new object and sets its reference counter to 1
sysAssert(allocInv(gch.region), "newObjRC1 begin")
acquire(gch)
sysAssert(typ.kind in {tyRef, tyString, tySequence}, "newObj: 1")
collectCT(gch)
sysAssert(allocInv(gch.region), "newObjRC1 after collectCT")
var res = cast[PCell](rawAlloc(gch.region, size + sizeof(TCell)))
sysAssert(allocInv(gch.region), "newObjRC1 after rawAlloc")
sysAssert((cast[TAddress](res) and (MemAlign-1)) == 0, "newObj: 2")
# now it is buffered in the ZCT
res.typ = typ
when debugGC and not hasThreadSupport:
if framePtr != nil and framePtr.prev != nil:
res.filename = framePtr.prev.filename
res.line = framePtr.prev.line
res.refcount = rcIncrement # refcount is 1
sysAssert(isAllocatedPtr(gch.region, res), "newObj: 3")
when logGC: writeCell("new cell", res)
gcTrace(res, csAllocated)
release(gch)
result = cellToUsr(res)
zeroMem(result, size)
sysAssert(allocInv(gch.region), "newObjRC1 end")
proc newSeqRC1(typ: PNimType, len: int): pointer {.compilerRtl.} =
result = newObjRC1(typ, addInt(mulInt(len, typ.base.size), GenericSeqSize))
cast[PGenericSeq](result).len = len
cast[PGenericSeq](result).space = len
proc growObj(old: pointer, newsize: int, gch: var TGcHeap): pointer =
acquire(gch)
collectCT(gch)
var ol = usrToCell(old)
sysAssert(ol.typ != nil, "growObj: 1")
sysAssert(ol.typ.kind in {tyString, tySequence}, "growObj: 2")
sysAssert(allocInv(gch.region), "growObj begin")
var res = cast[PCell](rawAlloc(gch.region, newsize + sizeof(TCell)))
var elemSize = 1
if ol.typ.kind != tyString: elemSize = ol.typ.base.size
var oldsize = cast[PGenericSeq](old).len*elemSize + GenericSeqSize
copyMem(res, ol, oldsize + sizeof(TCell))
zeroMem(cast[pointer](cast[TAddress](res)+% oldsize +% sizeof(TCell)),
newsize-oldsize)
sysAssert((cast[TAddress](res) and (MemAlign-1)) == 0, "growObj: 3")
sysAssert(res.refcount shr rcShift <=% 1, "growObj: 4")
#if res.refcount <% rcIncrement:
# add(gch.zct, res)
#else: # XXX: what to do here?
# decRef(ol)
if (ol.refcount and colorMask) == rcZct:
var j = gch.zct.len-1
var d = gch.zct.d
while j >= 0:
if d[j] == ol:
d[j] = res
break
dec(j)
if canBeCycleRoot(ol): excl(gch.cycleRoots, ol)
when logGC:
writeCell("growObj old cell", ol)
writeCell("growObj new cell", res)
gcTrace(ol, csZctFreed)
gcTrace(res, csAllocated)
when reallyDealloc: rawDealloc(gch.region, ol)
else:
sysAssert(ol.typ != nil, "growObj: 5")
zeroMem(ol, sizeof(TCell))
release(gch)
result = cellToUsr(res)
sysAssert(allocInv(gch.region), "growObj end")
proc growObj(old: pointer, newsize: int): pointer {.rtl.} =
result = growObj(old, newsize, gch)
# ---------------- cycle collector -------------------------------------------
proc doOperation(p: pointer, op: TWalkOp) =
if p == nil: return
var c: PCell = usrToCell(p)
sysAssert(c != nil, "doOperation: 1")
case op # faster than function pointers because of easy prediction
of waZctDecRef:
sysAssert(isAllocatedPtr(gch.region, c), "decRef: waZctDecRef")
sysAssert(c.refcount >=% rcIncrement, "doOperation 2")
c.refcount = c.refcount -% rcIncrement
when logGC: writeCell("decref (from doOperation)", c)
if c.refcount <% rcIncrement: addZCT(gch.zct, c)
of waPush:
add(gch.tempStack, c)
of waCycleDecRef:
sysAssert(c.refcount >=% rcIncrement, "doOperation 3")
c.refcount = c.refcount -% rcIncrement
# we now use a much simpler and non-recursive algorithm for cycle removal
proc collectCycles(gch: var TGcHeap) =
var tabSize = 0
for c in elements(gch.cycleRoots):
inc(tabSize)
forallChildren(c, waCycleDecRef)
if tabSize == 0: return
gch.stat.cycleTableSize = max(gch.stat.cycleTableSize, tabSize)
# restore reference counts (a depth-first traversal is needed):
var marker: TCellSet
Init(marker)
for c in elements(gch.cycleRoots):
if c.refcount >=% rcIncrement:
if not containsOrIncl(marker, c):
gch.tempStack.len = 0
forAllChildren(c, waPush)
while gch.tempStack.len > 0:
dec(gch.tempStack.len)
var d = gch.tempStack.d[gch.tempStack.len]
d.refcount = d.refcount +% rcIncrement
if d in gch.cycleRoots and not containsOrIncl(marker, d):
forAllChildren(d, waPush)
# remove cycles:
for c in elements(gch.cycleRoots):
if c.refcount <% rcIncrement:
gch.tempStack.len = 0
forAllChildren(c, waPush)
while gch.tempStack.len > 0:
dec(gch.tempStack.len)
var d = gch.tempStack.d[gch.tempStack.len]
if d.refcount <% rcIncrement:
if d notin gch.cycleRoots: # d is leaf of c and not part of cycle
addZCT(gch.zct, d)
when logGC: writeCell("add to ZCT (from cycle collector)", d)
prepareDealloc(c)
gcTrace(c, csCycFreed)
when logGC: writeCell("cycle collector dealloc cell", c)
when reallyDealloc: rawDealloc(gch.region, c)
else:
sysAssert(c.typ != nil, "collectCycles")
zeroMem(c, sizeof(TCell))
Deinit(gch.cycleRoots)
Init(gch.cycleRoots)
proc gcMark(gch: var TGcHeap, p: pointer) {.inline.} =
# the addresses are not as cells on the stack, so turn them to cells:
sysAssert(allocInv(gch.region), "gcMark begin")
var cell = usrToCell(p)
var c = cast[TAddress](cell)
if c >% PageSize:
# fast check: does it look like a cell?
var objStart = cast[PCell](interiorAllocatedPtr(gch.region, cell))
if objStart != nil:
# mark the cell:
objStart.refcount = objStart.refcount +% rcIncrement
add(gch.decStack, objStart)
when false:
if isAllocatedPtr(gch.region, cell):
sysAssert false, "allocated pointer but not interior?"
# mark the cell:
cell.refcount = cell.refcount +% rcIncrement
add(gch.decStack, cell)
sysAssert(allocInv(gch.region), "gcMark end")
proc markThreadStacks(gch: var TGcHeap) =
when hasThreadSupport and hasSharedHeap:
{.error: "not fully implemented".}
var it = threadList
while it != nil:
# mark registers:
for i in 0 .. high(it.registers): gcMark(gch, it.registers[i])
var sp = cast[TAddress](it.stackBottom)
var max = cast[TAddress](it.stackTop)
# XXX stack direction?
# XXX unroll this loop:
while sp <=% max:
gcMark(gch, cast[ppointer](sp)[])
sp = sp +% sizeof(pointer)
it = it.next
# ----------------- stack management --------------------------------------
# inspired from Smart Eiffel
when defined(sparc):
const stackIncreases = false
elif defined(hppa) or defined(hp9000) or defined(hp9000s300) or
defined(hp9000s700) or defined(hp9000s800) or defined(hp9000s820):
const stackIncreases = true
else:
const stackIncreases = false
when not defined(useNimRtl):
proc setStackBottom(theStackBottom: pointer) =
#c_fprintf(c_stdout, "stack bottom: %p;\n", theStackBottom)
# the first init must be the one that defines the stack bottom:
if gch.stackBottom == nil: gch.stackBottom = theStackBottom
else:
var a = cast[TAddress](theStackBottom) # and not PageMask - PageSize*2
var b = cast[TAddress](gch.stackBottom)
when stackIncreases:
gch.stackBottom = cast[pointer](min(a, b))
else:
gch.stackBottom = cast[pointer](max(a, b))
proc stackSize(): int {.noinline.} =
var stackTop {.volatile.}: pointer
result = abs(cast[int](addr(stackTop)) - cast[int](gch.stackBottom))
when defined(sparc): # For SPARC architecture.
proc isOnStack(p: pointer): bool =
var stackTop {.volatile.}: pointer
stackTop = addr(stackTop)
var b = cast[TAddress](gch.stackBottom)
var a = cast[TAddress](stackTop)
var x = cast[TAddress](p)
result = a <=% x and x <=% b
proc markStackAndRegisters(gch: var TGcHeap) {.noinline, cdecl.} =
when defined(sparcv9):
asm """"flushw \n" """
else:
asm """"ta 0x3 ! ST_FLUSH_WINDOWS\n" """
var
max = gch.stackBottom
sp: PPointer
stackTop: array[0..1, pointer]
sp = addr(stackTop[0])
# Addresses decrease as the stack grows.
while sp <= max:
gcMark(gch, sp[])
sp = cast[ppointer](cast[TAddress](sp) +% sizeof(pointer))
elif defined(ELATE):
{.error: "stack marking code is to be written for this architecture".}
elif stackIncreases:
# ---------------------------------------------------------------------------
# Generic code for architectures where addresses increase as the stack grows.
# ---------------------------------------------------------------------------
proc isOnStack(p: pointer): bool =
var stackTop {.volatile.}: pointer
stackTop = addr(stackTop)
var a = cast[TAddress](gch.stackBottom)
var b = cast[TAddress](stackTop)
var x = cast[TAddress](p)
result = a <=% x and x <=% b
var
jmpbufSize {.importc: "sizeof(jmp_buf)", nodecl.}: int
# a little hack to get the size of a TJmpBuf in the generated C code
# in a platform independant way
proc markStackAndRegisters(gch: var TGcHeap) {.noinline, cdecl.} =
var registers: C_JmpBuf
if c_setjmp(registers) == 0'i32: # To fill the C stack with registers.
var max = cast[TAddress](gch.stackBottom)
var sp = cast[TAddress](addr(registers)) +% jmpbufSize -% sizeof(pointer)
# sp will traverse the JMP_BUF as well (jmp_buf size is added,
# otherwise sp would be below the registers structure).
while sp >=% max:
gcMark(gch, cast[ppointer](sp)[])
sp = sp -% sizeof(pointer)
else:
# ---------------------------------------------------------------------------
# Generic code for architectures where addresses decrease as the stack grows.
# ---------------------------------------------------------------------------
proc isOnStack(p: pointer): bool =
var stackTop {.volatile.}: pointer
stackTop = addr(stackTop)
var b = cast[TAddress](gch.stackBottom)
var a = cast[TAddress](stackTop)
var x = cast[TAddress](p)
result = a <=% x and x <=% b
proc markStackAndRegisters(gch: var TGcHeap) {.noinline, cdecl.} =
# We use a jmp_buf buffer that is in the C stack.
# Used to traverse the stack and registers assuming
# that 'setjmp' will save registers in the C stack.
type PStackSlice = ptr array [0..7, pointer]
var registers: C_JmpBuf
if c_setjmp(registers) == 0'i32: # To fill the C stack with registers.
var max = cast[TAddress](gch.stackBottom)
var sp = cast[TAddress](addr(registers))
# loop unrolled:
while sp <% max - 8*sizeof(pointer):
gcMark(gch, cast[PStackSlice](sp)[0])
gcMark(gch, cast[PStackSlice](sp)[1])
gcMark(gch, cast[PStackSlice](sp)[2])
gcMark(gch, cast[PStackSlice](sp)[3])
gcMark(gch, cast[PStackSlice](sp)[4])
gcMark(gch, cast[PStackSlice](sp)[5])
gcMark(gch, cast[PStackSlice](sp)[6])
gcMark(gch, cast[PStackSlice](sp)[7])
sp = sp +% sizeof(pointer)*8
# last few entries:
while sp <=% max:
gcMark(gch, cast[ppointer](sp)[])
sp = sp +% sizeof(pointer)
# ----------------------------------------------------------------------------
# end of non-portable code
# ----------------------------------------------------------------------------
proc CollectZCT(gch: var TGcHeap) =
# Note: Freeing may add child objects to the ZCT! So essentially we do
# deep freeing, which is bad for incremental operation. In order to
# avoid a deep stack, we move objects to keep the ZCT small.
# This is performance critical!
var L = addr(gch.zct.len)
while L[] > 0:
var c = gch.zct.d[0]
sysAssert(isAllocatedPtr(gch.region, c), "CollectZCT: isAllocatedPtr")
# remove from ZCT:
sysAssert((c.refcount and rcZct) == rcZct, "collectZCT")
c.refcount = c.refcount and not colorMask
gch.zct.d[0] = gch.zct.d[L[] - 1]
dec(L[])
if c.refcount <% rcIncrement:
# It may have a RC > 0, if it is in the hardware stack or
# it has not been removed yet from the ZCT. This is because
# ``incref`` does not bother to remove the cell from the ZCT
# as this might be too slow.
# In any case, it should be removed from the ZCT. But not
# freed. **KEEP THIS IN MIND WHEN MAKING THIS INCREMENTAL!**
if canBeCycleRoot(c): excl(gch.cycleRoots, c)
when logGC: writeCell("zct dealloc cell", c)
gcTrace(c, csZctFreed)
# We are about to free the object, call the finalizer BEFORE its
# children are deleted as well, because otherwise the finalizer may
# access invalid memory. This is done by prepareDealloc():
prepareDealloc(c)
forAllChildren(c, waZctDecRef)
when reallyDealloc: rawDealloc(gch.region, c)
else:
sysAssert(c.typ != nil, "collectZCT 2")
zeroMem(c, sizeof(TCell))
proc unmarkStackAndRegisters(gch: var TGcHeap) =
var d = gch.decStack.d
for i in 0..gch.decStack.len-1:
sysAssert isAllocatedPtr(gch.region, d[i]), "unmarkStackAndRegisters"
# decRef(d[i]) inlined: cannot create a cycle and must not acquire lock
var c = d[i]
# XXX no need for an atomic dec here:
if --c.refcount:
addZCT(gch.zct, c)
sysAssert c.typ != nil, "unmarkStackAndRegisters 2"
gch.decStack.len = 0
proc collectCT(gch: var TGcHeap) =
if (gch.zct.len >= ZctThreshold or (cycleGC and
getOccupiedMem(gch.region) >= gch.cycleThreshold) or stressGC) and
gch.recGcLock == 0:
sysAssert(allocInv(gch.region), "collectCT: begin")
gch.stat.maxStackSize = max(gch.stat.maxStackSize, stackSize())
sysAssert(gch.decStack.len == 0, "collectCT")
prepareForInteriorPointerChecking(gch.region)
markStackAndRegisters(gch)
markThreadStacks(gch)
gch.stat.maxStackCells = max(gch.stat.maxStackCells, gch.decStack.len)
inc(gch.stat.stackScans)
collectZCT(gch)
when cycleGC:
if getOccupiedMem(gch.region) >= gch.cycleThreshold or stressGC:
collectCycles(gch)
collectZCT(gch)
inc(gch.stat.cycleCollections)
gch.cycleThreshold = max(InitialCycleThreshold, getOccupiedMem() *
cycleIncrease)
gch.stat.maxThreshold = max(gch.stat.maxThreshold, gch.cycleThreshold)
unmarkStackAndRegisters(gch)
sysAssert(allocInv(gch.region), "collectCT: end")
when not defined(useNimRtl):
proc GC_disable() =
when hasThreadSupport and hasSharedHeap:
discard atomicInc(gch.recGcLock, 1)
else:
inc(gch.recGcLock)
proc GC_enable() =
if gch.recGcLock > 0:
when hasThreadSupport and hasSharedHeap:
discard atomicDec(gch.recGcLock, 1)
else:
dec(gch.recGcLock)
proc GC_setStrategy(strategy: TGC_Strategy) =
case strategy
of gcThroughput: nil
of gcResponsiveness: nil
of gcOptimizeSpace: nil
of gcOptimizeTime: nil
proc GC_enableMarkAndSweep() =
gch.cycleThreshold = InitialCycleThreshold
proc GC_disableMarkAndSweep() =
gch.cycleThreshold = high(gch.cycleThreshold)-1
# set to the max value to suppress the cycle detector
proc GC_fullCollect() =
acquire(gch)
var oldThreshold = gch.cycleThreshold
gch.cycleThreshold = 0 # forces cycle collection
collectCT(gch)
gch.cycleThreshold = oldThreshold
release(gch)
proc GC_getStatistics(): string =
GC_disable()
result = "[GC] total memory: " & $(getTotalMem()) & "\n" &
"[GC] occupied memory: " & $(getOccupiedMem()) & "\n" &
"[GC] stack scans: " & $gch.stat.stackScans & "\n" &
"[GC] stack cells: " & $gch.stat.maxStackCells & "\n" &
"[GC] cycle collections: " & $gch.stat.cycleCollections & "\n" &
"[GC] max threshold: " & $gch.stat.maxThreshold & "\n" &
"[GC] zct capacity: " & $gch.zct.cap & "\n" &
"[GC] max cycle table size: " & $gch.stat.cycleTableSize & "\n" &
"[GC] max stack size: " & $gch.stat.maxStackSize
when traceGC: writeLeakage()
GC_enable()
|