#
#
# The Nim Compiler
# (c) Copyright 2015 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
# Unforunately this cannot be a module yet:
#import vmdeps, vm
from math import sqrt, ln, log10, log2, exp, round, arccos, arcsin,
arctan, arctan2, cos, cosh, hypot, sinh, sin, tan, tanh, pow, trunc,
floor, ceil, fmod
from os import getEnv, existsEnv, dirExists, fileExists, walkDir
template mathop(op) {.dirty.} =
registerCallback(c, "stdlib.math." & astToStr(op), `op Wrapper`)
template osop(op) {.dirty.} =
registerCallback(c, "stdlib.os." & astToStr(op), `op Wrapper`)
template systemop(op) {.dirty.} =
registerCallback(c, "stdlib.system." & astToStr(op), `op Wrapper`)
template wrap1f_math(op) {.dirty.} =
proc `op Wrapper`(a: VmArgs) {.nimcall.} =
setResult(a, op(getFloat(a, 0)))
mathop op
template wrap2f_math(op) {.dirty.} =
proc `op Wrapper`(a: VmArgs) {.nimcall.} =
setResult(a, op(getFloat(a, 0), getFloat(a, 1)))
mathop op
template wrap1s_os(op) {.dirty.} =
proc `op Wrapper`(a: VmArgs) {.nimcall.} =
setResult(a, op(getString(a, 0)))
osop op
template wrap1s_system(op) {.dirty.} =
proc `op Wrapper`(a: VmArgs) {.nimcall.} =
setResult(a, op(getString(a, 0)))
systemop op
template wrap2svoid_system(op) {.dirty.} =
proc `op Wrapper`(a: VmArgs) {.nimcall.} =
op(getString(a, 0), getString(a, 1))
systemop op
procpre { line-height: 125%; }
td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; }
span.linenos { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; }
td.linenos .special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; }
span.linenos.special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; }
.highlight .hll { background-color: #ffffcc }
.highlight .c { color: #888888 } /* Comment */
.highlight .err { color: #a61717; background-color: #e3d2d2 } /* Error */
.highlight .k { color: #008800; font-weight: bold } /* Keyword */
.highlight .ch { color: #888888 } /* Comment.Hashbang */
.highlight .cm { color: #888888 } /* Comment.Multiline */
.highlight .cp { color: #cc0000; font-weight: bold } /* Comment.Preproc */
.highlight .cpf { color: #888888 } /* Comment.PreprocFile */
.highlight .c1 { color: #888888 } /* Comment.Single */
.highlight .cs { color: #cc0000; font-weight: bold; background-color: #fff0f0 } /* Comment.Special */
.highlight .gd { color: #000000; background-color: #ffdddd } /* Generic.Deleted */
.highlight .ge { font-style: italic } /* Generic.Emph */
.highlight .ges { font-weight: bold; font-style: italic } /* Generic.EmphStrong */
.highlight .gr { color: #aa0000 } /* Generic.Error */
.highlight .gh { color: #333333 } /* Generic.Heading */
.highlight .gi { color: #000000; background-color: #ddffdd } /* Generic.Inserted */
.highlight .go { color: #888888 } /* Generic.Output */
.highlight .gp { color: #555555 } /* Generic.Prompt */
.highlight .gs { font-weight: bold } /* Generic.Strong */
.highlight .gu { color: #666666 } /* Generic.Subheading */
.highlight .gt { color: #aa0000 } /* Generic.Traceback */
.highlight .kc { color: #008800; font-weight: bold } /* Keyword.Constant */
.highlight .kd { color: #008800; font-weight: bold } /* Keyword.Declaration */
.highlight .kn { color: #008800; font-weight: bold } /* Keyword.Namespace */
.highlight .kp { color: #008800 } /* Keyword.Pseudo */
.highlight .kr { color: #008800; font-weight: bold } /* Keyword.Reserved */
.highlight .kt { color: #888888; font-weight: bold } /* Keyword.Type */
.highlight .m { color: #0000DD; font-weight: bold } /* Literal.Number */
.highlight .s { color: #dd2200; background-color: #fff0f0 } /* Literal.String */
.highlight .na { color: #336699 } /* Name.Attribute */
.highlight .nb { color: #003388 } /* Name.Builtin */
.highlight .nc { color: #bb0066; font-weight: bold } /* Name.Class */
.highlight .no { color: #003366; font-weight: bold } /* Name.Constant */
.highlight .nd { color: #555555 } /* Name.Decorator */
.highlight .ne { color: #bb0066; font-weight: bold } /* Name.Exception */
.highlight .nf { color: #0066bb; font-weight: bold } /* Name.Function */
.highlight .nl { color: #336699; font-style: italic } /* Name.Label */
.highlight .nn { color: #bb0066; font-weight: bold } /* Name.Namespace */
.highlight .py { color: #336699; font-weight: bold } /* Name.Property */
.highlight .nt { color: #bb0066; font-weight: bold } /* Name.Tag */
.highlight .nv { color: #336699 } /* Name.Variable */
.highlight .ow { color: #008800 } /* Operator.Word */
.highlight .w { color: #bbbbbb } /* Text.Whitespace */
.highlight .mb { color: #0000DD; font-weight: bold } /* Literal.Number.Bin */
.highlight .mf { color: #0000DD; font-weight: bold } /* Literal.Number.Float */
.highlight .mh { color: #0000DD; font-weight: bold } /* Literal.Number.Hex */
.highlight .mi { color: #0000DD; font-weight: bold } /* Literal.Number.Integer */
.highlight .mo { color: #0000DD; font-weight: bold } /* Literal.Number.Oct */
.highlight .sa { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Affix */
.highlight .sb { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Backtick */
.highlight .sc { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Char */
.highlight .dl { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Delimiter */
.highlight .sd { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Doc */
.highlight .s2 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Double */
.highlight .se { color: #0044dd; background-color: #fff0f0 } /* Literal.String.Escape */
.highlight .sh { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Heredoc */
.highlight .si { color: #3333bb; background-color: #fff0f0 } /* Literal.String.Interpol */
.highlight .sx { color: #22bb22; background-color: #f0fff0 } /* Literal.String.Other */
.highlight .sr { color: #008800; background-color: #fff0ff } /* Literal.String.Regex */
.highlight .s1 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Single */
.highlight .ss { color: #aa6600; background-color: #fff0f0 } /* Literal.String.Symbol */
.highlight .bp { color: #003388 } /* Name.Builtin.Pseudo */
.highlight .fm { color: #0066bb; font-weight: bold } /* Name.Function.Magic */
.highlight .vc { color: #336699 } /* Name.Variable.Class */
.highlight .vg { color: #dd7700 } /* Name.Variable.Global */
.highlight .vi { color: #3333bb } /* Name.Variable.Instance */
.highlight .vm { color: #336699 } /* Name.Variable.Magic */
.highlight .il { color: #0000DD; font-weight: bold } /* Literal.Number.Integer.Long */#
#
# Nimrod's Runtime Library
# (c) Copyright 2014 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
# A simple mark&sweep garbage collector for Nimrod. Define the
# symbol ``gcUseBitvectors`` to generate a variant of this GC.
{.push profiler:off.}
const
InitialThreshold = 4*1024*1024 # X MB because marking&sweeping is slow
withBitvectors = defined(gcUseBitvectors)
# bitvectors are significantly faster for GC-bench, but slower for
# bootstrapping and use more memory
rcWhite = 0
rcGrey = 1 # unused
rcBlack = 2
template mulThreshold(x): expr {.immediate.} = x * 2
when defined(memProfiler):
proc nimProfile(requestedSize: int)
type
TWalkOp = enum
waMarkGlobal, # we need to mark conservatively for global marker procs
# as these may refer to a global var and not to a thread
# local
waMarkPrecise # fast precise marking
TFinalizer {.compilerproc.} = proc (self: pointer) {.nimcall, gcsafe.}
# A ref type can have a finalizer that is called before the object's
# storage is freed.
TGlobalMarkerProc = proc () {.nimcall, gcsafe.}
TGcStat = object
collections: int # number of performed full collections
maxThreshold: int # max threshold that has been set
maxStackSize: int # max stack size
freedObjects: int # max entries in cycle table
TGcHeap = object # this contains the zero count and
# non-zero count table
stackBottom: pointer
cycleThreshold: int
when useCellIds:
idGenerator: int
when withBitvectors:
allocated, marked: TCellSet
tempStack: TCellSeq # temporary stack for recursion elimination
recGcLock: int # prevent recursion via finalizers; no thread lock
region: TMemRegion # garbage collected region
stat: TGcStat
additionalRoots: TCellSeq # dummy roots for GC_ref/unref
var
gch {.rtlThreadVar.}: TGcHeap
when not defined(useNimRtl):
instantiateForRegion(gch.region)
template acquire(gch: TGcHeap) =
when hasThreadSupport and hasSharedHeap:
acquireSys(HeapLock)
template release(gch: TGcHeap) =
when hasThreadSupport and hasSharedHeap:
releaseSys(HeapLock)
template gcAssert(cond: bool, msg: string) =
when defined(useGcAssert):
if not cond:
echo "[GCASSERT] ", msg
quit 1
proc cellToUsr(cell: PCell): pointer {.inline.} =
# convert object (=pointer to refcount) to pointer to userdata
result = cast[pointer](cast[TAddress](cell)+%TAddress(sizeof(TCell)))
proc usrToCell(usr: pointer): PCell {.inline.} =
# convert pointer to userdata to object (=pointer to refcount)
result = cast[PCell](cast[TAddress](usr)-%TAddress(sizeof(TCell)))
proc canbeCycleRoot(c: PCell): bool {.inline.} =
result = ntfAcyclic notin c.typ.flags
proc extGetCellType(c: pointer): PNimType {.compilerproc.} =
# used for code generation concerning debugging
result = usrToCell(c).typ
proc unsureAsgnRef(dest: PPointer, src: pointer) {.inline.} =
dest[] = src
proc internRefcount(p: pointer): int {.exportc: "getRefcount".} =
result = 0
var
globalMarkersLen: int
globalMarkers: array[0.. 7_000, TGlobalMarkerProc]
proc nimRegisterGlobalMarker(markerProc: TGlobalMarkerProc) {.compilerProc.} =
if globalMarkersLen <= high(globalMarkers):
globalMarkers[globalMarkersLen] = markerProc
inc globalMarkersLen
else:
echo "[GC] cannot register global variable; too many global variables"
quit 1
# this that has to equals zero, otherwise we have to round up UnitsPerPage:
when BitsPerPage mod (sizeof(int)*8) != 0:
{.error: "(BitsPerPage mod BitsPerUnit) should be zero!".}
# forward declarations:
proc collectCT(gch: var TGcHeap) {.gcsafe.}
proc isOnStack*(p: pointer): bool {.noinline, gcsafe.}
proc forAllChildren(cell: PCell, op: TWalkOp) {.gcsafe.}
proc doOperation(p: pointer, op: TWalkOp) {.gcsafe.}
proc forAllChildrenAux(dest: pointer, mt: PNimType, op: TWalkOp) {.gcsafe.}
# we need the prototype here for debugging purposes
proc prepareDealloc(cell: PCell) =
if cell.typ.finalizer != nil:
# the finalizer could invoke something that
# allocates memory; this could trigger a garbage
# collection. Since we are already collecting we
# prevend recursive entering here by a lock.
# XXX: we should set the cell's children to nil!
inc(gch.recGcLock)
(cast[TFinalizer](cell.typ.finalizer))(cellToUsr(cell))
dec(gch.recGcLock)
proc nimGCref(p: pointer) {.compilerProc.} =
# we keep it from being collected by pretending it's not even allocated:
when false:
when withBitvectors: excl(gch.allocated, usrToCell(p))
else: usrToCell(p).refcount = rcBlack
add(gch.additionalRoots, usrToCell(p))
proc nimGCunref(p: pointer) {.compilerProc.} =
let cell = usrToCell(p)
var L = gch.additionalRoots.len-1
var i = L
let d = gch.additionalRoots.d
while i >= 0:
if d[i] == cell:
d[i] = d[L]
dec gch.additionalRoots.len
break
dec(i)
when false:
when withBitvectors: incl(gch.allocated, usrToCell(p))
else: usrToCell(p).refcount = rcWhite
proc initGC() =
when not defined(useNimRtl):
gch.cycleThreshold = InitialThreshold
gch.stat.collections = 0
gch.stat.maxThreshold = 0
gch.stat.maxStackSize = 0
init(gch.tempStack)
init(gch.additionalRoots)
when withBitvectors:
Init(gch.allocated)
init(gch.marked)
proc forAllSlotsAux(dest: pointer, n: ptr TNimNode, op: TWalkOp) {.gcsafe.} =
var d = cast[TAddress](dest)
case n.kind
of nkSlot: forAllChildrenAux(cast[pointer](d +% n.offset), n.typ, op)
of nkList:
for i in 0..n.len-1:
forAllSlotsAux(dest, n.sons[i], op)
of nkCase:
var m = selectBranch(dest, n)
if m != nil: forAllSlotsAux(dest, m, op)
of nkNone: sysAssert(false, "forAllSlotsAux")
proc forAllChildrenAux(dest: pointer, mt: PNimType, op: TWalkOp) =
var d = cast[TAddress](dest)
if dest == nil: return # nothing to do
if ntfNoRefs notin mt.flags:
case mt.kind
of tyRef, tyString, tySequence: # leaf:
doOperation(cast[PPointer](d)[], op)
of tyObject, tyTuple:
forAllSlotsAux(dest, mt.node, op)
of tyArray, tyArrayConstr, tyOpenArray:
for i in 0..(mt.size div mt.base.size)-1:
forAllChildrenAux(cast[pointer](d +% i *% mt.base.size), mt.base, op)
else: discard
proc forAllChildren(cell: PCell, op: TWalkOp) =
gcAssert(cell != nil, "forAllChildren: 1")
gcAssert(cell.typ != nil, "forAllChildren: 2")
gcAssert cell.typ.kind in {tyRef, tySequence, tyString}, "forAllChildren: 3"
let marker = cell.typ.marker
if marker != nil:
marker(cellToUsr(cell), op.int)
else:
case cell.typ.kind
of tyRef: # common case
forAllChildrenAux(cellToUsr(cell), cell.typ.base, op)
of tySequence:
var d = cast[TAddress](cellToUsr(cell))
var s = cast[PGenericSeq](d)
if s != nil:
for i in 0..s.len-1:
forAllChildrenAux(cast[pointer](d +% i *% cell.typ.base.size +%
GenericSeqSize), cell.typ.base, op)
else: discard
proc rawNewObj(typ: PNimType, size: int, gch: var TGcHeap): pointer =
# generates a new object and sets its reference counter to 0
acquire(gch)
gcAssert(typ.kind in {tyRef, tyString, tySequence}, "newObj: 1")
collectCT(gch)
var res = cast[PCell](rawAlloc(gch.region, size + sizeof(TCell)))
gcAssert((cast[TAddress](res) and (MemAlign-1)) == 0, "newObj: 2")
# now it is buffered in the ZCT
res.typ = typ
when leakDetector and not hasThreadSupport:
if framePtr != nil and framePtr.prev != nil:
res.filename = framePtr.prev.filename
res.line = framePtr.prev.line
res.refcount = 0
release(gch)
when withBitvectors: incl(gch.allocated, res)
when useCellIds:
inc gch.idGenerator
res.id = gch.idGenerator
result = cellToUsr(res)
when useCellIds:
proc getCellId*[T](x: ref T): int =
let p = usrToCell(cast[pointer](x))
result = p.id
{.pop.}
proc newObj(typ: PNimType, size: int): pointer {.compilerRtl.} =
result = rawNewObj(typ, size, gch)
zeroMem(result, size)
when defined(memProfiler): nimProfile(size)
proc newSeq(typ: PNimType, len: int): pointer {.compilerRtl.} =
# `newObj` already uses locks, so no need for them here.
let size = addInt(mulInt(len, typ.base.size), GenericSeqSize)
result = newObj(typ, size)
cast[PGenericSeq](result).len = len
cast[PGenericSeq](result).reserved = len
when defined(memProfiler): nimProfile(size)
proc newObjRC1(typ: PNimType, size: int): pointer {.compilerRtl.} =
result = rawNewObj(typ, size, gch)
zeroMem(result, size)
when defined(memProfiler): nimProfile(size)
proc newSeqRC1(typ: PNimType, len: int): pointer {.compilerRtl.} =
let size = addInt(mulInt(len, typ.base.size), GenericSeqSize)
result = newObj(typ, size)
cast[PGenericSeq](result).len = len
cast[PGenericSeq](result).reserved = len
when defined(memProfiler): nimProfile(size)
proc growObj(old: pointer, newsize: int, gch: var TGcHeap): pointer =
acquire(gch)
collectCT(gch)
var ol = usrToCell(old)
sysAssert(ol.typ != nil, "growObj: 1")
gcAssert(ol.typ.kind in {tyString, tySequence}, "growObj: 2")
var res = cast[PCell](rawAlloc(gch.region, newsize + sizeof(TCell)))
var elemSize = 1
if ol.typ.kind != tyString: elemSize = ol.typ.base.size
var oldsize = cast[PGenericSeq](old).len*elemSize + GenericSeqSize
copyMem(res, ol, oldsize + sizeof(TCell))
zeroMem(cast[pointer](cast[TAddress](res)+% oldsize +% sizeof(TCell)),
newsize-oldsize)
sysAssert((cast[TAddress](res) and (MemAlign-1)) == 0, "growObj: 3")
when withBitvectors: excl(gch.allocated, ol)
when reallyDealloc: rawDealloc(gch.region, ol)
else:
zeroMem(ol, sizeof(TCell))
when withBitvectors: incl(gch.allocated, res)
when useCellIds:
inc gch.idGenerator
res.id = gch.idGenerator
release(gch)
result = cellToUsr(res)
when defined(memProfiler): nimProfile(newsize-oldsize)
proc growObj(old: pointer, newsize: int): pointer {.rtl.} =
result = growObj(old, newsize, gch)
{.push profiler:off.}
# ----------------- collector -----------------------------------------------
proc mark(gch: var TGcHeap, c: PCell) =
when withBitvectors:
incl(gch.marked, c)
gcAssert gch.tempStack.len == 0, "stack not empty!"
forAllChildren(c, waMarkPrecise)
while gch.tempStack.len > 0:
dec gch.tempStack.len
var d = gch.tempStack.d[gch.tempStack.len]
if not containsOrIncl(gch.marked, d):
forAllChildren(d, waMarkPrecise)
else:
# XXX no 'if c.refCount != rcBlack' here?
c.refCount = rcBlack
gcAssert gch.tempStack.len == 0, "stack not empty!"
forAllChildren(c, waMarkPrecise)
while gch.tempStack.len > 0:
dec gch.tempStack.len
var d = gch.tempStack.d[gch.tempStack.len]
if d.refcount == rcWhite:
d.refCount = rcBlack
forAllChildren(d, waMarkPrecise)
proc doOperation(p: pointer, op: TWalkOp) =
if p == nil: return
var c: PCell = usrToCell(p)
gcAssert(c != nil, "doOperation: 1")
case op
of waMarkGlobal:
when hasThreadSupport:
# could point to a cell which we don't own and don't want to touch/trace
if isAllocatedPtr(gch.region, c):
mark(gch, c)
else:
mark(gch, c)
of waMarkPrecise: add(gch.tempStack, c)
proc nimGCvisit(d: pointer, op: int) {.compilerRtl.} =
doOperation(d, TWalkOp(op))
proc freeCyclicCell(gch: var TGcHeap, c: PCell) =
inc gch.stat.freedObjects
prepareDealloc(c)
when reallyDealloc: rawDealloc(gch.region, c)
else:
gcAssert(c.typ != nil, "freeCyclicCell")
zeroMem(c, sizeof(TCell))
proc sweep(gch: var TGcHeap) =
when withBitvectors:
for c in gch.allocated.elementsExcept(gch.marked):
gch.allocated.excl(c)
freeCyclicCell(gch, c)
else:
for x in allObjects(gch.region):
if isCell(x):
# cast to PCell is correct here:
var c = cast[PCell](x)
if c.refcount == rcBlack: c.refcount = rcWhite
else: freeCyclicCell(gch, c)
when false:
proc newGcInvariant*() =
for x in allObjects(gch.region):
if isCell(x):
var c = cast[PCell](x)
if c.typ == nil:
writeStackTrace()
quit 1
proc markGlobals(gch: var TGcHeap) =
for i in 0 .. < globalMarkersLen: globalMarkers[i]()
let d = gch.additionalRoots.d
for i in 0 .. < gch.additionalRoots.len: mark(gch, d[i])
proc gcMark(gch: var TGcHeap, p: pointer) {.inline.} =
# the addresses are not as cells on the stack, so turn them to cells:
var cell = usrToCell(p)
var c = cast[TAddress](cell)
if c >% PageSize:
# fast check: does it look like a cell?
var objStart = cast[PCell](interiorAllocatedPtr(gch.region, cell))
if objStart != nil:
mark(gch, objStart)
# ----------------- stack management --------------------------------------
# inspired from Smart Eiffel
when defined(sparc):
const stackIncreases = false
elif defined(hppa) or defined(hp9000) or defined(hp9000s300) or
defined(hp9000s700) or defined(hp9000s800) or defined(hp9000s820):
const stackIncreases = true
else:
const stackIncreases = false
when not defined(useNimRtl):
{.push stack_trace: off.}
proc setStackBottom(theStackBottom: pointer) =
#c_fprintf(c_stdout, "stack bottom: %p;\n", theStackBottom)
# the first init must be the one that defines the stack bottom:
if gch.stackBottom == nil: gch.stackBottom = theStackBottom
else:
var a = cast[TAddress](theStackBottom) # and not PageMask - PageSize*2
var b = cast[TAddress](gch.stackBottom)
#c_fprintf(c_stdout, "old: %p new: %p;\n",gch.stackBottom,theStackBottom)
when stackIncreases:
gch.stackBottom = cast[pointer](min(a, b))
else:
gch.stackBottom = cast[pointer](max(a, b))
{.pop.}
proc stackSize(): int {.noinline.} =
var stackTop {.volatile.}: pointer
result = abs(cast[int](addr(stackTop)) - cast[int](gch.stackBottom))
when defined(sparc): # For SPARC architecture.
proc isOnStack(p: pointer): bool =
var stackTop {.volatile.}: pointer
stackTop = addr(stackTop)
var b = cast[TAddress](gch.stackBottom)
var a = cast[TAddress](stackTop)
var x = cast[TAddress](p)
result = a <=% x and x <=% b
proc markStackAndRegisters(gch: var TGcHeap) {.noinline, cdecl.} =
when defined(sparcv9):
asm """"flushw \n" """
else:
asm """"ta 0x3 ! ST_FLUSH_WINDOWS\n" """
var
max = gch.stackBottom
sp: PPointer
stackTop: array[0..1, pointer]
sp = addr(stackTop[0])
# Addresses decrease as the stack grows.
while sp <= max:
gcMark(gch, sp[])
sp = cast[ppointer](cast[TAddress](sp) +% sizeof(pointer))
elif defined(ELATE):
{.error: "stack marking code is to be written for this architecture".}
elif stackIncreases:
# ---------------------------------------------------------------------------
# Generic code for architectures where addresses increase as the stack grows.
# ---------------------------------------------------------------------------
proc isOnStack(p: pointer): bool =
var stackTop {.volatile.}: pointer
stackTop = addr(stackTop)
var a = cast[TAddress](gch.stackBottom)
var b = cast[TAddress](stackTop)
var x = cast[TAddress](p)
result = a <=% x and x <=% b
var
jmpbufSize {.importc: "sizeof(jmp_buf)", nodecl.}: int
# a little hack to get the size of a TJmpBuf in the generated C code
# in a platform independant way
proc markStackAndRegisters(gch: var TGcHeap) {.noinline, cdecl.} =
var registers: C_JmpBuf
if c_setjmp(registers) == 0'i32: # To fill the C stack with registers.
var max = cast[TAddress](gch.stackBottom)
var sp = cast[TAddress](addr(registers)) +% jmpbufSize -% sizeof(pointer)
# sp will traverse the JMP_BUF as well (jmp_buf size is added,
# otherwise sp would be below the registers structure).
while sp >=% max:
gcMark(gch, cast[ppointer](sp)[])
sp = sp -% sizeof(pointer)
else:
# ---------------------------------------------------------------------------
# Generic code for architectures where addresses decrease as the stack grows.
# ---------------------------------------------------------------------------
proc isOnStack(p: pointer): bool =
var stackTop {.volatile.}: pointer
stackTop = addr(stackTop)
var b = cast[TAddress](gch.stackBottom)
var a = cast[TAddress](stackTop)
var x = cast[TAddress](p)
result = a <=% x and x <=% b
proc markStackAndRegisters(gch: var TGcHeap) {.noinline, cdecl.} =
# We use a jmp_buf buffer that is in the C stack.
# Used to traverse the stack and registers assuming
# that 'setjmp' will save registers in the C stack.
type PStackSlice = ptr array [0..7, pointer]
var registers {.noinit.}: C_JmpBuf
if c_setjmp(registers) == 0'i32: # To fill the C stack with registers.
var max = cast[TAddress](gch.stackBottom)
var sp = cast[TAddress](addr(registers))
# loop unrolled:
while sp <% max - 8*sizeof(pointer):
gcMark(gch, cast[PStackSlice](sp)[0])
gcMark(gch, cast[PStackSlice](sp)[1])
gcMark(gch, cast[PStackSlice](sp)[2])
gcMark(gch, cast[PStackSlice](sp)[3])
gcMark(gch, cast[PStackSlice](sp)[4])
gcMark(gch, cast[PStackSlice](sp)[5])
gcMark(gch, cast[PStackSlice](sp)[6])
gcMark(gch, cast[PStackSlice](sp)[7])
sp = sp +% sizeof(pointer)*8
# last few entries:
while sp <=% max:
gcMark(gch, cast[PPointer](sp)[])
sp = sp +% sizeof(pointer)
# ----------------------------------------------------------------------------
# end of non-portable code
# ----------------------------------------------------------------------------
proc collectCTBody(gch: var TGcHeap) =
gch.stat.maxStackSize = max(gch.stat.maxStackSize, stackSize())
prepareForInteriorPointerChecking(gch.region)
markStackAndRegisters(gch)
markGlobals(gch)
sweep(gch)
inc(gch.stat.collections)
when withBitvectors:
deinit(gch.marked)
init(gch.marked)
gch.cycleThreshold = max(InitialThreshold, getOccupiedMem().mulThreshold)
gch.stat.maxThreshold = max(gch.stat.maxThreshold, gch.cycleThreshold)
sysAssert(allocInv(gch.region), "collectCT: end")
proc collectCT(gch: var TGcHeap) =
if getOccupiedMem(gch.region) >= gch.cycleThreshold and gch.recGcLock == 0:
collectCTBody(gch)
when not defined(useNimRtl):
proc GC_disable() =
when hasThreadSupport and hasSharedHeap:
atomicInc(gch.recGcLock, 1)
else:
inc(gch.recGcLock)
proc GC_enable() =
if gch.recGcLock > 0:
when hasThreadSupport and hasSharedHeap:
atomicDec(gch.recGcLock, 1)
else:
dec(gch.recGcLock)
proc GC_setStrategy(strategy: TGC_Strategy) = discard
proc GC_enableMarkAndSweep() =
gch.cycleThreshold = InitialThreshold
proc GC_disableMarkAndSweep() =
gch.cycleThreshold = high(gch.cycleThreshold)-1
# set to the max value to suppress the cycle detector
proc GC_fullCollect() =
acquire(gch)
var oldThreshold = gch.cycleThreshold
gch.cycleThreshold = 0 # forces cycle collection
collectCT(gch)
gch.cycleThreshold = oldThreshold
release(gch)
proc GC_getStatistics(): string =
GC_disable()
result = "[GC] total memory: " & $getTotalMem() & "\n" &
"[GC] occupied memory: " & $getOccupiedMem() & "\n" &
"[GC] collections: " & $gch.stat.collections & "\n" &
"[GC] max threshold: " & $gch.stat.maxThreshold & "\n" &
"[GC] freed objects: " & $gch.stat.freedObjects & "\n" &
"[GC] max stack size: " & $gch.stat.maxStackSize & "\n"
GC_enable()
{.pop.}