1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
|
#
# Nim's Runtime Library
# (c) Copyright 2016 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
# "Stack GC" for embedded devices or ultra performance requirements.
when defined(memProfiler):
proc nimProfile(requestedSize: int) {.benign.}
when defined(useMalloc):
proc roundup(x, v: int): int {.inline.} =
result = (x + (v-1)) and not (v-1)
proc emalloc(size: int): pointer {.importc: "malloc", header: "<stdlib.h>".}
proc efree(mem: pointer) {.importc: "free", header: "<stdlib.h>".}
proc osAllocPages(size: int): pointer {.inline.} =
emalloc(size)
proc osTryAllocPages(size: int): pointer {.inline.} =
emalloc(size)
proc osDeallocPages(p: pointer, size: int) {.inline.} =
efree(p)
else:
include osalloc
# We manage memory as a thread local stack. Since the allocation pointer
# is detached from the control flow pointer, this model is vastly more
# useful than the traditional programming model while almost as safe.
# Individual objects can also be deleted but no coalescing is performed.
# Stacks can also be moved from one thread to another.
# We also support 'finalizers'.
type
Finalizer {.compilerproc.} = proc (self: pointer) {.nimcall, benign.}
# A ref type can have a finalizer that is called before the object's
# storage is freed.
AlignType = BiggestFloat
ObjHeader = object
typ: PNimType
nextFinal: ptr ObjHeader # next object with finalizer
Chunk = ptr BaseChunk
BaseChunk = object
next: Chunk
size: int
head, tail: ptr ObjHeader # first and last object in chunk that
# has a finalizer attached to it
const
MaxSmallObject = 128
type
FreeEntry = ptr object
next: FreeEntry
SizedFreeEntry = ptr object
next: SizedFreeEntry
size: int
StackPtr = object
bump: pointer
remaining: int
current: Chunk
MemRegion* = object
remaining: int
bump: pointer
head, tail: Chunk
nextChunkSize, totalSize: int
when false:
freeLists: array[MaxSmallObject div MemAlign, FreeEntry]
holes: SizedFreeEntry
when hasThreadSupport:
lock: SysLock
SeqHeader = object # minor hack ahead: Since we know that seqs
# and strings cannot have finalizers, we use the field
# instead for a 'region' field so that they can grow
# and shrink safely.
typ: PNimType
region: ptr MemRegion
var
tlRegion {.threadvar.}: MemRegion
# tempStrRegion {.threadvar.}: MemRegion # not yet used
template withRegion*(r: var MemRegion; body: untyped) =
let oldRegion = tlRegion
tlRegion = r
try:
body
finally:
r = tlRegion
tlRegion = oldRegion
template inc(p: pointer, s: int) =
p = cast[pointer](cast[int](p) +% s)
template dec(p: pointer, s: int) =
p = cast[pointer](cast[int](p) -% s)
template `+!`(p: pointer, s: int): pointer =
cast[pointer](cast[int](p) +% s)
template `-!`(p: pointer, s: int): pointer =
cast[pointer](cast[int](p) -% s)
const nimMinHeapPages {.intdefine.} = 4
proc allocSlowPath(r: var MemRegion; size: int) =
# we need to ensure that the underlying linked list
# stays small. Say we want to grab 16GB of RAM with some
# exponential growth function. So we allocate 16KB, then
# 32 KB, 64 KB, 128KB, 256KB, 512KB, 1MB, 2MB, 4MB,
# 8MB, 16MB, 32MB, 64MB, 128MB, 512MB, 1GB, 2GB, 4GB, 8GB,
# 16GB --> list contains only 20 elements! That's reasonable.
if (r.totalSize and 1) == 0:
r.nextChunkSize = if r.totalSize < 64 * 1024: PageSize*nimMinHeapPages
else: r.nextChunkSize*2
var s = roundup(size+sizeof(BaseChunk), PageSize)
var fresh: Chunk
if s > r.nextChunkSize:
fresh = cast[Chunk](osAllocPages(s))
else:
fresh = cast[Chunk](osTryAllocPages(r.nextChunkSize))
if fresh == nil:
fresh = cast[Chunk](osAllocPages(s))
# lowest bit in totalSize is the "don't increase nextChunkSize"
inc r.totalSize
else:
s = r.nextChunkSize
fresh.size = s
fresh.head = nil
fresh.tail = nil
fresh.next = nil
inc r.totalSize, s
let old = r.tail
if old == nil:
r.head = fresh
else:
r.tail.next = fresh
r.bump = fresh +! sizeof(BaseChunk)
r.tail = fresh
r.remaining = s - sizeof(BaseChunk)
proc allocFast(r: var MemRegion; size: int): pointer =
when false:
if size <= MaxSmallObject:
var it = r.freeLists[size div MemAlign]
if it != nil:
r.freeLists[size div MemAlign] = it.next
return pointer(it)
else:
var it = r.holes
var prev: SizedFreeEntry = nil
while it != nil:
if it.size >= size:
if prev != nil: prev.next = it.next
else: r.holes = it.next
return pointer(it)
prev = it
it = it.next
let size = roundup(size, MemAlign)
if size > r.remaining:
allocSlowPath(r, size)
sysAssert(size <= r.remaining, "size <= r.remaining")
dec(r.remaining, size)
result = r.bump
inc r.bump, size
proc runFinalizers(c: Chunk) =
var it = c.head
while it != nil:
# indivually freed objects with finalizer stay in the list, but
# their typ is nil then:
if it.typ != nil and it.typ.finalizer != nil:
(cast[Finalizer](it.typ.finalizer))(it+!sizeof(ObjHeader))
it = it.nextFinal
proc runFinalizers(c: Chunk; newbump: pointer) =
var it = c.head
var prev: ptr ObjHeader = nil
while it != nil:
let nxt = it.nextFinal
if it >= newbump:
if it.typ != nil and it.typ.finalizer != nil:
(cast[Finalizer](it.typ.finalizer))(it+!sizeof(ObjHeader))
elif prev != nil:
prev.nextFinal = nil
prev = it
it = nxt
proc dealloc(r: var MemRegion; p: pointer; size: int) =
let it = cast[ptr ObjHeader](p-!sizeof(ObjHeader))
if it.typ != nil and it.typ.finalizer != nil:
(cast[Finalizer](it.typ.finalizer))(p)
it.typ = nil
# it is beneficial to not use the free lists here:
if r.bump -! size == p:
dec r.bump, size
when false:
if size <= MaxSmallObject:
let it = cast[FreeEntry](p)
it.next = r.freeLists[size div MemAlign]
r.freeLists[size div MemAlign] = it
else:
let it = cast[SizedFreeEntry](p)
it.size = size
it.next = r.holes
r.holes = it
proc deallocAll(r: var MemRegion; head: Chunk) =
var it = head
while it != nil:
let nxt = it.next
runFinalizers(it)
dec r.totalSize, it.size
osDeallocPages(it, it.size)
it = nxt
proc deallocAll*(r: var MemRegion) =
deallocAll(r, r.head)
zeroMem(addr r, sizeof r)
proc obstackPtr*(r: MemRegion): StackPtr =
result.bump = r.bump
result.remaining = r.remaining
result.current = r.tail
template computeRemaining(r): untyped =
r.tail.size -% (cast[int](r.bump) -% cast[int](r.tail))
proc setObstackPtr*(r: var MemRegion; sp: StackPtr) =
# free everything after 'sp':
if sp.current != nil and sp.current.next != nil:
deallocAll(r, sp.current.next)
sp.current.next = nil
when false:
# better leak this memory than be sorry:
for i in 0..high(r.freeLists): r.freeLists[i] = nil
r.holes = nil
if r.tail != nil: runFinalizers(r.tail, sp.bump)
r.bump = sp.bump
r.tail = sp.current
r.remaining = sp.remaining
proc obstackPtr*(): StackPtr = tlRegion.obstackPtr()
proc setObstackPtr*(sp: StackPtr) = tlRegion.setObstackPtr(sp)
proc deallocAll*() = tlRegion.deallocAll()
proc deallocOsPages(r: var MemRegion) = r.deallocAll()
when false:
let obs = obstackPtr()
try:
body
finally:
setObstackPtr(obs)
template withScratchRegion*(body: untyped) =
let oldRegion = tlRegion
tlRegion = MemRegion()
try:
body
finally:
deallocAll()
tlRegion = oldRegion
when false:
proc joinRegion*(dest: var MemRegion; src: MemRegion) =
# merging is not hard.
if dest.head.isNil:
dest.head = src.head
else:
dest.tail.next = src.head
dest.tail = src.tail
dest.bump = src.bump
dest.remaining = src.remaining
dest.nextChunkSize = max(dest.nextChunkSize, src.nextChunkSize)
inc dest.totalSize, src.totalSize
proc isOnHeap*(r: MemRegion; p: pointer): bool =
# the tail chunk is the largest, so check it first. It's also special
# in that contains the current bump pointer:
if r.tail >= p and p < r.bump:
return true
var it = r.head
while it != r.tail:
if it >= p and p <= it+!it.size: return true
it = it.next
proc rawNewObj(r: var MemRegion, typ: PNimType, size: int): pointer =
var res = cast[ptr ObjHeader](allocFast(r, size + sizeof(ObjHeader)))
res.typ = typ
if typ.finalizer != nil:
res.nextFinal = r.head.head
r.head.head = res
result = res +! sizeof(ObjHeader)
proc rawNewSeq(r: var MemRegion, typ: PNimType, size: int): pointer =
var res = cast[ptr SeqHeader](allocFast(r, size + sizeof(SeqHeader)))
res.typ = typ
res.region = addr(r)
result = res +! sizeof(SeqHeader)
proc newObj(typ: PNimType, size: int): pointer {.compilerRtl.} =
sysAssert typ.kind notin {tySequence, tyString}, "newObj cannot be used to construct seqs"
result = rawNewObj(tlRegion, typ, size)
zeroMem(result, size)
when defined(memProfiler): nimProfile(size)
proc newObjNoInit(typ: PNimType, size: int): pointer {.compilerRtl.} =
sysAssert typ.kind notin {tySequence, tyString}, "newObj cannot be used to construct seqs"
result = rawNewObj(tlRegion, typ, size)
when defined(memProfiler): nimProfile(size)
{.push overflowChecks: on.}
proc newSeq(typ: PNimType, len: int): pointer {.compilerRtl.} =
let size = roundup(align(GenericSeqSize, typ.base.align) + len * typ.base.size, MemAlign)
result = rawNewSeq(tlRegion, typ, size)
zeroMem(result, size)
cast[PGenericSeq](result).len = len
cast[PGenericSeq](result).reserved = len
proc newStr(typ: PNimType, len: int; init: bool): pointer {.compilerRtl.} =
let size = roundup(len + GenericSeqSize, MemAlign)
result = rawNewSeq(tlRegion, typ, size)
if init: zeroMem(result, size)
cast[PGenericSeq](result).len = 0
cast[PGenericSeq](result).reserved = len
{.pop.}
proc newObjRC1(typ: PNimType, size: int): pointer {.compilerRtl.} =
result = rawNewObj(tlRegion, typ, size)
zeroMem(result, size)
proc newSeqRC1(typ: PNimType, len: int): pointer {.compilerRtl.} =
result = newSeq(typ, len)
proc growObj(regionUnused: var MemRegion; old: pointer, newsize: int): pointer =
let sh = cast[ptr SeqHeader](old -! sizeof(SeqHeader))
let typ = sh.typ
result = rawNewSeq(sh.region[], typ,
roundup(newsize, MemAlign))
let elemSize = if typ.kind == tyString: 1 else: typ.base.size
let elemAlign = if typ.kind == tyString: 1 else: typ.base.align
let oldsize = align(GenericSeqSize, elemAlign) + cast[PGenericSeq](old).len*elemSize
zeroMem(result +! oldsize, newsize-oldsize)
copyMem(result, old, oldsize)
dealloc(sh.region[], old, roundup(oldsize, MemAlign))
proc growObj(old: pointer, newsize: int): pointer {.rtl.} =
result = growObj(tlRegion, old, newsize)
proc unsureAsgnRef(dest: PPointer, src: pointer) {.compilerproc, inline.} =
dest[] = src
proc asgnRef(dest: PPointer, src: pointer) {.compilerproc, inline.} =
dest[] = src
proc asgnRefNoCycle(dest: PPointer, src: pointer) {.compilerproc, inline,
deprecated: "old compiler compat".} = asgnRef(dest, src)
proc allocImpl(size: Natural): pointer =
result = c_malloc(cast[csize_t](size))
if result == nil: raiseOutOfMem()
proc alloc0Impl(size: Natural): pointer =
result = alloc(size)
zeroMem(result, size)
proc reallocImpl(p: pointer, newsize: Natural): pointer =
result = c_realloc(p, cast[csize_t](newsize))
if result == nil: raiseOutOfMem()
proc realloc0Impl(p: pointer, oldsize, newsize: Natural): pointer =
result = c_realloc(p, cast[csize_t](newsize))
if result == nil: raiseOutOfMem()
if newsize > oldsize:
zeroMem(cast[pointer](cast[int](result) + oldsize), newsize - oldsize)
proc deallocImpl(p: pointer) = c_free(p)
proc alloc0(r: var MemRegion; size: Natural): pointer =
# ignore the region. That is correct for the channels module
# but incorrect in general. XXX
result = alloc0(size)
proc alloc(r: var MemRegion; size: Natural): pointer =
# ignore the region. That is correct for the channels module
# but incorrect in general. XXX
result = alloc(size)
proc dealloc(r: var MemRegion; p: pointer) = dealloc(p)
proc allocSharedImpl(size: Natural): pointer =
result = c_malloc(cast[csize_t](size))
if result == nil: raiseOutOfMem()
proc allocShared0Impl(size: Natural): pointer =
result = alloc(size)
zeroMem(result, size)
proc reallocSharedImpl(p: pointer, newsize: Natural): pointer =
result = c_realloc(p, cast[csize_t](newsize))
if result == nil: raiseOutOfMem()
proc reallocShared0Impl(p: pointer, oldsize, newsize: Natural): pointer =
result = c_realloc(p, cast[csize_t](newsize))
if result == nil: raiseOutOfMem()
if newsize > oldsize:
zeroMem(cast[pointer](cast[int](result) + oldsize), newsize - oldsize)
proc deallocSharedImpl(p: pointer) = c_free(p)
when hasThreadSupport:
proc getFreeSharedMem(): int = 0
proc getTotalSharedMem(): int = 0
proc getOccupiedSharedMem(): int = 0
proc GC_disable() = discard
proc GC_enable() = discard
proc GC_fullCollect() = discard
proc GC_setStrategy(strategy: GC_Strategy) = discard
proc GC_enableMarkAndSweep() = discard
proc GC_disableMarkAndSweep() = discard
proc GC_getStatistics(): string = return ""
proc getOccupiedMem(): int =
result = tlRegion.totalSize - tlRegion.remaining
proc getFreeMem(): int = tlRegion.remaining
proc getTotalMem(): int =
result = tlRegion.totalSize
proc getOccupiedMem*(r: MemRegion): int =
result = r.totalSize - r.remaining
proc getFreeMem*(r: MemRegion): int = r.remaining
proc getTotalMem*(r: MemRegion): int =
result = r.totalSize
proc nimGC_setStackBottom(theStackBottom: pointer) = discard
proc nimGCref(x: pointer) {.compilerproc.} = discard
proc nimGCunref(x: pointer) {.compilerproc.} = discard
|