summary refs log tree commit diff stats
path: root/lib/system/nimscript.nim
blob: bf298e0d4d2bf31b274fc558259dd6a7c8578e29 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
#
#
#            Nim's Runtime Library
#        (c) Copyright 2015 Andreas Rumpf
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

## To learn about scripting in Nim see `NimScript<nims.html>`_

# Nim's configuration system now uses Nim for scripting. This module provides
# a few things that are required for this to work.

const
  buildOS* {.magic: "BuildOS".}: string = ""
    ## The OS this build is running on. Can be different from ``system.hostOS``
    ## for cross compilations.

  buildCPU* {.magic: "BuildCPU".}: string = ""
    ## The CPU this build is running on. Can be different from ``system.hostCPU``
    ## for cross compilations.

template builtin = discard

# We know the effects better than the compiler:
{.push hint[XDeclaredButNotUsed]: off.}

proc listDirsImpl(dir: string): seq[string] {.
  tags: [ReadIOEffect], raises: [OSError].} = builtin
proc listFilesImpl(dir: string): seq[string] {.
  tags: [ReadIOEffect], raises: [OSError].} = builtin
proc removeDir(dir: string, checkDir = true) {.
  tags: [ReadIOEffect, WriteIOEffect], raises: [OSError].} = builtin
proc removeFile(dir: string) {.
  tags: [ReadIOEffect, WriteIOEffect], raises: [OSError].} = builtin
proc moveFile(src, dest: string) {.
  tags: [ReadIOEffect, WriteIOEffect], raises: [OSError].} = builtin
proc moveDir(src, dest: string) {.
  tags: [ReadIOEffect, WriteIOEffect], raises: [OSError].} = builtin
proc copyFile(src, dest: string) {.
  tags: [ReadIOEffect, WriteIOEffect], raises: [OSError].} = builtin
proc copyDir(src, dest: string) {.
  tags: [ReadIOEffect, WriteIOEffect], raises: [OSError].} = builtin
proc createDir(dir: string) {.tags: [WriteIOEffect], raises: [OSError].} =
  builtin

proc getError: string = builtin
proc setCurrentDir(dir: string) = builtin
proc getCurrentDir*(): string =
  ## Retrieves the current working directory.
  builtin
proc rawExec(cmd: string): int {.tags: [ExecIOEffect], raises: [OSError].} =
  builtin

proc warningImpl(arg, orig: string) = discard
proc hintImpl(arg, orig: string) = discard

proc paramStr*(i: int): string =
  ## Retrieves the ``i``'th command line parameter.
  builtin

proc paramCount*(): int =
  ## Retrieves the number of command line parameters.
  builtin

proc switch*(key: string, val="") =
  ## Sets a Nim compiler command line switch, for
  ## example ``switch("checks", "on")``.
  builtin

proc warning*(name: string; val: bool) =
  ## Disables or enables a specific warning.
  let v = if val: "on" else: "off"
  warningImpl(name & ":" & v, "warning:" & name & ":" & v)

proc hint*(name: string; val: bool) =
  ## Disables or enables a specific hint.
  let v = if val: "on" else: "off"
  hintImpl(name & ":" & v, "hint:" & name & ":" & v)

proc patchFile*(package, filename, replacement: string) =
  ## Overrides the location of a given file belonging to the
  ## passed package.
  ## If the ``replacement`` is not an absolute path, the path
  ## is interpreted to be local to the Nimscript file that contains
  ## the call to ``patchFile``, Nim's ``--path`` is not used at all
  ## to resolve the filename!
  ##
  ## Example:
  ##
  ## .. code-block:: nim
  ##
  ##   patchFile("stdlib", "asyncdispatch", "patches/replacement")
  discard

proc getCommand*(): string =
  ## Gets the Nim command that the compiler has been invoked with, for example
  ## "c", "js", "build", "help".
  builtin

proc setCommand*(cmd: string; project="") =
  ## Sets the Nim command that should be continued with after this Nimscript
  ## has finished.
  builtin

proc cmpIgnoreStyle(a, b: string): int = builtin
proc cmpIgnoreCase(a, b: string): int = builtin

proc cmpic*(a, b: string): int =
  ## Compares `a` and `b` ignoring case.
  cmpIgnoreCase(a, b)

proc getEnv*(key: string; default = ""): string {.tags: [ReadIOEffect].} =
  ## Retrieves the environment variable of name ``key``.
  builtin

proc existsEnv*(key: string): bool {.tags: [ReadIOEffect].} =
  ## Checks for the existence of an environment variable named ``key``.
  builtin

proc putEnv*(key, val: string) {.tags: [WriteIOEffect].} =
  ## Sets the value of the environment variable named ``key`` to ``val``.
  builtin

proc delEnv*(key: string) {.tags: [WriteIOEffect].} =
  ## Deletes the environment variable named ``key``.
  builtin

proc fileExists*(filename: string): bool {.tags: [ReadIOEffect].} =
  ## Checks if the file exists.
  builtin

proc dirExists*(dir: string): bool {.
  tags: [ReadIOEffect].} =
  ## Checks if the directory `dir` exists.
  builtin

template existsFile*(args: varargs[untyped]): untyped {.deprecated: "use fileExists".} =
  # xxx: warning won't be shown for nimsscript because of current logic handling
  # `foreignPackageNotes`
  fileExists(args)

template existsDir*(args: varargs[untyped]): untyped {.deprecated: "use dirExists".} =
  dirExists(dir)

proc selfExe*(): string =
  ## Returns the currently running nim or nimble executable.
  # TODO: consider making this as deprecated alias of `getCurrentCompilerExe`
  builtin

proc toExe*(filename: string): string =
  ## On Windows adds ".exe" to `filename`, else returns `filename` unmodified.
  (when defined(windows): filename & ".exe" else: filename)

proc toDll*(filename: string): string =
  ## On Windows adds ".dll" to `filename`, on Posix produces "lib$filename.so".
  (when defined(windows): filename & ".dll" else: "lib" & filename & ".so")

proc strip(s: string): string =
  var i = 0
  while s[i] in {' ', '\c', '\L'}: inc i
  result = s.substr(i)

template `--`*(key, val: untyped) =
  ## A shortcut for ``switch(astToStr(key), astToStr(val))``.
  switch(astToStr(key), strip astToStr(val))

template `--`*(key: untyped) =
  ## A shortcut for ``switch(astToStr(key)``.
  switch(astToStr(key), "")

type
  ScriptMode* {.pure.} = enum ## Controls the behaviour of the script.
    Silent,                   ## Be silent.
    Verbose,                  ## Be verbose.
    Whatif                    ## Do not run commands, instead just echo what
                              ## would have been done.

var
  mode*: ScriptMode ## Set this to influence how mkDir, rmDir, rmFile etc.
                    ## behave

template checkError(exc: untyped): untyped =
  let err = getError()
  if err.len > 0: raise newException(exc, err)

template checkOsError =
  checkError(OSError)

template log(msg: string, body: untyped) =
  if mode in {ScriptMode.Verbose, ScriptMode.Whatif}:
    echo "[NimScript] ", msg
  if mode != ScriptMode.WhatIf:
    body

proc listDirs*(dir: string): seq[string] =
  ## Lists all the subdirectories (non-recursively) in the directory `dir`.
  result = listDirsImpl(dir)
  checkOsError()

proc listFiles*(dir: string): seq[string] =
  ## Lists all the files (non-recursively) in the directory `dir`.
  result = listFilesImpl(dir)
  checkOsError()

proc rmDir*(dir: string, checkDir = false) {.raises: [OSError].} =
  ## Removes the directory `dir`.
  log "rmDir: " & dir:
    removeDir(dir, checkDir = checkDir)
    checkOsError()

proc rmFile*(file: string) {.raises: [OSError].} =
  ## Removes the `file`.
  log "rmFile: " & file:
    removeFile file
    checkOsError()

proc mkDir*(dir: string) {.raises: [OSError].} =
  ## Creates the directory `dir` including all necessary subdirectories. If
  ## the directory already exists, no error is raised.
  log "mkDir: " & dir:
    createDir dir
    checkOsError()

proc mvFile*(`from`, to: string) {.raises: [OSError].} =
  ## Moves the file `from` to `to`.
  log "mvFile: " & `from` & ", " & to:
    moveFile `from`, to
    checkOsError()

proc mvDir*(`from`, to: string) {.raises: [OSError].} =
  ## Moves the dir `from` to `to`.
  log "mvDir: " & `from` & ", " & to:
    moveDir `from`, to
    checkOsError()

proc cpFile*(`from`, to: string) {.raises: [OSError].} =
  ## Copies the file `from` to `to`.
  log "cpFile: " & `from` & ", " & to:
    copyFile `from`, to
    checkOsError()

proc cpDir*(`from`, to: string) {.raises: [OSError].} =
  ## Copies the dir `from` to `to`.
  log "cpDir: " & `from` & ", " & to:
    copyDir `from`, to
    checkOsError()

proc exec*(command: string) {.
  raises: [OSError], tags: [ExecIOEffect].} =
  ## Executes an external process. If the external process terminates with
  ## a non-zero exit code, an OSError exception is raised.
  ##
  ## **Note:** If you need a version of ``exec`` that returns the exit code
  ## and text output of the command, you can use `system.gorgeEx
  ## <system.html#gorgeEx,string,string,string>`_.
  log "exec: " & command:
    if rawExec(command) != 0:
      raise newException(OSError, "FAILED: " & command)
    checkOsError()

proc exec*(command: string, input: string, cache = "") {.
  raises: [OSError], tags: [ExecIOEffect].} =
  ## Executes an external process. If the external process terminates with
  ## a non-zero exit code, an OSError exception is raised.
  log "exec: " & command:
    let (output, exitCode) = gorgeEx(command, input, cache)
    if exitCode != 0:
      raise newException(OSError, "FAILED: " & command)
    echo output

proc selfExec*(command: string) {.
  raises: [OSError], tags: [ExecIOEffect].} =
  ## Executes an external command with the current nim/nimble executable.
  ## ``Command`` must not contain the "nim " part.
  let c = selfExe() & " " & command
  log "exec: " & c:
    if rawExec(c) != 0:
      raise newException(OSError, "FAILED: " & c)
    checkOsError()

proc put*(key, value: string) =
  ## Sets a configuration 'key' like 'gcc.options.always' to its value.
  builtin

proc get*(key: string): string =
  ## Retrieves a configuration 'key' like 'gcc.options.always'.
  builtin

proc exists*(key: string): bool =
  ## Checks for the existence of a configuration 'key'
  ## like 'gcc.options.always'.
  builtin

proc nimcacheDir*(): string =
  ## Retrieves the location of 'nimcache'.
  builtin

proc projectName*(): string =
  ## Retrieves the name of the current project
  builtin

proc projectDir*(): string =
  ## Retrieves the absolute directory of the current project
  builtin

proc projectPath*(): string =
  ## Retrieves the absolute path of the current project
  builtin

proc thisDir*(): string =
  ## Retrieves the directory of the current ``nims`` script file. Its path is
  ## obtained via ``currentSourcePath`` (although, currently,
  ## ``currentSourcePath`` resolves symlinks, unlike ``thisDir``).
  builtin

proc cd*(dir: string) {.raises: [OSError].} =
  ## Changes the current directory.
  ##
  ## The change is permanent for the rest of the execution, since this is just
  ## a shortcut for `os.setCurrentDir() <os.html#setCurrentDir,string>`_ . Use
  ## the `withDir() <#withDir.t,string,untyped>`_ template if you want to
  ## perform a temporary change only.
  setCurrentDir(dir)
  checkOsError()

proc findExe*(bin: string): string =
  ## Searches for bin in the current working directory and then in directories
  ## listed in the PATH environment variable. Returns "" if the exe cannot be
  ## found.
  builtin

template withDir*(dir: string; body: untyped): untyped =
  ## Changes the current directory temporarily.
  ##
  ## If you need a permanent change, use the `cd() <#cd,string>`_ proc.
  ## Usage example:
  ##
  ## .. code-block:: nim
  ##   withDir "foo":
  ##     # inside foo
  ##   #back to last dir
  var curDir = getCurrentDir()
  try:
    cd(dir)
    body
  finally:
    cd(curDir)


proc writeTask(name, desc: string) =
  if desc.len > 0:
    var spaces = " "
    for i in 0 ..< 20 - name.len: spaces.add ' '
    echo name, spaces, desc

proc cppDefine*(define: string) =
  ## tell Nim that ``define`` is a C preprocessor ``#define`` and so always
  ## needs to be mangled.
  builtin

proc stdinReadLine(): TaintedString {.
  tags: [ReadIOEffect], raises: [IOError].} =
  builtin

proc stdinReadAll(): TaintedString {.
  tags: [ReadIOEffect], raises: [IOError].} =
  builtin

proc readLineFromStdin*(): TaintedString {.raises: [IOError].} =
  ## Reads a line of data from stdin - blocks until \n or EOF which happens when stdin is closed
  log "readLineFromStdin":
    result = stdinReadLine()
    checkError(EOFError)

proc readAllFromStdin*(): TaintedString {.raises: [IOError].} =
  ## Reads all data from stdin - blocks until EOF which happens when stdin is closed
  log "readAllFromStdin":
    result = stdinReadAll()
    checkError(EOFError)

when not defined(nimble):
  template `==?`(a, b: string): bool = cmpIgnoreStyle(a, b) == 0
  template task*(name: untyped; description: string; body: untyped): untyped =
    ## Defines a task. Hidden tasks are supported via an empty description.
    ##
    ## Example:
    ##
    ## .. code-block:: nim
    ##  task build, "default build is via the C backend":
    ##    setCommand "c"
    ##
    ## For a task named ``foo``, this template generates a ``proc`` named
    ## ``fooTask``.  This is useful if you need to call one task in
    ## another in your Nimscript.
    ##
    ## Example:
    ##
    ## .. code-block:: nim
    ##  task foo, "foo":        # > nim foo
    ##    echo "Running foo"    # Running foo
    ##
    ##  task bar, "bar":        # > nim bar
    ##    echo "Running bar"    # Running bar
    ##    fooTask()             # Running foo
    proc `name Task`*() =
      setCommand "nop"
      body

    let cmd = getCommand()
    if cmd.len == 0 or cmd ==? "help":
      setCommand "help"
      writeTask(astToStr(name), description)
    elif cmd ==? astToStr(name):
      `name Task`()

  # nimble has its own implementation for these things.
  var
    packageName* = ""    ## Nimble support: Set this to the package name. It
                         ## is usually not required to do that, nims' filename is
                         ## the default.
    version*: string     ## Nimble support: The package's version.
    author*: string      ## Nimble support: The package's author.
    description*: string ## Nimble support: The package's description.
    license*: string     ## Nimble support: The package's license.
    srcDir*: string      ## Nimble support: The package's source directory.
    binDir*: string      ## Nimble support: The package's binary directory.
    backend*: string     ## Nimble support: The package's backend.

    skipDirs*, skipFiles*, skipExt*, installDirs*, installFiles*,
      installExt*, bin*: seq[string] = @[] ## Nimble metadata.
    requiresData*: seq[string] = @[] ## Exposes the list of requirements for read
                                     ## and write accesses.

  proc requires*(deps: varargs[string]) =
    ## Nimble support: Call this to set the list of requirements of your Nimble
    ## package.
    for d in deps: requiresData.add(d)

{.pop.}
ail. Do not use. proc new*[T](a: var ref T, finalizer: proc (x: ref T)) {. magic: "NewFinalize", noSideEffect.} ## creates a new object of type ``T`` and returns a safe (traced) ## reference to it in ``a``. When the garbage collector frees the object, ## `finalizer` is called. The `finalizer` may not keep a reference to the ## object pointed to by `x`. The `finalizer` cannot prevent the GC from ## freeing the object. Note: The `finalizer` refers to the type `T`, not to ## the object! This means that for each object of type `T` the finalizer ## will be called! proc reset*[T](obj: var T) {.magic: "Reset", noSideEffect.} ## resets an object `obj` to its initial (binary zero) value. This needs to ## be called before any possible `object branch transition`:idx:. # for low and high the return type T may not be correct, but # we handle that with compiler magic in SemLowHigh() proc high*[T](x: T): T {.magic: "High", noSideEffect.} ## returns the highest possible index of an array, a sequence, a string or ## the highest possible value of an ordinal value `x`. As a special ## semantic rule, `x` may also be a type identifier. proc low*[T](x: T): T {.magic: "Low", noSideEffect.} ## returns the lowest possible index of an array, a sequence, a string or ## the lowest possible value of an ordinal value `x`. As a special ## semantic rule, `x` may also be a type identifier. type range*{.magic: "Range".} [T] ## Generic type to construct range types. array*{.magic: "Array".}[I, T] ## Generic type to construct ## fixed-length arrays. openarray*{.magic: "OpenArray".}[T] ## Generic type to construct open arrays. ## Open arrays are implemented as a ## pointer to the array data and a ## length field. seq*{.magic: "Seq".}[T] ## Generic type to construct sequences. set*{.magic: "Set".}[T] ## Generic type to construct bit sets. type TSlice* {.final, pure.}[T] = object ## builtin slice type a*, b*: T ## the bounds proc `..`*[T](a, b: T): TSlice[T] {.noSideEffect, inline.} = ## `slice`:idx: operator that constructs an interval ``[a, b]``, both `a` ## and `b` are inclusive. Slices can also be used in the set constructor ## and in ordinal case statements, but then they are special-cased by the ## compiler. result.a = a result.b = b proc `..`*[T](b: T): TSlice[T] {.noSideEffect, inline.} = ## `slice`:idx: operator that constructs an interval ``[default(T), b]`` result.b = b proc contains*[T](s: TSlice[T], value: T): bool {.noSideEffect, inline.} = result = value >= s.a and value <= s.b when not defined(EcmaScript) and not defined(NimrodVM): type TGenericSeq {.compilerproc, pure.} = object len, reserved: int PGenericSeq {.exportc.} = ptr TGenericSeq # len and space without counting the terminating zero: NimStringDesc {.compilerproc, final.} = object of TGenericSeq data: array[0..100_000_000, char] NimString = ptr NimStringDesc template space(s: PGenericSeq): int = s.reserved and not seqShallowFlag include "system/hti" type Byte* = Int8 ## this is an alias for ``int8``, that is a signed ## int 8 bits wide. Natural* = range[0..high(int)] ## is an int type ranging from zero to the maximum value ## of an int. This type is often useful for documentation and debugging. Positive* = range[1..high(int)] ## is an int type ranging from one to the maximum value ## of an int. This type is often useful for documentation and debugging. TObject* {.exportc: "TNimObject".} = object ## the root of Nimrod's object hierarchy. Objects should ## inherit from TObject or one of its descendants. However, ## objects that have no ancestor are allowed. PObject* = ref TObject ## reference to TObject E_Base* {.compilerproc.} = object of TObject ## base exception class; ## each exception has to ## inherit from `E_Base`. parent: ref E_Base ## parent exception (can be used as a stack) name: cstring ## The exception's name is its Nimrod identifier. ## This field is filled automatically in the ## ``raise`` statement. msg* {.exportc: "message".}: string ## the exception's message. Not ## providing an exception message ## is bad style. EAsynch* = object of E_Base ## Abstract exception class for ## *asynchronous exceptions* (interrupts). ## This is rarely needed: Most ## exception types inherit from `ESynch` ESynch* = object of E_Base ## Abstract exception class for ## *synchronous exceptions*. Most exceptions ## should be inherited (directly or indirectly) ## from ESynch. ESystem* = object of ESynch ## Abstract class for exceptions that the runtime ## system raises. EIO* = object of ESystem ## raised if an IO error occured. EOS* = object of ESystem ## raised if an operating system service failed. EInvalidLibrary* = object of EOS ## raised if a dynamic library ## could not be loaded. EResourceExhausted* = object of ESystem ## raised if a resource request ## could not be fullfilled. EArithmetic* = object of ESynch ## raised if any kind of arithmetic ## error occured. EDivByZero* {.compilerproc.} = object of EArithmetic ## is the exception class for integer divide-by-zero ## errors. EOverflow* {.compilerproc.} = object of EArithmetic ## is the exception class for integer calculations ## whose results are too large to fit in the ## provided bits. EAccessViolation* {.compilerproc.} = object of ESynch ## the exception class for invalid memory access errors EAssertionFailed* {.compilerproc.} = object of ESynch ## is the exception class for Assert ## procedures that is raised if the ## assertion proves wrong EControlC* = object of EAsynch ## is the exception class for Ctrl+C ## key presses in console applications. EInvalidValue* = object of ESynch ## is the exception class for string ## and object conversion errors. EInvalidKey* = object of EInvalidValue ## is the exception class if a key ## cannot be found in a table. EOutOfMemory* = object of ESystem ## is the exception class for ## unsuccessful attempts to allocate ## memory. EInvalidIndex* = object of ESynch ## is raised if an array index is out ## of bounds. EInvalidField* = object of ESynch ## is raised if a record field is not ## accessible because its dicriminant's ## value does not fit. EOutOfRange* = object of ESynch ## is raised if a range check error ## occured. EStackOverflow* = object of ESystem ## is raised if the hardware stack ## used for subroutine calls overflowed. ENoExceptionToReraise* = object of ESynch ## is raised if there is no ## exception to reraise. EInvalidObjectAssignment* = object of ESynch ## is raised if an object gets assigned to its ## parent's object. EInvalidObjectConversion* = object of ESynch ## is raised if an object is converted to an incompatible ## object type. EFloatingPoint* = object of ESynch ## base class for floating point exceptions EFloatInvalidOp* {.compilerproc.} = object of EFloatingPoint ## Invalid operation according to IEEE: Raised by ## 0.0/0.0, for example. EFloatDivByZero* {.compilerproc.} = object of EFloatingPoint ## Division by zero. Divisor is zero and dividend ## is a finite nonzero number. EFloatOverflow* {.compilerproc.} = object of EFloatingPoint ## Overflow. Operation produces a result ## that exceeds the range of the exponent EFloatUnderflow* {.compilerproc.} = object of EFloatingPoint ## Underflow. Operation produces a result ## that is too small to be represented as ## a normal number EFloatInexact* {.compilerproc.} = object of EFloatingPoint ## Inexact. Operation produces a result ## that cannot be represented with infinite ## precision -- for example, 2.0 / 3.0, log(1.1) ## NOTE: Nimrod currently does not detect these! EDeadThread* = object of ESynch ## is raised if it is attempted to send a message to a ## dead thread. TResult* = enum Failure, Success proc sizeof*[T](x: T): natural {.magic: "SizeOf", noSideEffect.} ## returns the size of ``x`` in bytes. Since this is a low-level proc, ## its usage is discouraged - using ``new`` for the most cases suffices ## that one never needs to know ``x``'s size. As a special semantic rule, ## ``x`` may also be a type identifier (``sizeof(int)`` is valid). proc `<`*[T](x: ordinal[T]): T {.magic: "UnaryLt", noSideEffect.} ## unary ``<`` that can be used for nice looking excluding ranges: ## ## .. code-block:: nimrod ## for i in 0 .. <10: echo i ## ## Semantically this is the same as ``pred``. proc succ*[T](x: ordinal[T], y = 1): T {.magic: "Succ", noSideEffect.} ## returns the ``y``-th successor of the value ``x``. ``T`` has to be ## an ordinal type. If such a value does not exist, ``EOutOfRange`` is raised ## or a compile time error occurs. proc pred*[T](x: ordinal[T], y = 1): T {.magic: "Pred", noSideEffect.} ## returns the ``y``-th predecessor of the value ``x``. ``T`` has to be ## an ordinal type. If such a value does not exist, ``EOutOfRange`` is raised ## or a compile time error occurs. proc inc*[T](x: var ordinal[T], y = 1) {.magic: "Inc", noSideEffect.} ## increments the ordinal ``x`` by ``y``. If such a value does not ## exist, ``EOutOfRange`` is raised or a compile time error occurs. This is a ## short notation for: ``x = succ(x, y)``. proc dec*[T](x: var ordinal[T], y = 1) {.magic: "Dec", noSideEffect.} ## decrements the ordinal ``x`` by ``y``. If such a value does not ## exist, ``EOutOfRange`` is raised or a compile time error occurs. This is a ## short notation for: ``x = pred(x, y)``. proc newSeq*[T](s: var seq[T], len: int) {.magic: "NewSeq", noSideEffect.} ## creates a new sequence of type ``seq[T]`` with length ``len``. ## This is equivalent to ``s = @[]; setlen(s, len)``, but more ## efficient since no reallocation is needed. proc len*[T: openArray](x: T): int {.magic: "LengthOpenArray", noSideEffect.} proc len*(x: string): int {.magic: "LengthStr", noSideEffect.} proc len*(x: cstring): int {.magic: "LengthStr", noSideEffect.} proc len*[I, T](x: array[I, T]): int {.magic: "LengthArray", noSideEffect.} proc len*[T](x: seq[T]): int {.magic: "LengthSeq", noSideEffect.} ## returns the length of an array, an openarray, a sequence or a string. ## This is rougly the same as ``high(T)-low(T)+1``, but its resulting type is ## always an int. # set routines: proc incl*[T](x: var set[T], y: T) {.magic: "Incl", noSideEffect.} ## includes element ``y`` to the set ``x``. This is the same as ## ``x = x + {y}``, but it might be more efficient. proc excl*[T](x: var set[T], y: T) {.magic: "Excl", noSideEffect.} ## excludes element ``y`` to the set ``x``. This is the same as ## ``x = x - {y}``, but it might be more efficient. proc card*[T](x: set[T]): int {.magic: "Card", noSideEffect.} ## returns the cardinality of the set ``x``, i.e. the number of elements ## in the set. proc ord*[T](x: T): int {.magic: "Ord", noSideEffect.} ## returns the internal int value of an ordinal value ``x``. proc chr*(u: range[0..255]): char {.magic: "Chr", noSideEffect.} ## converts an int in the range 0..255 to a character. # -------------------------------------------------------------------------- # built-in operators proc ze*(x: int8): int {.magic: "Ze8ToI", noSideEffect.} ## zero extends a smaller integer type to ``int``. This treats `x` as ## unsigned. proc ze*(x: int16): int {.magic: "Ze16ToI", noSideEffect.} ## zero extends a smaller integer type to ``int``. This treats `x` as ## unsigned. proc ze64*(x: int8): int64 {.magic: "Ze8ToI64", noSideEffect.} ## zero extends a smaller integer type to ``int64``. This treats `x` as ## unsigned. proc ze64*(x: int16): int64 {.magic: "Ze16ToI64", noSideEffect.} ## zero extends a smaller integer type to ``int64``. This treats `x` as ## unsigned. proc ze64*(x: int32): int64 {.magic: "Ze32ToI64", noSideEffect.} ## zero extends a smaller integer type to ``int64``. This treats `x` as ## unsigned. proc ze64*(x: int): int64 {.magic: "ZeIToI64", noDecl, noSideEffect.} ## zero extends a smaller integer type to ``int64``. This treats `x` as ## unsigned. Does nothing if the size of an ``int`` is the same as ``int64``. ## (This is the case on 64 bit processors.) proc toU8*(x: int): int8 {.magic: "ToU8", noSideEffect.} ## treats `x` as unsigned and converts it to a byte by taking the last 8 bits ## from `x`. proc toU16*(x: int): int16 {.magic: "ToU16", noSideEffect.} ## treats `x` as unsigned and converts it to an ``int16`` by taking the last ## 16 bits from `x`. proc toU32*(x: int64): int32 {.magic: "ToU32", noSideEffect.} ## treats `x` as unsigned and converts it to an ``int32`` by taking the ## last 32 bits from `x`. # integer calculations: proc `+` *(x: int): int {.magic: "UnaryPlusI", noSideEffect.} proc `+` *(x: int8): int8 {.magic: "UnaryPlusI", noSideEffect.} proc `+` *(x: int16): int16 {.magic: "UnaryPlusI", noSideEffect.} proc `+` *(x: int32): int32 {.magic: "UnaryPlusI", noSideEffect.} proc `+` *(x: int64): int64 {.magic: "UnaryPlusI64", noSideEffect.} ## Unary `+` operator for an integer. Has no effect. proc `-` *(x: int): int {.magic: "UnaryMinusI", noSideEffect.} proc `-` *(x: int8): int8 {.magic: "UnaryMinusI", noSideEffect.} proc `-` *(x: int16): int16 {.magic: "UnaryMinusI", noSideEffect.} proc `-` *(x: int32): int32 {.magic: "UnaryMinusI", noSideEffect.} proc `-` *(x: int64): int64 {.magic: "UnaryMinusI64", noSideEffect.} ## Unary `-` operator for an integer. Negates `x`. proc `not` *(x: int): int {.magic: "BitnotI", noSideEffect.} proc `not` *(x: int8): int8 {.magic: "BitnotI", noSideEffect.} proc `not` *(x: int16): int16 {.magic: "BitnotI", noSideEffect.} proc `not` *(x: int32): int32 {.magic: "BitnotI", noSideEffect.} proc `not` *(x: int64): int64 {.magic: "BitnotI64", noSideEffect.} ## computes the `bitwise complement` of the integer `x`. proc `+` *(x, y: int): int {.magic: "AddI", noSideEffect.} proc `+` *(x, y: int8): int8 {.magic: "AddI", noSideEffect.} proc `+` *(x, y: int16): int16 {.magic: "AddI", noSideEffect.} proc `+` *(x, y: int32): int32 {.magic: "AddI", noSideEffect.} proc `+` *(x, y: int64): int64 {.magic: "AddI64", noSideEffect.} ## Binary `+` operator for an integer. proc `-` *(x, y: int): int {.magic: "SubI", noSideEffect.} proc `-` *(x, y: int8): int8 {.magic: "SubI", noSideEffect.} proc `-` *(x, y: int16): int16 {.magic: "SubI", noSideEffect.} proc `-` *(x, y: int32): int32 {.magic: "SubI", noSideEffect.} proc `-` *(x, y: int64): int64 {.magic: "SubI64", noSideEffect.} ## Binary `-` operator for an integer. proc `*` *(x, y: int): int {.magic: "MulI", noSideEffect.} proc `*` *(x, y: int8): int8 {.magic: "MulI", noSideEffect.} proc `*` *(x, y: int16): int16 {.magic: "MulI", noSideEffect.} proc `*` *(x, y: int32): int32 {.magic: "MulI", noSideEffect.} proc `*` *(x, y: int64): int64 {.magic: "MulI64", noSideEffect.} ## Binary `*` operator for an integer. proc `div` *(x, y: int): int {.magic: "DivI", noSideEffect.} proc `div` *(x, y: int8): int8 {.magic: "DivI", noSideEffect.} proc `div` *(x, y: int16): int16 {.magic: "DivI", noSideEffect.} proc `div` *(x, y: int32): int32 {.magic: "DivI", noSideEffect.} proc `div` *(x, y: int64): int64 {.magic: "DivI64", noSideEffect.} ## computes the integer division. This is roughly the same as ## ``floor(x/y)``. proc `mod` *(x, y: int): int {.magic: "ModI", noSideEffect.} proc `mod` *(x, y: int8): int8 {.magic: "ModI", noSideEffect.} proc `mod` *(x, y: int16): int16 {.magic: "ModI", noSideEffect.} proc `mod` *(x, y: int32): int32 {.magic: "ModI", noSideEffect.} proc `mod` *(x, y: int64): int64 {.magic: "ModI64", noSideEffect.} ## computes the integer modulo operation. This is the same as ## ``x - (x div y) * y``. proc `shr` *(x, y: int): int {.magic: "ShrI", noSideEffect.} proc `shr` *(x, y: int8): int8 {.magic: "ShrI", noSideEffect.} proc `shr` *(x, y: int16): int16 {.magic: "ShrI", noSideEffect.} proc `shr` *(x, y: int32): int32 {.magic: "ShrI", noSideEffect.} proc `shr` *(x, y: int64): int64 {.magic: "ShrI64", noSideEffect.} ## computes the `shift right` operation of `x` and `y`. proc `shl` *(x, y: int): int {.magic: "ShlI", noSideEffect.} proc `shl` *(x, y: int8): int8 {.magic: "ShlI", noSideEffect.} proc `shl` *(x, y: int16): int16 {.magic: "ShlI", noSideEffect.} proc `shl` *(x, y: int32): int32 {.magic: "ShlI", noSideEffect.} proc `shl` *(x, y: int64): int64 {.magic: "ShlI64", noSideEffect.} ## computes the `shift left` operation of `x` and `y`. proc `and` *(x, y: int): int {.magic: "BitandI", noSideEffect.} proc `and` *(x, y: int8): int8 {.magic: "BitandI", noSideEffect.} proc `and` *(x, y: int16): int16 {.magic: "BitandI", noSideEffect.} proc `and` *(x, y: int32): int32 {.magic: "BitandI", noSideEffect.} proc `and` *(x, y: int64): int64 {.magic: "BitandI64", noSideEffect.} ## computes the `bitwise and` of numbers `x` and `y`. proc `or` *(x, y: int): int {.magic: "BitorI", noSideEffect.} proc `or` *(x, y: int8): int8 {.magic: "BitorI", noSideEffect.} proc `or` *(x, y: int16): int16 {.magic: "BitorI", noSideEffect.} proc `or` *(x, y: int32): int32 {.magic: "BitorI", noSideEffect.} proc `or` *(x, y: int64): int64 {.magic: "BitorI64", noSideEffect.} ## computes the `bitwise or` of numbers `x` and `y`. proc `xor` *(x, y: int): int {.magic: "BitxorI", noSideEffect.} proc `xor` *(x, y: int8): int8 {.magic: "BitxorI", noSideEffect.} proc `xor` *(x, y: int16): int16 {.magic: "BitxorI", noSideEffect.} proc `xor` *(x, y: int32): int32 {.magic: "BitxorI", noSideEffect.} proc `xor` *(x, y: int64): int64 {.magic: "BitxorI64", noSideEffect.} ## computes the `bitwise xor` of numbers `x` and `y`. proc `==` *(x, y: int): bool {.magic: "EqI", noSideEffect.} proc `==` *(x, y: int8): bool {.magic: "EqI", noSideEffect.} proc `==` *(x, y: int16): bool {.magic: "EqI", noSideEffect.} proc `==` *(x, y: int32): bool {.magic: "EqI", noSideEffect.} proc `==` *(x, y: int64): bool {.magic: "EqI64", noSideEffect.} ## Compares two integers for equality. proc `<=` *(x, y: int): bool {.magic: "LeI", noSideEffect.} proc `<=` *(x, y: int8): bool {.magic: "LeI", noSideEffect.} proc `<=` *(x, y: int16): bool {.magic: "LeI", noSideEffect.} proc `<=` *(x, y: int32): bool {.magic: "LeI", noSideEffect.} proc `<=` *(x, y: int64): bool {.magic: "LeI64", noSideEffect.} ## Returns true iff `x` is less than or equal to `y`. proc `<` *(x, y: int): bool {.magic: "LtI", noSideEffect.} proc `<` *(x, y: int8): bool {.magic: "LtI", noSideEffect.} proc `<` *(x, y: int16): bool {.magic: "LtI", noSideEffect.} proc `<` *(x, y: int32): bool {.magic: "LtI", noSideEffect.} proc `<` *(x, y: int64): bool {.magic: "LtI64", noSideEffect.} ## Returns true iff `x` is less than `y`. proc abs*(x: int): int {.magic: "AbsI", noSideEffect.} proc abs*(x: int8): int8 {.magic: "AbsI", noSideEffect.} proc abs*(x: int16): int16 {.magic: "AbsI", noSideEffect.} proc abs*(x: int32): int32 {.magic: "AbsI", noSideEffect.} proc abs*(x: int64): int64 {.magic: "AbsI64", noSideEffect.} ## returns the absolute value of `x`. If `x` is ``low(x)`` (that ## is -MININT for its type), an overflow exception is thrown (if overflow ## checking is turned on). proc `+%` *(x, y: int): int {.magic: "AddU", noSideEffect.} proc `+%` *(x, y: int8): int8 {.magic: "AddU", noSideEffect.} proc `+%` *(x, y: int16): int16 {.magic: "AddU", noSideEffect.} proc `+%` *(x, y: int32): int32 {.magic: "AddU", noSideEffect.} proc `+%` *(x, y: int64): int64 {.magic: "AddU64", noSideEffect.} ## treats `x` and `y` as unsigned and adds them. The result is truncated to ## fit into the result. This implements modulo arithmetic. No overflow ## errors are possible. proc `-%` *(x, y: int): int {.magic: "SubU", noSideEffect.} proc `-%` *(x, y: int8): int8 {.magic: "SubU", noSideEffect.} proc `-%` *(x, y: int16): int16 {.magic: "SubU", noSideEffect.} proc `-%` *(x, y: int32): int32 {.magic: "SubU", noSideEffect.} proc `-%` *(x, y: int64): int64 {.magic: "SubU64", noSideEffect.} ## treats `x` and `y` as unsigned and subtracts them. The result is ## truncated to fit into the result. This implements modulo arithmetic. ## No overflow errors are possible. proc `*%` *(x, y: int): int {.magic: "MulU", noSideEffect.} proc `*%` *(x, y: int8): int8 {.magic: "MulU", noSideEffect.} proc `*%` *(x, y: int16): int16 {.magic: "MulU", noSideEffect.} proc `*%` *(x, y: int32): int32 {.magic: "MulU", noSideEffect.} proc `*%` *(x, y: int64): int64 {.magic: "MulU64", noSideEffect.} ## treats `x` and `y` as unsigned and multiplies them. The result is ## truncated to fit into the result. This implements modulo arithmetic. ## No overflow errors are possible. proc `/%` *(x, y: int): int {.magic: "DivU", noSideEffect.} proc `/%` *(x, y: int8): int8 {.magic: "DivU", noSideEffect.} proc `/%` *(x, y: int16): int16 {.magic: "DivU", noSideEffect.} proc `/%` *(x, y: int32): int32 {.magic: "DivU", noSideEffect.} proc `/%` *(x, y: int64): int64 {.magic: "DivU64", noSideEffect.} ## treats `x` and `y` as unsigned and divides them. The result is ## truncated to fit into the result. This implements modulo arithmetic. ## No overflow errors are possible. proc `%%` *(x, y: int): int {.magic: "ModU", noSideEffect.} proc `%%` *(x, y: int8): int8 {.magic: "ModU", noSideEffect.} proc `%%` *(x, y: int16): int16 {.magic: "ModU", noSideEffect.} proc `%%` *(x, y: int32): int32 {.magic: "ModU", noSideEffect.} proc `%%` *(x, y: int64): int64 {.magic: "ModU64", noSideEffect.} ## treats `x` and `y` as unsigned and compute the modulo of `x` and `y`. ## The result is truncated to fit into the result. ## This implements modulo arithmetic. ## No overflow errors are possible. proc `<=%` *(x, y: int): bool {.magic: "LeU", noSideEffect.} proc `<=%` *(x, y: int8): bool {.magic: "LeU", noSideEffect.} proc `<=%` *(x, y: int16): bool {.magic: "LeU", noSideEffect.} proc `<=%` *(x, y: int32): bool {.magic: "LeU", noSideEffect.} proc `<=%` *(x, y: int64): bool {.magic: "LeU64", noSideEffect.} ## treats `x` and `y` as unsigned and compares them. ## Returns true iff ``unsigned(x) <= unsigned(y)``. proc `<%` *(x, y: int): bool {.magic: "LtU", noSideEffect.} proc `<%` *(x, y: int8): bool {.magic: "LtU", noSideEffect.} proc `<%` *(x, y: int16): bool {.magic: "LtU", noSideEffect.} proc `<%` *(x, y: int32): bool {.magic: "LtU", noSideEffect.} proc `<%` *(x, y: int64): bool {.magic: "LtU64", noSideEffect.} ## treats `x` and `y` as unsigned and compares them. ## Returns true iff ``unsigned(x) < unsigned(y)``. # floating point operations: proc `+` *(x: float): float {.magic: "UnaryPlusF64", noSideEffect.} proc `-` *(x: float): float {.magic: "UnaryMinusF64", noSideEffect.} proc `+` *(x, y: float): float {.magic: "AddF64", noSideEffect.} proc `-` *(x, y: float): float {.magic: "SubF64", noSideEffect.} proc `*` *(x, y: float): float {.magic: "MulF64", noSideEffect.} proc `/` *(x, y: float): float {.magic: "DivF64", noSideEffect.} ## computes the floating point division proc `==` *(x, y: float): bool {.magic: "EqF64", noSideEffect.} proc `<=` *(x, y: float): bool {.magic: "LeF64", noSideEffect.} proc `<` *(x, y: float): bool {.magic: "LtF64", noSideEffect.} proc abs*(x: float): float {.magic: "AbsF64", noSideEffect.} proc min*(x, y: float): float {.magic: "MinF64", noSideEffect.} proc max*(x, y: float): float {.magic: "MaxF64", noSideEffect.} # set operators proc `*` *[T](x, y: set[T]): set[T] {.magic: "MulSet", noSideEffect.} ## This operator computes the intersection of two sets. proc `+` *[T](x, y: set[T]): set[T] {.magic: "PlusSet", noSideEffect.} ## This operator computes the union of two sets. proc `-` *[T](x, y: set[T]): set[T] {.magic: "MinusSet", noSideEffect.} ## This operator computes the difference of two sets. proc `-+-` *[T](x, y: set[T]): set[T] {.magic: "SymDiffSet", noSideEffect.} ## computes the symmetric set difference. This is the same as ## ``(A - B) + (B - A)``, but more efficient. # comparison operators: proc `==` *[T](x, y: ordinal[T]): bool {.magic: "EqEnum", noSideEffect.} proc `==` *(x, y: pointer): bool {.magic: "EqRef", noSideEffect.} proc `==` *(x, y: string): bool {.magic: "EqStr", noSideEffect.} proc `==` *(x, y: cstring): bool {.magic: "EqCString", noSideEffect.} proc `==` *(x, y: char): bool {.magic: "EqCh", noSideEffect.} proc `==` *(x, y: bool): bool {.magic: "EqB", noSideEffect.} proc `==` *[T](x, y: set[T]): bool {.magic: "EqSet", noSideEffect.} proc `==` *[T](x, y: ref T): bool {.magic: "EqRef", noSideEffect.} proc `==` *[T](x, y: ptr T): bool {.magic: "EqRef", noSideEffect.} proc `<=` *[T](x, y: ordinal[T]): bool {.magic: "LeEnum", noSideEffect.} proc `<=` *(x, y: string): bool {.magic: "LeStr", noSideEffect.} proc `<=` *(x, y: char): bool {.magic: "LeCh", noSideEffect.} proc `<=` *[T](x, y: set[T]): bool {.magic: "LeSet", noSideEffect.} proc `<=` *(x, y: bool): bool {.magic: "LeB", noSideEffect.} proc `<=` *[T](x, y: ref T): bool {.magic: "LePtr", noSideEffect.} proc `<=` *(x, y: pointer): bool {.magic: "LePtr", noSideEffect.} proc `<` *[T](x, y: ordinal[T]): bool {.magic: "LtEnum", noSideEffect.} proc `<` *(x, y: string): bool {.magic: "LtStr", noSideEffect.} proc `<` *(x, y: char): bool {.magic: "LtCh", noSideEffect.} proc `<` *[T](x, y: set[T]): bool {.magic: "LtSet", noSideEffect.} proc `<` *(x, y: bool): bool {.magic: "LtB", noSideEffect.} proc `<` *[T](x, y: ref T): bool {.magic: "LtPtr", noSideEffect.} proc `<` *[T](x, y: ptr T): bool {.magic: "LtPtr", noSideEffect.} proc `<` *(x, y: pointer): bool {.magic: "LtPtr", noSideEffect.} template `!=` * (x, y: expr): expr {.immediate.} = ## unequals operator. This is a shorthand for ``not (x == y)``. not (x == y) template `>=` * (x, y: expr): expr {.immediate.} = ## "is greater or equals" operator. This is the same as ``y <= x``. y <= x template `>` * (x, y: expr): expr {.immediate.} = ## "is greater" operator. This is the same as ``y < x``. y < x proc contains*[T](x: set[T], y: T): bool {.magic: "InSet", noSideEffect.} ## One should overload this proc if one wants to overload the ``in`` operator. ## The parameters are in reverse order! ``a in b`` is a template for ## ``contains(b, a)``. ## This is because the unification algorithm that Nimrod uses for overload ## resolution works from left to right. ## But for the ``in`` operator that would be the wrong direction for this ## piece of code: ## ## .. code-block:: Nimrod ## var s: set[range['a'..'z']] = {'a'..'c'} ## writeln(stdout, 'b' in s) ## ## If ``in`` had been declared as ``[T](elem: T, s: set[T])`` then ``T`` would ## have been bound to ``char``. But ``s`` is not compatible to type ## ``set[char]``! The solution is to bind ``T`` to ``range['a'..'z']``. This ## is achieved by reversing the parameters for ``contains``; ``in`` then ## passes its arguments in reverse order. template `in` * (x, y: expr): expr {.immediate.} = contains(y, x) template `not_in` * (x, y: expr): expr {.immediate.} = not contains(y, x) proc `is` *[T, S](x: T, y: S): bool {.magic: "Is", noSideEffect.} template `is_not` *(x, y: expr): expr {.immediate.} = not (x is y) proc `of` *[T, S](x: T, y: S): bool {.magic: "Of", noSideEffect.} proc cmp*[T](x, y: T): int {.procvar.} = ## Generic compare proc. Returns a value < 0 iff x < y, a value > 0 iff x > y ## and 0 iff x == y. This is useful for writing generic algorithms without ## performance loss. This generic implementation uses the `==` and `<` ## operators. if x == y: return 0 if x < y: return -1 return 1 proc cmp*(x, y: string): int {.noSideEffect, procvar.} ## Compare proc for strings. More efficient than the generic version. proc `@` * [IDX, T](a: array[IDX, T]): seq[T] {. magic: "ArrToSeq", nosideeffect.} ## turns an array into a sequence. This most often useful for constructing ## sequences with the array constructor: ``@[1, 2, 3]`` has the type ## ``seq[int]``, while ``[1, 2, 3]`` has the type ``array[0..2, int]``. proc setLen*[T](s: var seq[T], newlen: int) {. magic: "SetLengthSeq", noSideEffect.} ## sets the length of `s` to `newlen`. ## ``T`` may be any sequence type. ## If the current length is greater than the new length, ## ``s`` will be truncated. `s` cannot be nil! To initialize a sequence with ## a size, use ``newSeq`` instead. proc setLen*(s: var string, newlen: int) {. magic: "SetLengthStr", noSideEffect.} ## sets the length of `s` to `newlen`. ## If the current length is greater than the new length, ## ``s`` will be truncated. `s` cannot be nil! To initialize a string with ## a size, use ``newString`` instead. proc newString*(len: int): string {. magic: "NewString", importc: "mnewString", noSideEffect.} ## returns a new string of length ``len`` but with uninitialized ## content. One needs to fill the string character after character ## with the index operator ``s[i]``. This procedure exists only for ## optimization purposes; the same effect can be achieved with the ## ``&`` operator or with ``add``. proc newStringOfCap*(cap: int): string {. magic: "NewStringOfCap", importc: "rawNewString", noSideEffect.} ## returns a new string of length ``0`` but with capacity `cap`.This ## procedure exists only for optimization purposes; the same effect can ## be achieved with the ``&`` operator or with ``add``. proc `&` * (x: string, y: char): string {. magic: "ConStrStr", noSideEffect, merge.} proc `&` * (x: char, y: char): string {. magic: "ConStrStr", noSideEffect, merge.} proc `&` * (x, y: string): string {. magic: "ConStrStr", noSideEffect, merge.} proc `&` * (x: char, y: string): string {. magic: "ConStrStr", noSideEffect, merge.} ## is the `concatenation operator`. It concatenates `x` and `y`. # implementation note: These must all have the same magic value "ConStrStr" so # that the merge optimization works properly. proc add*(x: var string, y: char) {.magic: "AppendStrCh", noSideEffect.} proc add*(x: var string, y: string) {.magic: "AppendStrStr", noSideEffect.} type TEndian* = enum ## is a type describing the endianness of a processor. littleEndian, bigEndian const isMainModule* {.magic: "IsMainModule".}: bool = false ## is true only when accessed in the main module. This works thanks to ## compiler magic. It is useful to embed testing code in a module. CompileDate* {.magic: "CompileDate"}: string = "0000-00-00" ## is the date of compilation as a string of the form ## ``YYYY-MM-DD``. This works thanks to compiler magic. CompileTime* {.magic: "CompileTime"}: string = "00:00:00" ## is the time of compilation as a string of the form ## ``HH:MM:SS``. This works thanks to compiler magic. NimrodVersion* {.magic: "NimrodVersion"}: string = "0.0.0" ## is the version of Nimrod as a string. ## This works thanks to compiler magic. NimrodMajor* {.magic: "NimrodMajor"}: int = 0 ## is the major number of Nimrod's version. ## This works thanks to compiler magic. NimrodMinor* {.magic: "NimrodMinor"}: int = 0 ## is the minor number of Nimrod's version. ## This works thanks to compiler magic. NimrodPatch* {.magic: "NimrodPatch"}: int = 0 ## is the patch number of Nimrod's version. ## This works thanks to compiler magic. cpuEndian* {.magic: "CpuEndian"}: TEndian = littleEndian ## is the endianness of the target CPU. This is a valuable piece of ## information for low-level code only. This works thanks to compiler ## magic. hostOS* {.magic: "HostOS"}: string = "" ## a string that describes the host operating system. Possible values: ## "windows", "macosx", "linux", "netbsd", "freebsd", "openbsd", "solaris", ## "aix". hostCPU* {.magic: "HostCPU"}: string = "" ## a string that describes the host CPU. Possible values: ## "i386", "alpha", "powerpc", "sparc", "amd64", "mips", "arm". appType* {.magic: "AppType"}: string = "" ## a string that describes the application type. Possible values: ## "console", "gui", "lib". seqShallowFlag = 1 shl (sizeof(int)*8-1) proc compileOption*(option: string): bool {. magic: "CompileOption", noSideEffect.} ## can be used to determine an on|off compile-time option. Example: ## ## .. code-block:: nimrod ## when compileOption("floatchecks"): ## echo "compiled with floating point NaN and Inf checks" proc compileOption*(option, arg: string): bool {. magic: "CompileOptionArg", noSideEffect.} ## can be used to determine an enum compile-time option. Example: ## ## .. code-block:: nimrod ## when compileOption("opt", "size") and compileOption("gc", "boehm"): ## echo "compiled with optimization for size and uses Boehm's GC" const hasThreadSupport = compileOption("threads") hasSharedHeap = defined(boehmgc) # don't share heaps; every thread has its own taintMode = compileOption("taintmode") when taintMode: # XXX use a compile time option for it! type TaintedString* = distinct string ## a distinct string type that ## is `tainted`:idx:. It is an alias for ## ``string`` if the taint mode is not ## turned on. Use the ``-d:taintMode`` ## command line switch to turn the taint ## mode on. proc len*(s: TaintedString): int {.borrow.} else: type TaintedString* = string when hasThreadSupport: {.pragma: rtlThreadVar, threadvar.} else: {.pragma: rtlThreadVar.} const QuitSuccess* = 0 ## is the value that should be passed to ``quit`` to indicate ## success. QuitFailure* = 1 ## is the value that should be passed to ``quit`` to indicate ## failure. var programResult* {.exportc: "nim_program_result".}: int ## modify this varialbe to specify the exit code of the program ## under normal circumstances. When the program is terminated ## prematurelly using ``quit``, this value is ignored. proc quit*(errorcode: int = QuitSuccess) {. magic: "Exit", importc: "exit", noDecl, noReturn.} ## stops the program immediately; before stopping the program the ## "quit procedures" are called in the opposite order they were added ## with ``addQuitProc``. ``quit`` never returns and ignores any ## exception that may have been raised by the quit procedures. ## It does *not* call the garbage collector to free all the memory, ## unless a quit procedure calls ``GC_collect``. template sysAssert(cond: bool, msg: string) = when defined(useSysAssert): if not cond: echo "[SYSASSERT] ", msg quit 1 nil include "system/inclrtl" when not defined(ecmascript) and not defined(nimrodVm): include "system/cgprocs" proc add *[T](x: var seq[T], y: T) {.magic: "AppendSeqElem", noSideEffect.} proc add *[T](x: var seq[T], y: openArray[T]) {.noSideEffect.} = ## Generic proc for adding a data item `y` to a container `x`. ## For containers that have an order, `add` means *append*. New generic ## containers should also call their adding proc `add` for consistency. ## Generic code becomes much easier to write if the Nimrod naming scheme is ## respected. var xl = x.len setLen(x, xl + y.len) for i in 0..high(y): x[xl+i] = y[i] proc shallowCopy*[T](x: var T, y: T) {.noSideEffect, magic: "ShallowCopy".} ## use this instead of `=` for a `shallow copy`:idx:. The shallow copy ## only changes the semantics for sequences and strings (and types which ## contain those). Be careful with the changed semantics though! There ## is a reason why the default assignment does a deep copy of sequences ## and strings. proc del*[T](x: var seq[T], i: int) {.noSideEffect.} = ## deletes the item at index `i` by putting ``x[high(x)]`` into position `i`. ## This is an O(1) operation. var xl = x.len shallowCopy(x[i], x[xl-1]) setLen(x, xl-1) proc delete*[T](x: var seq[T], i: int) {.noSideEffect.} = ## deletes the item at index `i` by moving ``x[i+1..]`` by one position. ## This is an O(n) operation. var xl = x.len for j in i..xl-2: shallowCopy(x[j], x[j+1]) setLen(x, xl-1) proc insert*[T](x: var seq[T], item: T, i = 0) {.noSideEffect.} = ## inserts `item` into `x` at position `i`. var xl = x.len setLen(x, xl+1) var j = xl-1 while j >= i: shallowCopy(x[j+1], x[j]) dec(j) x[i] = item proc repr*[T](x: T): string {.magic: "Repr", noSideEffect.} ## takes any Nimrod variable and returns its string representation. It ## works even for complex data graphs with cycles. This is a great ## debugging tool. type TAddress* = int ## is the signed integer type that should be used for converting ## pointers to integer addresses for readability. BiggestInt* = int64 ## is an alias for the biggest signed integer type the Nimrod compiler ## supports. Currently this is ``int64``, but it is platform-dependant ## in general. BiggestFloat* = float64 ## is an alias for the biggest floating point type the Nimrod ## compiler supports. Currently this is ``float64``, but it is ## platform-dependant in general. type # these work for most platforms: cchar* {.importc: "char", nodecl.} = char ## This is the same as the type ``char`` in *C*. cschar* {.importc: "signed char", nodecl.} = byte ## This is the same as the type ``signed char`` in *C*. cshort* {.importc: "short", nodecl.} = int16 ## This is the same as the type ``short`` in *C*. cint* {.importc: "int", nodecl.} = int32 ## This is the same as the type ``int`` in *C*. clong* {.importc: "long", nodecl.} = int ## This is the same as the type ``long`` in *C*. clonglong* {.importc: "long long", nodecl.} = int64 ## This is the same as the type ``long long`` in *C*. cfloat* {.importc: "float", nodecl.} = float32 ## This is the same as the type ``float`` in *C*. cdouble* {.importc: "double", nodecl.} = float64 ## This is the same as the type ``double`` in *C*. clongdouble* {.importc: "long double", nodecl.} = BiggestFloat ## This is the same as the type ``long double`` in *C*. ## This C type is not supported by Nimrod's code generator cstringArray* {.importc: "char**", nodecl.} = ptr array [0..50_000, cstring] ## This is binary compatible to the type ``char**`` in *C*. The array's ## high value is large enough to disable bounds checking in practice. ## Use `cstringArrayToSeq` to convert it into a ``seq[string]``. PFloat32* = ptr Float32 ## an alias for ``ptr float32`` PFloat64* = ptr Float64 ## an alias for ``ptr float64`` PInt64* = ptr Int64 ## an alias for ``ptr int64`` PInt32* = ptr Int32 ## an alias for ``ptr int32`` proc toFloat*(i: int): float {. magic: "ToFloat", noSideEffect, importc: "toFloat".} ## converts an integer `i` into a ``float``. If the conversion ## fails, `EInvalidValue` is raised. However, on most platforms the ## conversion cannot fail. proc toBiggestFloat*(i: biggestint): biggestfloat {. magic: "ToBiggestFloat", noSideEffect, importc: "toBiggestFloat".} ## converts an biggestint `i` into a ``biggestfloat``. If the conversion ## fails, `EInvalidValue` is raised. However, on most platforms the ## conversion cannot fail. proc toInt*(f: float): int {. magic: "ToInt", noSideEffect, importc: "toInt".} ## converts a floating point number `f` into an ``int``. Conversion ## rounds `f` if it does not contain an integer value. If the conversion ## fails (because `f` is infinite for example), `EInvalidValue` is raised. proc toBiggestInt*(f: biggestfloat): biggestint {. magic: "ToBiggestInt", noSideEffect, importc: "toBiggestInt".} ## converts a biggestfloat `f` into a ``biggestint``. Conversion ## rounds `f` if it does not contain an integer value. If the conversion ## fails (because `f` is infinite for example), `EInvalidValue` is raised. proc addQuitProc*(QuitProc: proc {.noconv.}) {.importc: "atexit", nodecl.} ## adds/registers a quit procedure. Each call to ``addQuitProc`` ## registers another quit procedure. Up to 30 procedures can be ## registered. They are executed on a last-in, first-out basis ## (that is, the last function registered is the first to be executed). ## ``addQuitProc`` raises an EOutOfIndex if ``quitProc`` cannot be ## registered. # Support for addQuitProc() is done by Ansi C's facilities here. # In case of an unhandled exeption the exit handlers should # not be called explicitly! The user may decide to do this manually though. proc copy*(s: string, first = 0): string {. magic: "CopyStr", importc: "copyStr", noSideEffect, deprecated.} proc copy*(s: string, first, last: int): string {. magic: "CopyStrLast", importc: "copyStrLast", noSideEffect, deprecated.} ## copies a slice of `s` into a new string and returns this new ## string. The bounds `first` and `last` denote the indices of ## the first and last characters that shall be copied. If ``last`` ## is omitted, it is treated as ``high(s)``. ## **Deprecated since version 0.8.12**: Use ``substr`` instead. proc substr*(s: string, first = 0): string {. magic: "CopyStr", importc: "copyStr", noSideEffect.} proc substr*(s: string, first, last: int): string {. magic: "CopyStrLast", importc: "copyStrLast", noSideEffect.} ## copies a slice of `s` into a new string and returns this new ## string. The bounds `first` and `last` denote the indices of ## the first and last characters that shall be copied. If ``last`` ## is omitted, it is treated as ``high(s)``. If ``last >= s.len``, ``s.len`` ## is used instead: This means ``substr`` can also be used to `cut`:idx: ## or `limit`:idx: a string's length. proc zeroMem*(p: Pointer, size: int) {.importc, noDecl.} ## overwrites the contents of the memory at ``p`` with the value 0. ## Exactly ``size`` bytes will be overwritten. Like any procedure ## dealing with raw memory this is *unsafe*. proc copyMem*(dest, source: Pointer, size: int) {.importc: "memcpy", noDecl.} ## copies the contents from the memory at ``source`` to the memory ## at ``dest``. Exactly ``size`` bytes will be copied. The memory ## regions may not overlap. Like any procedure dealing with raw ## memory this is *unsafe*. proc moveMem*(dest, source: Pointer, size: int) {.importc: "memmove", noDecl.} ## copies the contents from the memory at ``source`` to the memory ## at ``dest``. Exactly ``size`` bytes will be copied. The memory ## regions may overlap, ``moveMem`` handles this case appropriately ## and is thus somewhat more safe than ``copyMem``. Like any procedure ## dealing with raw memory this is still *unsafe*, though. proc equalMem*(a, b: Pointer, size: int): bool {. importc: "equalMem", noDecl, noSideEffect.} ## compares the memory blocks ``a`` and ``b``. ``size`` bytes will ## be compared. If the blocks are equal, true is returned, false ## otherwise. Like any procedure dealing with raw memory this is ## *unsafe*. proc alloc*(size: int): pointer {.noconv, rtl.} ## allocates a new memory block with at least ``size`` bytes. The ## block has to be freed with ``realloc(block, 0)`` or ## ``dealloc(block)``. The block is not initialized, so reading ## from it before writing to it is undefined behaviour! ## The allocated memory belongs to its allocating thread! ## Use `allocShared` to allocate from a shared heap. proc alloc0*(size: int): pointer {.noconv, rtl.} ## allocates a new memory block with at least ``size`` bytes. The ## block has to be freed with ``realloc(block, 0)`` or ## ``dealloc(block)``. The block is initialized with all bytes ## containing zero, so it is somewhat safer than ``alloc``. ## The allocated memory belongs to its allocating thread! ## Use `allocShared0` to allocate from a shared heap. proc realloc*(p: Pointer, newsize: int): pointer {.noconv, rtl.} ## grows or shrinks a given memory block. If p is **nil** then a new ## memory block is returned. In either way the block has at least ## ``newsize`` bytes. If ``newsize == 0`` and p is not **nil** ## ``realloc`` calls ``dealloc(p)``. In other cases the block has to ## be freed with ``dealloc``. ## The allocated memory belongs to its allocating thread! ## Use `reallocShared` to reallocate from a shared heap. proc dealloc*(p: Pointer) {.noconv, rtl.} ## frees the memory allocated with ``alloc``, ``alloc0`` or ## ``realloc``. This procedure is dangerous! If one forgets to ## free the memory a leak occurs; if one tries to access freed ## memory (or just freeing it twice!) a core dump may happen ## or other memory may be corrupted. ## The freed memory must belong to its allocating thread! ## Use `deallocShared` to deallocate from a shared heap. proc allocShared*(size: int): pointer {.noconv, rtl.} ## allocates a new memory block on the shared heap with at ## least ``size`` bytes. The block has to be freed with ## ``reallocShared(block, 0)`` or ``deallocShared(block)``. The block ## is not initialized, so reading from it before writing to it is ## undefined behaviour! proc allocShared0*(size: int): pointer {.noconv, rtl.} ## allocates a new memory block on the shared heap with at ## least ``size`` bytes. The block has to be freed with ## ``reallocShared(block, 0)`` or ``deallocShared(block)``. ## The block is initialized with all bytes ## containing zero, so it is somewhat safer than ``allocShared``. proc reallocShared*(p: Pointer, newsize: int): pointer {.noconv, rtl.} ## grows or shrinks a given memory block on the heap. If p is **nil** ## then a new memory block is returned. In either way the block has at least ## ``newsize`` bytes. If ``newsize == 0`` and p is not **nil** ## ``reallocShared`` calls ``deallocShared(p)``. In other cases the ## block has to be freed with ``deallocShared``. proc deallocShared*(p: Pointer) {.noconv, rtl.} ## frees the memory allocated with ``allocShared``, ``allocShared0`` or ## ``reallocShared``. This procedure is dangerous! If one forgets to ## free the memory a leak occurs; if one tries to access freed ## memory (or just freeing it twice!) a core dump may happen ## or other memory may be corrupted. proc swap*[T](a, b: var T) {.magic: "Swap", noSideEffect.} ## swaps the values `a` and `b`. This is often more efficient than ## ``tmp = a; a = b; b = tmp``. Particularly useful for sorting algorithms. template `>=%` *(x, y: expr): expr {.immediate.} = y <=% x ## treats `x` and `y` as unsigned and compares them. ## Returns true iff ``unsigned(x) >= unsigned(y)``. template `>%` *(x, y: expr): expr {.immediate.} = y <% x ## treats `x` and `y` as unsigned and compares them. ## Returns true iff ``unsigned(x) > unsigned(y)``. proc `$` *(x: int): string {.magic: "IntToStr", noSideEffect.} ## The stingify operator for an integer argument. Returns `x` ## converted to a decimal string. proc `$` *(x: int64): string {.magic: "Int64ToStr", noSideEffect.} ## The stingify operator for an integer argument. Returns `x` ## converted to a decimal string. proc `$` *(x: float): string {.magic: "FloatToStr", noSideEffect.} ## The stingify operator for a float argument. Returns `x` ## converted to a decimal string. proc `$` *(x: bool): string {.magic: "BoolToStr", noSideEffect.} ## The stingify operator for a boolean argument. Returns `x` ## converted to the string "false" or "true". proc `$` *(x: char): string {.magic: "CharToStr", noSideEffect.} ## The stingify operator for a character argument. Returns `x` ## converted to a string. proc `$` *(x: Cstring): string {.magic: "CStrToStr", noSideEffect.} ## The stingify operator for a CString argument. Returns `x` ## converted to a string. proc `$` *(x: string): string {.magic: "StrToStr", noSideEffect.} ## The stingify operator for a string argument. Returns `x` ## as it is. This operator is useful for generic code, so ## that ``$expr`` also works if ``expr`` is already a string. proc `$` *[T](x: ordinal[T]): string {.magic: "EnumToStr", noSideEffect.} ## The stingify operator for an enumeration argument. This works for ## any enumeration type thanks to compiler magic. If ## a ``$`` operator for a concrete enumeration is provided, this is ## used instead. (In other words: *Overwriting* is possible.) # undocumented: proc getRefcount*[T](x: ref T): int {.importc: "getRefcount", noSideEffect.} proc getRefcount*(x: string): int {.importc: "getRefcount", noSideEffect.} proc getRefcount*[T](x: seq[T]): int {.importc: "getRefcount", noSideEffect.} ## retrieves the reference count of an heap-allocated object. The ## value is implementation-dependent. # new constants: const inf* {.magic: "Inf".} = 1.0 / 0.0 ## contains the IEEE floating point value of positive infinity. neginf* {.magic: "NegInf".} = -inf ## contains the IEEE floating point value of negative infinity. nan* {.magic: "NaN".} = 0.0 / 0.0 ## contains an IEEE floating point value of *Not A Number*. Note ## that you cannot compare a floating point value to this value ## and expect a reasonable result - use the `classify` procedure ## in the module ``math`` for checking for NaN. # GC interface: proc getOccupiedMem*(): int {.rtl.} ## returns the number of bytes that are owned by the process and hold data. proc getFreeMem*(): int {.rtl.} ## returns the number of bytes that are owned by the process, but do not ## hold any meaningful data. proc getTotalMem*(): int {.rtl.} ## returns the number of bytes that are owned by the process. iterator countdown*[T](a, b: T, step = 1): T {.inline.} = ## Counts from ordinal value `a` down to `b` with the given ## step count. `T` may be any ordinal type, `step` may only ## be positive. var res = a while res >= b: yield res dec(res, step) iterator countup*[S, T](a: S, b: T, step = 1): T {.inline.} = ## Counts from ordinal value `a` up to `b` with the given ## step count. `S`, `T` may be any ordinal type, `step` may only ## be positive. var res: T = a while res <= b: yield res inc(res, step) iterator `..`*[S, T](a: S, b: T): T {.inline.} = ## An alias for `countup`. var res: T = a while res <= b: yield res inc res proc min*(x, y: int): int {.magic: "MinI", noSideEffect.} proc min*(x, y: int8): int8 {.magic: "MinI", noSideEffect.} proc min*(x, y: int16): int16 {.magic: "MinI", noSideEffect.} proc min*(x, y: int32): int32 {.magic: "MinI", noSideEffect.} proc min*(x, y: int64): int64 {.magic: "MinI64", noSideEffect.} ## The minimum value of two integers. proc min*[T](x: openarray[T]): T = ## The minimum value of an openarray. result = x[0] for i in 1..high(x): result = min(result, x[i]) proc max*(x, y: int): int {.magic: "MaxI", noSideEffect.} proc max*(x, y: int8): int8 {.magic: "MaxI", noSideEffect.} proc max*(x, y: int16): int16 {.magic: "MaxI", noSideEffect.} proc max*(x, y: int32): int32 {.magic: "MaxI", noSideEffect.} proc max*(x, y: int64): int64 {.magic: "MaxI64", noSideEffect.} ## The maximum value of two integers. proc max*[T](x: openarray[T]): T = ## The maximum value of an openarray. result = x[0] for i in 1..high(x): result = max(result, x[i]) iterator items*[T](a: openarray[T]): T {.inline.} = ## iterates over each item of `a`. var i = 0 while i < len(a): yield a[i] inc(i) iterator items*[IX, T](a: array[IX, T]): T {.inline.} = ## iterates over each item of `a`. var i = low(IX) if i <= high(IX): while true: yield a[i] if i >= high(IX): break inc(i) iterator items*[T](a: seq[T]): T {.inline.} = ## iterates over each item of `a`. var i = 0 while i < len(a): yield a[i] inc(i) iterator items*(a: string): char {.inline.} = ## iterates over each item of `a`. var i = 0 while i < len(a): yield a[i] inc(i) iterator items*[T](a: set[T]): T {.inline.} = ## iterates over each element of `a`. `items` iterates only over the ## elements that are really in the set (and not over the ones the set is ## able to hold). var i = low(T) if i <= high(T): while true: if i in a: yield i if i >= high(T): break inc(i) iterator items*(a: cstring): char {.inline.} = ## iterates over each item of `a`. var i = 0 while a[i] != '\0': yield a[i] inc(i) iterator pairs*[T](a: openarray[T]): tuple[key: int, val: T] {.inline.} = ## iterates over each item of `a`. Yields ``(index, a[index])`` pairs. var i = 0 while i < len(a): yield (i, a[i]) inc(i) iterator pairs*[IX, T](a: array[IX, T]): tuple[key: IX, val: T] {.inline.} = ## iterates over each item of `a`. Yields ``(index, a[index])`` pairs. var i = low(IX) if i <= high(IX): while true: yield (i, a[i]) if i >= high(IX): break inc(i) iterator pairs*[T](a: seq[T]): tuple[key: int, val: T] {.inline.} = ## iterates over each item of `a`. Yields ``(index, a[index])`` pairs. var i = 0 while i < len(a): yield (i, a[i]) inc(i) iterator pairs*(a: string): tuple[key: int, val: char] {.inline.} = ## iterates over each item of `a`. Yields ``(index, a[index])`` pairs. var i = 0 while i < len(a): yield (i, a[i]) inc(i) proc isNil*[T](x: seq[T]): bool {.noSideEffect, magic: "IsNil".} proc isNil*[T](x: ref T): bool {.noSideEffect, magic: "IsNil".} proc isNil*(x: string): bool {.noSideEffect, magic: "IsNil".} proc isNil*[T](x: ptr T): bool {.noSideEffect, magic: "IsNil".} proc isNil*(x: pointer): bool {.noSideEffect, magic: "IsNil".} proc isNil*(x: cstring): bool {.noSideEffect, magic: "IsNil".} ## Fast check whether `x` is nil. This is sometimes more efficient than ## ``== nil``. proc `&` *[T](x, y: seq[T]): seq[T] {.noSideEffect.} = newSeq(result, x.len + y.len) for i in 0..x.len-1: result[i] = x[i] for i in 0..y.len-1: result[i+x.len] = y[i] proc `&` *[T](x: seq[T], y: T): seq[T] {.noSideEffect.} = newSeq(result, x.len + 1) for i in 0..x.len-1: result[i] = x[i] result[x.len] = y proc `&` *[T](x: T, y: seq[T]): seq[T] {.noSideEffect.} = newSeq(result, y.len + 1) for i in 0..y.len-1: result[i] = y[i] result[y.len] = x when not defined(NimrodVM): when not defined(ECMAScript): proc seqToPtr[T](x: seq[T]): pointer {.inline, nosideeffect.} = result = cast[pointer](x) else: proc seqToPtr[T](x: seq[T]): pointer {.noStackFrame, nosideeffect.} = asm """return `x`""" proc `==` *[T: typeDesc](x, y: seq[T]): bool {.noSideEffect.} = ## Generic equals operator for sequences: relies on a equals operator for ## the element type `T`. if seqToPtr(x) == seqToPtr(y): result = true elif seqToPtr(x) == nil or seqToPtr(y) == nil: result = false elif x.len == y.len: for i in 0..x.len-1: if x[i] != y[i]: return false result = true proc find*[T, S: typeDesc](a: T, item: S): int {.inline.}= ## Returns the first index of `item` in `a` or -1 if not found. This requires ## appropriate `items` and `==` operations to work. for i in items(a): if i == item: return inc(result) result = -1 proc contains*[T](a: openArray[T], item: T): bool {.inline.}= ## Returns true if `item` is in `a` or false if not found. This is a shortcut ## for ``find(a, item) >= 0``. return find(a, item) >= 0 proc pop*[T](s: var seq[T]): T {.inline, noSideEffect.} = ## returns the last item of `s` and decreases ``s.len`` by one. This treats ## `s` as a stack and implements the common *pop* operation. var L = s.len-1 result = s[L] setLen(s, L) proc each*[T, S](data: openArray[T], op: proc (x: T): S): seq[S] = ## The well-known ``map`` operation from functional programming. Applies ## `op` to every item in `data` and returns the result as a sequence. newSeq(result, data.len) for i in 0..data.len-1: result[i] = op(data[i]) proc each*[T](data: var openArray[T], op: proc (x: var T)) = ## The well-known ``map`` operation from functional programming. Applies ## `op` to every item in `data`. for i in 0..data.len-1: op(data[i]) iterator fields*[T: tuple](x: T): expr {.magic: "Fields", noSideEffect.} ## iterates over every field of `x`. Warning: This really transforms ## the 'for' and unrolls the loop. The current implementation also has a bug ## that affects symbol binding in the loop body. iterator fields*[S: tuple, T: tuple](x: S, y: T): tuple[a, b: expr] {. magic: "Fields", noSideEffect.} ## iterates over every field of `x` and `y`. ## Warning: This is really transforms the 'for' and unrolls the loop. ## The current implementation also has a bug that affects symbol binding ## in the loop body. iterator fieldPairs*[T: tuple](x: T): expr {.magic: "FieldPairs", noSideEffect.} ## iterates over every field of `x`. Warning: This really transforms ## the 'for' and unrolls the loop. The current implementation also has a bug ## that affects symbol binding in the loop body. iterator fieldPairs*[S: tuple, T: tuple](x: S, y: T): tuple[a, b: expr] {. magic: "FieldPairs", noSideEffect.} ## iterates over every field of `x` and `y`. ## Warning: This really transforms the 'for' and unrolls the loop. ## The current implementation also has a bug that affects symbol binding ## in the loop body. proc `==`*[T: tuple](x, y: T): bool = ## generic ``==`` operator for tuples that is lifted from the components ## of `x` and `y`. for a, b in fields(x, y): if a != b: return false return true proc `<=`*[T: tuple](x, y: T): bool = ## generic ``<=`` operator for tuples that is lifted from the components ## of `x` and `y`. This implementation uses `cmp`. for a, b in fields(x, y): var c = cmp(a, b) if c < 0: return true if c > 0: return false return true proc `<`*[T: tuple](x, y: T): bool = ## generic ``<`` operator for tuples that is lifted from the components ## of `x` and `y`. This implementation uses `cmp`. for a, b in fields(x, y): var c = cmp(a, b) if c < 0: return true if c > 0: return false return false proc `$`*[T: tuple](x: T): string = ## generic ``$`` operator for tuples that is lifted from the components ## of `x`. Example: ## ## .. code-block:: nimrod ## $(23, 45) == "(23, 45)" ## $() == "()" result = "(" for name, value in fieldPairs(x): if result.len > 1: result.add(", ") result.add(name) result.add(": ") result.add($value) result.add(")") when false: proc `$`*[T](a: openArray[T]): string = ## generic ``$`` operator for open arrays that is lifted from the elements ## of `a`. Example: ## ## .. code-block:: nimrod ## $[23, 45] == "[23, 45]" result = "[" for x in items(a): if result.len > 1: result.add(", ") result.add($x) result.add("]") # ----------------- GC interface --------------------------------------------- proc GC_disable*() {.rtl, inl.} ## disables the GC. If called n-times, n calls to `GC_enable` are needed to ## reactivate the GC. Note that in most circumstances one should only disable ## the mark and sweep phase with `GC_disableMarkAndSweep`. proc GC_enable*() {.rtl, inl.} ## enables the GC again. proc GC_fullCollect*() {.rtl.} ## forces a full garbage collection pass. ## Ordinary code does not need to call this (and should not). type TGC_Strategy* = enum ## the strategy the GC should use for the application gcThroughput, ## optimize for throughput gcResponsiveness, ## optimize for responsiveness (default) gcOptimizeTime, ## optimize for speed gcOptimizeSpace ## optimize for memory footprint proc GC_setStrategy*(strategy: TGC_Strategy) {.rtl.} ## tells the GC the desired strategy for the application. proc GC_enableMarkAndSweep*() {.rtl.} proc GC_disableMarkAndSweep*() {.rtl.} ## the current implementation uses a reference counting garbage collector ## with a seldomly run mark and sweep phase to free cycles. The mark and ## sweep phase may take a long time and is not needed if the application ## does not create cycles. Thus the mark and sweep phase can be deactivated ## and activated separately from the rest of the GC. proc GC_getStatistics*(): string {.rtl.} ## returns an informative string about the GC's activity. This may be useful ## for tweaking. proc GC_ref*[T](x: ref T) {.magic: "GCref".} proc GC_ref*[T](x: seq[T]) {.magic: "GCref".} proc GC_ref*(x: string) {.magic: "GCref".} ## marks the object `x` as referenced, so that it will not be freed until ## it is unmarked via `GC_unref`. If called n-times for the same object `x`, ## n calls to `GC_unref` are needed to unmark `x`. proc GC_unref*[T](x: ref T) {.magic: "GCunref".} proc GC_unref*[T](x: seq[T]) {.magic: "GCunref".} proc GC_unref*(x: string) {.magic: "GCunref".} ## see the documentation of `GC_ref`. template accumulateResult*(iter: expr) = ## helps to convert an iterator to a proc. result = @[] for x in iter: add(result, x) # we have to compute this here before turning it off in except.nim anyway ... const nimrodStackTrace = compileOption("stacktrace") {.push checks: off.} # obviously we cannot generate checking operations here :-) # because it would yield into an endless recursion # however, stack-traces are available for most parts # of the code var dbgLineHook*: proc ## set this variable to provide a procedure that should be called before ## each executed instruction. This should only be used by debuggers! ## Only code compiled with the ``debugger:on`` switch calls this hook. globalRaiseHook*: proc (e: ref E_Base): bool ## with this hook you can influence exception handling on a global level. ## If not nil, every 'raise' statement ends up calling this hook. Ordinary ## application code should never set this hook! You better know what you ## do when setting this. If ``globalRaiseHook`` returns false, the ## exception is caught and does not propagate further through the call ## stack. localRaiseHook* {.threadvar.}: proc (e: ref E_Base): bool ## with this hook you can influence exception handling on a ## thread local level. ## If not nil, every 'raise' statement ends up calling this hook. Ordinary ## application code should never set this hook! You better know what you ## do when setting this. If ``localRaiseHook`` returns false, the exception ## is caught and does not propagate further through the call stack. outOfMemHook*: proc ## set this variable to provide a procedure that should be called ## in case of an `out of memory`:idx: event. The standard handler ## writes an error message and terminates the program. `outOfMemHook` can ## be used to raise an exception in case of OOM like so: ## ## .. code-block:: nimrod ## ## var gOutOfMem: ref EOutOfMemory ## new(gOutOfMem) # need to be allocated *before* OOM really happened! ## gOutOfMem.msg = "out of memory" ## ## proc handleOOM() = ## raise gOutOfMem ## ## system.outOfMemHook = handleOOM ## ## If the handler does not raise an exception, ordinary control flow ## continues and the program is terminated. type PFrame = ptr TFrame TFrame {.importc, nodecl, final.} = object prev: PFrame procname: CString line: int # current line number filename: CString len: int # length of slots (when not debugging always zero) when not defined(ECMAScript): {.push stack_trace:off.} proc add*(x: var string, y: cstring) {.noStackFrame.} = var i = 0 while y[i] != '\0': add(x, y[i]) inc(i) {.pop.} else: proc add*(x: var string, y: cstring) {.noStackFrame.} = asm """ var len = `x`[0].length-1; for (var i = 0; i < `y`.length; ++i) { `x`[0][len] = `y`.charCodeAt(i); ++len; } `x`[0][len] = 0 """ proc add*(x: var cstring, y: cstring) {.magic: "AppendStrStr".} proc echo*[Ty](x: openarray[Ty]) {.magic: "Echo", noSideEffect.} ## special built-in that takes a variable number of arguments. Each argument ## is converted to a string via ``$``, so it works for user-defined ## types that have an overloaded ``$`` operator. ## It is roughly equivalent to ``writeln(stdout, x); flush(stdout)``, but ## available for the ECMAScript target too. ## Unlike other IO operations this is guaranteed to be thread-safe as ## ``echo`` is very often used for debugging convenience. template newException*(exceptn: typeDesc, message: string): expr = ## creates an exception object of type ``exceptn`` and sets its ``msg`` field ## to `message`. Returns the new exception object. block: # open a new scope var e: ref exceptn new(e) e.msg = message e when not defined(EcmaScript) and not defined(NimrodVM): {.push stack_trace: off.} proc initGC() when not defined(boehmgc): proc initAllocator() {.inline.} proc initStackBottom() {.inline.} = # WARNING: This is very fragile! An array size of 8 does not work on my # Linux 64bit system. Very strange, but we are at the will of GCC's # optimizer... var locals {.volatile.}: pointer locals = addr(locals) setStackBottom(locals) var strDesc: TNimType strDesc.size = sizeof(string) strDesc.kind = tyString strDesc.flags = {ntfAcyclic} include "system/ansi_c" proc cmp(x, y: string): int = result = int(c_strcmp(x, y)) const pccHack = if defined(pcc): "_" else: "" # Hack for PCC when defined(windows): # work-around C's sucking abstraction: # BUGFIX: stdin and stdout should be binary files! proc setmode(handle, mode: int) {.importc: pccHack & "setmode", header: "<io.h>".} proc fileno(f: C_TextFileStar): int {.importc: pccHack & "fileno", header: "<fcntl.h>".} var O_BINARY {.importc: pccHack & "O_BINARY", nodecl.}: int # we use binary mode in Windows: setmode(fileno(c_stdin), O_BINARY) setmode(fileno(c_stdout), O_BINARY) when defined(endb): proc endbStep() # ----------------- IO Part ------------------------------------------------ type CFile {.importc: "FILE", nodecl, final.} = object # empty record for # data hiding TFile* = ptr CFile ## The type representing a file handle. TFileMode* = enum ## The file mode when opening a file. fmRead, ## Open the file for read access only. fmWrite, ## Open the file for write access only. fmReadWrite, ## Open the file for read and write access. ## If the file does not exist, it will be ## created. fmReadWriteExisting, ## Open the file for read and write access. ## If the file does not exist, it will not be ## created. fmAppend ## Open the file for writing only; append data ## at the end. TFileHandle* = cint ## type that represents an OS file handle; this is ## useful for low-level file access # text file handling: var stdin* {.importc: "stdin", noDecl.}: TFile ## The standard input stream. stdout* {.importc: "stdout", noDecl.}: TFile ## The standard output stream. stderr* {.importc: "stderr", noDecl.}: TFile ## The standard error stream. ## ## Note: In my opinion, this should not be used -- the concept of a ## separate error stream is a design flaw of UNIX. A seperate *message ## stream* is a good idea, but since it is named ``stderr`` there are few ## programs out there that distinguish properly between ``stdout`` and ## ``stderr``. So, that's what you get if you don't name your variables ## appropriately. It also annoys people if redirection ## via ``>output.txt`` does not work because the program writes ## to ``stderr``. proc Open*(f: var TFile, filename: string, mode: TFileMode = fmRead, bufSize: int = -1): Bool ## Opens a file named `filename` with given `mode`. ## ## Default mode is readonly. Returns true iff the file could be opened. ## This throws no exception if the file could not be opened. proc Open*(f: var TFile, filehandle: TFileHandle, mode: TFileMode = fmRead): Bool ## Creates a ``TFile`` from a `filehandle` with given `mode`. ## ## Default mode is readonly. Returns true iff the file could be opened. proc Open*(filename: string, mode: TFileMode = fmRead, bufSize: int = -1): TFile = ## Opens a file named `filename` with given `mode`. ## ## Default mode is readonly. Raises an ``IO`` exception if the file ## could not be opened. if not open(result, filename, mode, bufSize): raise newException(EIO, "cannot open: " & filename) proc reopen*(f: TFile, filename: string, mode: TFileMode = fmRead): bool ## reopens the file `f` with given `filename` and `mode`. This ## is often used to redirect the `stdin`, `stdout` or `stderr` ## file variables. ## ## Default mode is readonly. Returns true iff the file could be reopened. proc Close*(f: TFile) {.importc: "fclose", nodecl.} ## Closes the file. proc EndOfFile*(f: TFile): Bool ## Returns true iff `f` is at the end. proc readChar*(f: TFile): char {.importc: "fgetc", nodecl.} ## Reads a single character from the stream `f`. If the stream ## has no more characters, `EEndOfFile` is raised. proc FlushFile*(f: TFile) {.importc: "fflush", noDecl.} ## Flushes `f`'s buffer. proc readAll*(file: TFile): TaintedString ## Reads all data from the stream `file`. Raises an IO exception ## in case of an error proc readFile*(filename: string): TaintedString ## Opens a file named `filename` for reading. Then calls `readAll` ## and closes the file afterwards. Returns the string. ## Raises an IO exception in case of an error. proc writeFile*(filename, content: string) ## Opens a file named `filename` for writing. Then writes the ## `content` completely to the file and closes the file afterwards. ## Raises an IO exception in case of an error. proc write*(f: TFile, r: float) proc write*(f: TFile, i: int) proc write*(f: TFile, i: biggestInt) proc write*(f: TFile, r: biggestFloat) proc write*(f: TFile, s: string) proc write*(f: TFile, b: Bool) proc write*(f: TFile, c: char) proc write*(f: TFile, c: cstring) proc write*(f: TFile, a: openArray[string]) ## Writes a value to the file `f`. May throw an IO exception. proc readLine*(f: TFile): TaintedString ## reads a line of text from the file `f`. May throw an IO exception. ## A line of text may be delimited by ``CR``, ``LF`` or ## ``CRLF``. The newline character(s) are not part of the returned string. proc readLine*(f: TFile, line: var TaintedString): bool ## reads a line of text from the file `f` into `line`. `line` must not be ## ``nil``! May throw an IO exception. ## A line of text may be delimited by ``CR``, ``LF`` or ## ``CRLF``. The newline character(s) are not part of the returned string. ## Returns ``false`` if the end of the file has been reached, ``true`` ## otherwise. If ``false`` is returned `line` contains no new data. proc writeln*[Ty](f: TFile, x: Ty) {.inline.} ## writes a value `x` to `f` and then writes "\n". ## May throw an IO exception. proc writeln*[Ty](f: TFile, x: openArray[Ty]) {.inline.} ## writes a value `x` to `f` and then writes "\n". ## May throw an IO exception. proc getFileSize*(f: TFile): int64 ## retrieves the file size (in bytes) of `f`. proc ReadBytes*(f: TFile, a: var openarray[byte], start, len: int): int ## reads `len` bytes into the buffer `a` starting at ``a[start]``. Returns ## the actual number of bytes that have been read which may be less than ## `len` (if not as many bytes are remaining), but not greater. proc ReadChars*(f: TFile, a: var openarray[char], start, len: int): int ## reads `len` bytes into the buffer `a` starting at ``a[start]``. Returns ## the actual number of bytes that have been read which may be less than ## `len` (if not as many bytes are remaining), but not greater. proc readBuffer*(f: TFile, buffer: pointer, len: int): int ## reads `len` bytes into the buffer pointed to by `buffer`. Returns ## the actual number of bytes that have been read which may be less than ## `len` (if not as many bytes are remaining), but not greater. proc writeBytes*(f: TFile, a: openarray[byte], start, len: int): int ## writes the bytes of ``a[start..start+len-1]`` to the file `f`. Returns ## the number of actual written bytes, which may be less than `len` in case ## of an error. proc writeChars*(f: tFile, a: openarray[char], start, len: int): int ## writes the bytes of ``a[start..start+len-1]`` to the file `f`. Returns ## the number of actual written bytes, which may be less than `len` in case ## of an error. proc writeBuffer*(f: TFile, buffer: pointer, len: int): int ## writes the bytes of buffer pointed to by the parameter `buffer` to the ## file `f`. Returns the number of actual written bytes, which may be less ## than `len` in case of an error. proc setFilePos*(f: TFile, pos: int64) ## sets the position of the file pointer that is used for read/write ## operations. The file's first byte has the index zero. proc getFilePos*(f: TFile): int64 ## retrieves the current position of the file pointer that is used to ## read from the file `f`. The file's first byte has the index zero. proc fileHandle*(f: TFile): TFileHandle {.importc: "fileno", header: "<stdio.h>"} ## returns the OS file handle of the file ``f``. This is only useful for ## platform specific programming. proc cstringArrayToSeq*(a: cstringArray, len: int): seq[string] = ## converts a ``cstringArray`` to a ``seq[string]``. `a` is supposed to be ## of length ``len``. newSeq(result, len) for i in 0..len-1: result[i] = $a[i] proc cstringArrayToSeq*(a: cstringArray): seq[string] = ## converts a ``cstringArray`` to a ``seq[string]``. `a` is supposed to be ## terminated by ``nil``. var L = 0 while a[L] != nil: inc(L) result = cstringArrayToSeq(a, L) # ------------------------------------------------------------------------- proc allocCStringArray*(a: openArray[string]): cstringArray = ## creates a NULL terminated cstringArray from `a`. The result has to ## be freed with `deallocCStringArray` after it's not needed anymore. result = cast[cstringArray](alloc0((a.len+1) * sizeof(cstring))) for i in 0 .. a.high: # XXX get rid of this string copy here: var x = a[i] result[i] = cast[cstring](alloc0(x.len+1)) copyMem(result[i], addr(x[0]), x.len) proc deallocCStringArray*(a: cstringArray) = ## frees a NULL terminated cstringArray. var i = 0 while a[i] != nil: dealloc(a[i]) inc(i) dealloc(a) proc atomicInc*(memLoc: var int, x: int = 1): int {.inline, discardable.} ## atomic increment of `memLoc`. Returns the value after the operation. proc atomicDec*(memLoc: var int, x: int = 1): int {.inline, discardable.} ## atomic decrement of `memLoc`. Returns the value after the operation. include "system/atomics" type PSafePoint = ptr TSafePoint TSafePoint {.compilerproc, final.} = object prev: PSafePoint # points to next safe point ON THE STACK status: int context: C_JmpBuf when defined(initAllocator): initAllocator() when hasThreadSupport: include "system/syslocks" include "system/threads" else: initStackBottom() initGC() proc setControlCHook*(hook: proc () {.noconv.}) ## allows you to override the behaviour of your application when CTRL+C ## is pressed. Only one such hook is supported. proc writeStackTrace*() ## writes the current stack trace to ``stderr``. This is only works ## for debug builds. {.push stack_trace: off.} include "system/excpt" # we cannot compile this with stack tracing on # as it would recurse endlessly! include "system/arithm" {.pop.} # stack trace {.pop.} # stack trace include "system/dyncalls" include "system/sets" const GenericSeqSize = (2 * sizeof(int)) proc reprAny(p: pointer, typ: PNimType): string {.compilerRtl.} proc getDiscriminant(aa: Pointer, n: ptr TNimNode): int = sysAssert(n.kind == nkCase, "getDiscriminant: node != nkCase") var d: int var a = cast[TAddress](aa) case n.typ.size of 1: d = ze(cast[ptr int8](a +% n.offset)[]) of 2: d = ze(cast[ptr int16](a +% n.offset)[]) of 4: d = int(cast[ptr int32](a +% n.offset)[]) else: sysAssert(false, "getDiscriminant: invalid n.typ.size") return d proc selectBranch(aa: Pointer, n: ptr TNimNode): ptr TNimNode = var discr = getDiscriminant(aa, n) if discr <% n.len: result = n.sons[discr] if result == nil: result = n.sons[n.len] # n.sons[n.len] contains the ``else`` part (but may be nil) else: result = n.sons[n.len] include "system/mmdisp" {.push stack_trace: off.} include "system/sysstr" {.pop.} include "system/sysio" when hasThreadSupport: include "system/channels" iterator lines*(filename: string): TaintedString = ## Iterate over any line in the file named `filename`. ## If the file does not exist `EIO` is raised. var f = open(filename) var res = TaintedString(newStringOfCap(80)) while f.readLine(res): yield res close(f) iterator lines*(f: TFile): TaintedString = ## Iterate over any line in the file `f`. var res = TaintedString(newStringOfCap(80)) while f.readLine(res): yield TaintedString(res) include "system/assign" include "system/repr" proc getCurrentException*(): ref E_Base {.compilerRtl, inl.} = ## retrieves the current exception; if there is none, nil is returned. result = currException proc getCurrentExceptionMsg*(): string {.inline.} = ## retrieves the error message that was attached to the current ## exception; if there is none, "" is returned. var e = getCurrentException() return if e == nil: "" else: e.msg {.push stack_trace: off.} when defined(endb): include "system/debugger" when defined(profiler): include "system/profiler" {.pop.} # stacktrace proc likely*(val: bool): bool {.importc: "likely", nodecl, nosideeffect.} ## can be used to mark a condition to be likely. This is a hint for the ## optimizer. proc unlikely*(val: bool): bool {.importc: "unlikely", nodecl, nosideeffect.} ## can be used to mark a condition to be unlikely. This is a hint for the ## optimizer. proc rawProc*[T: proc](x: T): pointer {.noSideEffect, inline.} = ## retrieves the raw proc pointer of the closure `x`. This is ## useful for interfacing closures with C. {.emit: """ `result` = `x`.ClPrc; """.} proc rawEnv*[T: proc](x: T): pointer {.noSideEffect, inline.} = ## retrieves the raw environment pointer of the closure `x`. This is ## useful for interfacing closures with C. {.emit: """ `result` = `x`.ClEnv; """.} elif defined(ecmaScript) or defined(NimrodVM): # Stubs: proc GC_disable() = nil proc GC_enable() = nil proc GC_fullCollect() = nil proc GC_setStrategy(strategy: TGC_Strategy) = nil proc GC_enableMarkAndSweep() = nil proc GC_disableMarkAndSweep() = nil proc GC_getStatistics(): string = return "" proc getOccupiedMem(): int = return -1 proc getFreeMem(): int = return -1 proc getTotalMem(): int = return -1 proc dealloc(p: pointer) = nil proc alloc(size: int): pointer = nil proc alloc0(size: int): pointer = nil proc realloc(p: Pointer, newsize: int): pointer = nil proc allocShared(size: int): pointer = nil proc allocShared0(size: int): pointer = nil proc deallocShared(p: pointer) = nil proc reallocShared(p: pointer, newsize: int): pointer = nil when defined(ecmaScript): include "system/ecmasys" include "system/reprjs" elif defined(NimrodVM): proc cmp(x, y: string): int = if x == y: return 0 if x < y: return -1 return 1 proc quit*(errormsg: string, errorcode = QuitFailure) {.noReturn.} = ## a shorthand for ``echo(errormsg); quit(errorcode)``. echo(errormsg) quit(errorcode) {.pop.} # checks {.pop.} # hints proc `/`*(x, y: int): float {.inline, noSideEffect.} = ## integer division that results in a float. result = toFloat(x) / toFloat(y) template `-|`(b, s: expr): expr = (if b >= 0: b else: s.len + b) proc `[]`*(s: string, x: TSlice[int]): string {.inline.} = ## slice operation for strings. Negative indexes are supported. result = s.substr(x.a-|s, x.b-|s) template spliceImpl(s, a, L, b: expr): stmt {.immediate.} = # make room for additional elements or cut: var slen = s.len var shift = b.len - L var newLen = slen + shift if shift > 0: # enlarge: setLen(s, newLen) for i in countdown(newLen-1, a+shift+1): shallowCopy(s[i], s[i-shift]) else: for i in countup(a+b.len, s.len-1+shift): shallowCopy(s[i], s[i-shift]) # cut down: setLen(s, newLen) # fill the hole: for i in 0 .. <b.len: s[i+a] = b[i] proc `[]=`*(s: var string, x: TSlice[int], b: string) = ## slice assignment for strings. Negative indexes are supported. If ## ``b.len`` is not exactly the number of elements that are referred to ## by `x`, a `splice`:idx: is performed: ## ## .. code-block:: nimrod ## var s = "abcdef" ## s[1 .. -2] = "xyz" ## assert s == "axyzf" var a = x.a-|s var L = x.b-|s - a + 1 if L == b.len: for i in 0 .. <L: s[i+a] = b[i] else: spliceImpl(s, a, L, b) proc `[]`*[Idx, T](a: array[Idx, T], x: TSlice[int]): seq[T] = ## slice operation for arrays. Negative indexes are **not** supported ## because the array might have negative bounds. var L = x.b - x.a + 1 newSeq(result, L) for i in 0.. <L: result[i] = a[i + x.a] proc `[]=`*[Idx, T](a: var array[Idx, T], x: TSlice[int], b: openArray[T]) = ## slice assignment for arrays. Negative indexes are **not** supported ## because the array might have negative bounds. var L = x.b - x.a + 1 if L == b.len: for i in 0 .. <L: a[i+x.a] = b[i] else: raise newException(EOutOfRange, "differing lengths for slice assignment") proc `[]`*[Idx, T](a: array[Idx, T], x: TSlice[Idx]): seq[T] = ## slice operation for arrays. Negative indexes are **not** supported ## because the array might have negative bounds. var L = ord(x.b) - ord(x.a) + 1 newSeq(result, L) var j = x.a for i in 0.. <L: result[i] = a[j] inc(j) proc `[]=`*[Idx, T](a: var array[Idx, T], x: TSlice[Idx], b: openArray[T]) = ## slice assignment for arrays. Negative indexes are **not** supported ## because the array might have negative bounds. var L = ord(x.b) - ord(x.a) + 1 if L == b.len: var j = x.a for i in 0 .. <L: a[j] = b[i] inc(j) else: raise newException(EOutOfRange, "differing lengths for slice assignment") proc `[]`*[T](s: seq[T], x: TSlice[int]): seq[T] = ## slice operation for sequences. Negative indexes are supported. var a = x.a-|s var L = x.b-|s - a + 1 newSeq(result, L) for i in 0.. <L: result[i] = s[i + a] proc `[]=`*[T](s: var seq[T], x: TSlice[int], b: openArray[T]) = ## slice assignment for sequences. Negative indexes are supported. If ## ``b.len`` is not exactly the number of elements that are referred to ## by `x`, a `splice`:idx: is performed. var a = x.a-|s var L = x.b-|s - a + 1 if L == b.len: for i in 0 .. <L: s[i+a] = b[i] else: spliceImpl(s, a, L, b) proc getTypeInfo*[T](x: T): pointer {.magic: "GetTypeInfo".} ## get type information for `x`. Ordinary code should not use this, but ## the `typeinfo` module instead. proc slurp*(filename: string): string {.magic: "Slurp".} ## compiletime ``readFile`` proc for easy `resource`:idx: embedding: ## .. code-block:: nimrod ## ## const myResource = slurp"mydatafile.bin" ## proc `+=`*[T](x, y: ordinal[T]) {.magic: "Inc", noSideEffect.} ## Increments an ordinal proc `-=`*[T](x, y: ordinal[T]) {.magic: "Dec", noSideEffect.} ## Decrements an ordinal proc `*=`*[T](x: var ordinal[T], y: ordinal[T]) {.inline, noSideEffect.} = ## Binary `*=` operator for ordinals x = x * y proc `+=` *(x: var float, y:float) {.inline, noSideEffect.} = ## Increments in placee a floating point number x = x + y proc `-=` *(x: var float, y:float) {.inline, noSideEffect.} = ## Decrements in place a floating point number x = x - y proc `*=` *(x: var float, y:float) {.inline, noSideEffect.} = ## Multiplies in place a floating point number x = x * y proc `/=` *(x: var float, y:float) {.inline, noSideEffect.} = ## Divides in place a floating point number x = x / y proc `&=`* (x: var string, y: string) {.magic: "AppendStrStr", noSideEffect.} proc rand*(max: int): int {.magic: "Rand", sideEffect.} ## compile-time `random` function. Useful for debugging. proc astToStr*[T](x: T): string {.magic: "AstToStr", noSideEffect.} ## converts the AST of `x` into a string representation. This is very useful ## for debugging. proc InstantiationInfo*(index = -1): tuple[filename: string, line: int] {. magic: "InstantiationInfo", noSideEffect.} ## provides access to the compiler's instantiation stack line information. ## This is only useful for advanced meta programming. See the implementation ## of `assert` for an example. proc raiseAssert(msg: string) {.noinline.} = raise newException(EAssertionFailed, msg) template assert*(cond: bool, msg = "") = ## provides a means to implement `programming by contracts`:idx: in Nimrod. ## ``assert`` evaluates expression ``cond`` and if ``cond`` is false, it ## raises an ``EAssertionFailure`` exception. However, the compiler may ## not generate any code at all for ``assert`` if it is advised to do so. ## Use ``assert`` for debugging purposes only. bind raiseAssert, InstantiationInfo when compileOption("assertions"): {.line.}: if not cond: raiseAssert(astToStr(cond) & ' ' & msg) template doAssert*(cond: bool, msg = "") = ## same as `assert` but is always turned on and not affected by the ## ``--assertions`` command line switch. bind raiseAssert, InstantiationInfo {.line: InstantiationInfo().}: if not cond: raiseAssert(astToStr(cond) & ' ' & msg) proc shallow*[T](s: var seq[T]) {.noSideEffect, inline.} = ## marks a sequence `s` as `shallow`:idx:. Subsequent assignments will not ## perform deep copies of `s`. This is only useful for optimization ## purposes. when not defined(EcmaScript) and not defined(NimrodVM): var s = cast[PGenericSeq](s) s.reserved = s.reserved or seqShallowFlag proc shallow*(s: var string) {.noSideEffect, inline.} = ## marks a string `s` as `shallow`:idx:. Subsequent assignments will not ## perform deep copies of `s`. This is only useful for optimization ## purposes. when not defined(EcmaScript) and not defined(NimrodVM): var s = cast[PGenericSeq](s) s.reserved = s.reserved or seqShallowFlag type TNimrodNode {.final.} = object PNimrodNode* {.magic: "PNimrodNode".} = ref TNimrodNode ## represents a Nimrod AST node. Macros operate on this type. template eval*(blk: stmt): stmt = ## executes a block of code at compile time just as if it was a macro ## optionally, the block can return an AST tree that will replace the ## eval expression block: macro payload(x: stmt): stmt = blk payload() when defined(initDebugger): initDebugger()