summary refs log tree commit diff stats
path: root/lib/system/threads.nim
blob: db16502ffa987566a96214c92468d3cddf0063e2 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
#
#
#            Nimrod's Runtime Library
#        (c) Copyright 2011 Andreas Rumpf
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

## Thread support for Nimrod. **Note**: This is part of the system module.
## Do not import it directly. To active thread support you need to compile
## with the ``--threads:on`` command line switch.
##
## Nimrod's memory model for threads is quite different from other common 
## programming languages (C, Pascal): Each thread has its own
## (garbage collected) heap and sharing of memory is restricted. This helps
## to prevent race conditions and improves efficiency. See the manual for
## details of this memory model.
##
## Example:
##
## .. code-block:: nimrod
##
##  var
##    thr: array [0..4, TThread[tuple[a,b: int]]]
##    L: TLock
##  
##  proc threadFunc(interval: tuple[a,b: int]) {.procvar.} = 
##    for i in interval.a..interval.b: 
##      Acquire(L) # lock stdout
##      echo i
##      Release(L)
##
##  InitLock(L)
##
##  for i in 0..high(thr):
##    createThread(thr[i], threadFunc, (i*10, i*10+5))
##  joinThreads(thr)
  
const
  maxRegisters = 256 # don't think there is an arch with more registers
  maxLocksPerThread* = 10 ## max number of locks a thread can hold
                          ## at the same time

when defined(Windows):
  type
    TSysLock {.final, pure.} = object # CRITICAL_SECTION in WinApi
      DebugInfo: pointer
      LockCount: int32
      RecursionCount: int32
      OwningThread: int
      LockSemaphore: int
      Reserved: int32
          
  proc InitSysLock(L: var TSysLock) {.stdcall, noSideEffect,
    dynlib: "kernel32", importc: "InitializeCriticalSection".}
    ## Initializes the lock `L`.

  proc TryAcquireSysAux(L: var TSysLock): int32 {.stdcall, noSideEffect,
    dynlib: "kernel32", importc: "TryEnterCriticalSection".}
    ## Tries to acquire the lock `L`.
    
  proc TryAcquireSys(L: var TSysLock): bool {.inline.} = 
    result = TryAcquireSysAux(L) != 0'i32

  proc AcquireSys(L: var TSysLock) {.stdcall, noSideEffect,
    dynlib: "kernel32", importc: "EnterCriticalSection".}
    ## Acquires the lock `L`.
    
  proc ReleaseSys(L: var TSysLock) {.stdcall, noSideEffect,
    dynlib: "kernel32", importc: "LeaveCriticalSection".}
    ## Releases the lock `L`.

  type
    THandle = int
    TSysThread = THandle
    TWinThreadProc = proc (x: pointer): int32 {.stdcall.}

  proc CreateThread(lpThreadAttributes: Pointer, dwStackSize: int32,
                     lpStartAddress: TWinThreadProc, 
                     lpParameter: Pointer,
                     dwCreationFlags: int32, 
                     lpThreadId: var int32): TSysThread {.
    stdcall, dynlib: "kernel32", importc: "CreateThread".}

  proc winSuspendThread(hThread: TSysThread): int32 {.
    stdcall, dynlib: "kernel32", importc: "SuspendThread".}
      
  proc winResumeThread(hThread: TSysThread): int32 {.
    stdcall, dynlib: "kernel32", importc: "ResumeThread".}

  proc WaitForMultipleObjects(nCount: int32,
                              lpHandles: ptr TSysThread,
                              bWaitAll: int32,
                              dwMilliseconds: int32): int32 {.
    stdcall, dynlib: "kernel32", importc: "WaitForMultipleObjects".}

  proc WaitForSingleObject(hHandle: TSysThread, dwMilliseconds: int32): int32 {.
    stdcall, dynlib: "kernel32", importc: "WaitForSingleObject".}

  proc TerminateThread(hThread: TSysThread, dwExitCode: int32): int32 {.
    stdcall, dynlib: "kernel32", importc: "TerminateThread".}
    
  type
    TThreadVarSlot = distinct int32

  proc ThreadVarAlloc(): TThreadVarSlot {.
    importc: "TlsAlloc", stdcall, dynlib: "kernel32".}
  proc ThreadVarSetValue(dwTlsIndex: TThreadVarSlot, lpTlsValue: pointer) {.
    importc: "TlsSetValue", stdcall, dynlib: "kernel32".}
  proc ThreadVarGetValue(dwTlsIndex: TThreadVarSlot): pointer {.
    importc: "TlsGetValue", stdcall, dynlib: "kernel32".}
  
else:
  {.passL: "-pthread".}
  {.passC: "-pthread".}

  type
    TSysLock {.importc: "pthread_mutex_t", pure, final,
               header: "<sys/types.h>".} = object

  proc InitSysLock(L: var TSysLock, attr: pointer = nil) {.
    importc: "pthread_mutex_init", header: "<pthread.h>", noSideEffect.}

  proc AcquireSys(L: var TSysLock) {.noSideEffect,
    importc: "pthread_mutex_lock", header: "<pthread.h>".}
  proc TryAcquireSysAux(L: var TSysLock): cint {.noSideEffect,
    importc: "pthread_mutex_trylock", header: "<pthread.h>".}

  proc TryAcquireSys(L: var TSysLock): bool {.inline.} = 
    result = TryAcquireSysAux(L) == 0'i32

  proc ReleaseSys(L: var TSysLock) {.noSideEffect,
    importc: "pthread_mutex_unlock", header: "<pthread.h>".}

  type
    TSysThread {.importc: "pthread_t", header: "<sys/types.h>",
                 final, pure.} = object
    Tpthread_attr {.importc: "pthread_attr_t",
                     header: "<sys/types.h>", final, pure.} = object
                 
    Ttimespec {.importc: "struct timespec",
                header: "<time.h>", final, pure.} = object
      tv_sec: int
      tv_nsec: int

  proc pthread_attr_init(a1: var TPthread_attr) {.
    importc, header: "<pthread.h>".}
  proc pthread_attr_setstacksize(a1: var TPthread_attr, a2: int) {.
    importc, header: "<pthread.h>".}

  proc pthread_create(a1: var TSysThread, a2: var TPthread_attr,
            a3: proc (x: pointer) {.noconv.}, 
            a4: pointer): cint {.importc: "pthread_create", 
            header: "<pthread.h>".}
  proc pthread_join(a1: TSysThread, a2: ptr pointer): cint {.
    importc, header: "<pthread.h>".}

  proc pthread_cancel(a1: TSysThread): cint {.
    importc: "pthread_cancel", header: "<pthread.h>".}

  proc AcquireSysTimeoutAux(L: var TSysLock, timeout: var Ttimespec): cint {.
    importc: "pthread_mutex_timedlock", header: "<time.h>".}

  proc AcquireSysTimeout(L: var TSysLock, msTimeout: int) {.inline.} =
    var a: Ttimespec
    a.tv_sec = msTimeout div 1000
    a.tv_nsec = (msTimeout mod 1000) * 1000
    var res = AcquireSysTimeoutAux(L, a)
    if res != 0'i32: raise newException(EResourceExhausted, $strerror(res))

  type
    TThreadVarSlot {.importc: "pthread_key_t", pure, final,
                   header: "<sys/types.h>".} = object

  proc pthread_getspecific(a1: TThreadVarSlot): pointer {.
    importc: "pthread_getspecific", header: "<pthread.h>".}
  proc pthread_key_create(a1: ptr TThreadVarSlot, 
                          destruct: proc (x: pointer) {.noconv.}): int32 {.
    importc: "pthread_key_create", header: "<pthread.h>".}
  proc pthread_key_delete(a1: TThreadVarSlot): int32 {.
    importc: "pthread_key_delete", header: "<pthread.h>".}

  proc pthread_setspecific(a1: TThreadVarSlot, a2: pointer): int32 {.
    importc: "pthread_setspecific", header: "<pthread.h>".}
  
  proc ThreadVarAlloc(): TThreadVarSlot {.inline.} =
    discard pthread_key_create(addr(result), nil)
  proc ThreadVarSetValue(s: TThreadVarSlot, value: pointer) {.inline.} =
    discard pthread_setspecific(s, value)
  proc ThreadVarGetValue(s: TThreadVarSlot): pointer {.inline.} =
    result = pthread_getspecific(s)

const emulatedThreadVars = defined(macosx)

when emulatedThreadVars:
  # the compiler generates this proc for us, so that we can get the size of
  # the thread local var block:
  proc NimThreadVarsSize(): int {.noconv, importc: "NimThreadVarsSize".}

proc ThreadVarsAlloc(size: int): pointer =
  result = c_malloc(size)
  zeroMem(result, size)
proc ThreadVarsDealloc(p: pointer) {.importc: "free", nodecl.}
proc initGlobals()

type
  PGcThread = ptr TGcThread
  TGcThread {.pure.} = object
    sys: TSysThread
    next, prev: PGcThread
    stackBottom, stackTop, threadLocalStorage: pointer
    stackSize: int
    locksLen: int
    locks: array [0..MaxLocksPerThread-1, pointer]
    registers: array[0..maxRegisters-1, pointer] # register contents for GC

# XXX it'd be more efficient to not use a global variable for the 
# thread storage slot, but to rely on the implementation to assign slot 0
# for us... ;-)
var globalsSlot = ThreadVarAlloc()
#const globalsSlot = TThreadVarSlot(0)
#assert checkSlot.int == globalsSlot.int
  
proc ThisThread(): PGcThread {.compilerRtl, inl.} =
  result = cast[PGcThread](ThreadVarGetValue(globalsSlot))

proc GetThreadLocalVars(): pointer {.compilerRtl, inl.} =
  result = cast[PGcThread](ThreadVarGetValue(globalsSlot)).threadLocalStorage

# create for the main thread. Note: do not insert this data into the list
# of all threads; it's not to be stopped etc.
when not defined(useNimRtl):
  var mainThread: TGcThread
  
  ThreadVarSetValue(globalsSlot, addr(mainThread))
  when emulatedThreadVars:
    mainThread.threadLocalStorage = ThreadVarsAlloc(NimThreadVarsSize())

  initStackBottom()
  initGC()
  initGlobals()

  var heapLock: TSysLock
  InitSysLock(HeapLock)

  var
    threadList: PGcThread
    
  proc registerThread(t: PGcThread) = 
    # we need to use the GC global lock here!
    AcquireSys(HeapLock)
    t.prev = nil
    t.next = threadList
    if threadList != nil: 
      assert(threadList.prev == nil)
      threadList.prev = t
    threadList = t
    ReleaseSys(HeapLock)
        
  proc unregisterThread(t: PGcThread) =
    # we need to use the GC global lock here!
    AcquireSys(HeapLock)
    if t == threadList: threadList = t.next
    if t.next != nil: t.next.prev = t.prev
    if t.prev != nil: t.prev.next = t.next
    # so that a thread can be unregistered twice which might happen if the
    # code executes `destroyThread`:
    t.next = nil
    t.prev = nil
    ReleaseSys(HeapLock)
    
  # on UNIX, the GC uses ``SIGFREEZE`` to tell every thread to stop so that
  # the GC can examine the stacks?
  
  proc stopTheWord() =
    nil
    
# We jump through some hops here to ensure that Nimrod thread procs can have
# the Nimrod calling convention. This is needed because thread procs are 
# ``stdcall`` on Windows and ``noconv`` on UNIX. Alternative would be to just
# use ``stdcall`` since it is mapped to ``noconv`` on UNIX anyway. However, 
# the current approach will likely result in less problems later when we have
# GC'ed closures in Nimrod.

type
  TThread* {.pure, final.}[TParam] = object of TGcThread ## Nimrod thread.
    fn: proc (p: TParam)
    data: TParam

when not defined(boehmgc) and not hasSharedHeap:
  proc deallocOsPages()
  
template ThreadProcWrapperBody(closure: expr) =
  ThreadVarSetValue(globalsSlot, closure)
  var t = cast[ptr TThread[TParam]](closure)
  when emulatedThreadVars:
    t.threadLocalStorage = ThreadVarsAlloc(NimThreadVarsSize())
  when not defined(boehmgc) and not hasSharedHeap:
    # init the GC for this thread:
    setStackBottom(addr(t))
    initGC()
  t.stackBottom = addr(t)
  initGlobals()
  registerThread(t)
  try:
    t.fn(t.data)
  finally:
    # XXX shut-down is not executed when the thread is forced down!
    when emulatedThreadVars:
      ThreadVarsDealloc(t.threadLocalStorage)
    unregisterThread(t)
    when defined(deallocOsPages): deallocOsPages()
  
{.push stack_trace:off.}
when defined(windows):
  proc threadProcWrapper[TParam](closure: pointer): int32 {.stdcall.} = 
    ThreadProcWrapperBody(closure)
    # implicitely return 0
else:
  proc threadProcWrapper[TParam](closure: pointer) {.noconv.} = 
    ThreadProcWrapperBody(closure)
{.pop.}

proc joinThread*[TParam](t: TThread[TParam]) {.inline.} = 
  ## waits for the thread `t` to finish.
  when hostOS == "windows":
    discard WaitForSingleObject(t.sys, -1'i32)
  else:
    discard pthread_join(t.sys, nil)

proc joinThreads*[TParam](t: openArray[TThread[TParam]]) = 
  ## waits for every thread in `t` to finish.
  when hostOS == "windows":
    var a: array[0..255, TSysThread]
    assert a.len >= t.len
    for i in 0..t.high: a[i] = t[i].sys
    discard WaitForMultipleObjects(t.len, cast[ptr TSysThread](addr(a)), 1, -1)
  else:
    for i in 0..t.high: joinThread(t[i])

proc destroyThread*[TParam](t: var TThread[TParam]) {.inline.} =
  ## forces the thread `t` to terminate. This is potentially dangerous if
  ## you don't have full control over `t` and its acquired resources.
  when hostOS == "windows":
    discard TerminateThread(t.sys, 1'i32)
  else:
    discard pthread_cancel(t.sys)
  unregisterThread(addr(t.gcInfo))

proc createThread*[TParam](t: var TThread[TParam], 
                           tp: proc (param: TParam), 
                           param: TParam,
                           stackSize = 1024*256*sizeof(int)) {.
                           magic: "CreateThread".} = 
  ## creates a new thread `t` and starts its execution. Entry point is the
  ## proc `tp`. `param` is passed to `tp`.
  t.data = param
  t.fn = tp
  t.stackSize = stackSize
  when hostOS == "windows":
    var dummyThreadId: int32
    t.sys = CreateThread(nil, stackSize, threadProcWrapper[TParam],
                         addr(t), 0'i32, dummyThreadId)
    if t.sys <= 0:
      raise newException(EResourceExhausted, "cannot create thread")
  else:
    var a: Tpthread_attr
    pthread_attr_init(a)
    pthread_attr_setstacksize(a, stackSize)
    if pthread_create(t.sys, a, threadProcWrapper[TParam], addr(t)) != 0:
      raise newException(EResourceExhausted, "cannot create thread")

# --------------------------- lock handling ----------------------------------

type
  TLock* = TSysLock ## Nimrod lock
  
const
  noDeadlocks = false # compileOption("deadlockPrevention")

when nodeadlocks:
  var
    deadlocksPrevented* = 0  ## counts the number of times a 
                             ## deadlock has been prevented

proc InitLock*(lock: var TLock) {.inline.} =
  ## Initializes the lock `lock`.
  InitSysLock(lock)

proc OrderedLocks(g: PGcThread): bool = 
  for i in 0 .. g.locksLen-2:
    if g.locks[i] >= g.locks[i+1]: return false
  result = true

proc TryAcquire*(lock: var TLock): bool {.inline.} = 
  ## Try to acquires the lock `lock`. Returns `true` on success.
  result = TryAcquireSys(lock)
  when noDeadlocks:
    if not result: return
    # we have to add it to the ordered list. Oh, and we might fail if
    # there is no space in the array left ...
    var g = ThisThread()
    if g.locksLen >= len(g.locks):
      ReleaseSys(lock)
      raise newException(EResourceExhausted, "cannot acquire additional lock")
    # find the position to add:
    var p = addr(lock)
    var L = g.locksLen-1
    var i = 0
    while i <= L:
      assert g.locks[i] != nil
      if g.locks[i] < p: inc(i) # in correct order
      elif g.locks[i] == p: return # thread already holds lock
      else:
        # do the crazy stuff here:
        while L >= i:
          g.locks[L+1] = g.locks[L]
          dec L
        g.locks[i] = p
        inc(g.locksLen)
        assert OrderedLocks(g)
        return
    # simply add to the end:
    g.locks[g.locksLen] = p
    inc(g.locksLen)
    assert OrderedLocks(g)

proc Acquire*(lock: var TLock) =
  ## Acquires the lock `lock`.
  when nodeadlocks:
    var g = ThisThread()
    var p = addr(lock)
    var L = g.locksLen-1
    var i = 0
    while i <= L:
      assert g.locks[i] != nil
      if g.locks[i] < p: inc(i) # in correct order
      elif g.locks[i] == p: return # thread already holds lock
      else:
        # do the crazy stuff here:
        if g.locksLen >= len(g.locks):
          raise newException(EResourceExhausted, 
              "cannot acquire additional lock")
        while L >= i:
          ReleaseSys(cast[ptr TSysLock](g.locks[L])[])
          g.locks[L+1] = g.locks[L]
          dec L
        # acquire the current lock:
        AcquireSys(lock)
        g.locks[i] = p
        inc(g.locksLen)
        # acquire old locks in proper order again:
        L = g.locksLen-1
        inc i
        while i <= L:
          AcquireSys(cast[ptr TSysLock](g.locks[i])[])
          inc(i)
        # DANGER: We can only modify this global var if we gained every lock!
        # NO! We need an atomic increment. Crap.
        discard system.atomicInc(deadlocksPrevented, 1)
        assert OrderedLocks(g)
        return
        
    # simply add to the end:
    if g.locksLen >= len(g.locks):
      raise newException(EResourceExhausted, "cannot acquire additional lock")
    AcquireSys(lock)
    g.locks[g.locksLen] = p
    inc(g.locksLen)
    assert OrderedLocks(g)
  else:
    AcquireSys(lock)
  
proc Release*(lock: var TLock) =
  ## Releases the lock `lock`.
  when nodeadlocks:
    var g = ThisThread()
    var p = addr(lock)
    var L = g.locksLen
    for i in countdown(L-1, 0):
      if g.locks[i] == p: 
        for j in i..L-2: g.locks[j] = g.locks[j+1]
        dec g.locksLen
        break
  ReleaseSys(lock)