summary refs log tree commit diff stats
path: root/lib/wrappers/python.nim
blob: ea9ef1fd59882df4551290a70a1e97cdb50de68f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
#
#    Light-weight binding for the Python interpreter
#       (c) 2010 Andreas Rumpf 
#    Based on 'PythonEngine' module by Dr. Dietmar Budelsky
#
#
#************************************************************************
#                                                                        
# Module:  Unit 'PythonEngine'     Copyright (c) 1997                    
#                                                                        
# Version: 3.0                     Dr. Dietmar Budelsky                  
# Sub-Version: 0.25                dbudelsky@web.de                      
#                                  Germany                               
#                                                                        
#                                  Morgan Martinet                       
#                                  4721 rue Brebeuf                      
#                                  H2J 3L2 MONTREAL (QC)                 
#                                  CANADA                                
#                                  e-mail: mmm@free.fr                   
#                                                                        
#  look our page at: http://www.multimania.com/marat                     
#************************************************************************
#  Functionality:  Delphi Components that provide an interface to the    
#                  Python language (see python.txt for more infos on     
#                  Python itself).                                       
#                                                                        
#************************************************************************
#  Contributors:                                                         
#      Grzegorz Makarewicz (mak@mikroplan.com.pl)                        
#      Andrew Robinson (andy@hps1.demon.co.uk)                           
#      Mark Watts(mark_watts@hotmail.com)                                
#      Olivier Deckmyn (olivier.deckmyn@mail.dotcom.fr)                  
#      Sigve Tjora (public@tjora.no)                                     
#      Mark Derricutt (mark@talios.com)                                  
#      Igor E. Poteryaev (jah@mail.ru)                                   
#      Yuri Filimonov (fil65@mail.ru)                                    
#      Stefan Hoffmeister (Stefan.Hoffmeister@Econos.de)                 
#************************************************************************
# This source code is distributed with no WARRANTY, for no reason or use.
# Everyone is allowed to use and change this code free for his own tasks 
# and projects, as long as this header and its copyright text is intact. 
# For changed versions of this code, which are public distributed the    
# following additional conditions have to be fullfilled:                 
# 1) The header has to contain a comment on the change and the author of 
#    it.                                                                 
# 2) A copy of the changed source has to be sent to the above E-Mail     
#    address or my then valid address, if this is possible to the        
#    author.                                                             
# The second condition has the target to maintain an up to date central  
# version of the component. If this condition is not acceptable for      
# confidential or legal reasons, everyone is free to derive a component  
# or to generate a diff file to my or other original sources.            
# Dr. Dietmar Budelsky, 1997-11-17                                       
#************************************************************************

{.deadCodeElim: on.}

import 
  dynlib


when defined(windows): 
  const dllname = "python(26|25|24|23|22|21|20|16|15).dll"
elif defined(macosx):
  const dllname = "libpython(2.6|2.5|2.4|2.3|2.2|2.1|2.0|1.6|1.5).dylib"
else: 
  const dllver = ".1"
  const dllname = "libpython(2.6|2.5|2.4|2.3|2.2|2.1|2.0|1.6|1.5).so" & dllver
  
const 
  PYT_METHOD_BUFFER_INCREASE* = 10
  PYT_MEMBER_BUFFER_INCREASE* = 10
  PYT_GETSET_BUFFER_INCREASE* = 10
  METH_VARARGS* = 0x0001
  METH_KEYWORDS* = 0x0002 # Masks for the co_flags field of PyCodeObject
  CO_OPTIMIZED* = 0x0001
  CO_NEWLOCALS* = 0x0002
  CO_VARARGS* = 0x0004
  CO_VARKEYWORDS* = 0x0008

type                          # Rich comparison opcodes introduced in version 2.1
  TRichComparisonOpcode* = enum 
    pyLT, pyLE, pyEQ, pyNE, pyGT, pyGE

const
  Py_TPFLAGS_HAVE_GETCHARBUFFER* = (1 shl 0) # PySequenceMethods contains sq_contains
  Py_TPFLAGS_HAVE_SEQUENCE_IN* = (1 shl 1) # Objects which participate in garbage collection (see objimp.h)
  Py_TPFLAGS_GC* = (1 shl 2)  # PySequenceMethods and PyNumberMethods contain in-place operators
  Py_TPFLAGS_HAVE_INPLACEOPS* = (1 shl 3) # PyNumberMethods do their own coercion */
  Py_TPFLAGS_CHECKTYPES* = (1 shl 4)
  Py_TPFLAGS_HAVE_RICHCOMPARE* = (1 shl 5) # Objects which are weakly referencable if their tp_weaklistoffset is >0
                                           # XXX Should this have the same value as Py_TPFLAGS_HAVE_RICHCOMPARE?
                                           # These both indicate a feature that appeared in the same alpha release.
  Py_TPFLAGS_HAVE_WEAKREFS* = (1 shl 6) # tp_iter is defined
  Py_TPFLAGS_HAVE_ITER* = (1 shl 7) # New members introduced by Python 2.2 exist
  Py_TPFLAGS_HAVE_CLASS* = (1 shl 8) # Set if the type object is dynamically allocated
  Py_TPFLAGS_HEAPTYPE* = (1 shl 9) # Set if the type allows subclassing
  Py_TPFLAGS_BASETYPE* = (1 shl 10) # Set if the type is 'ready' -- fully initialized
  Py_TPFLAGS_READY* = (1 shl <
#
#
#           The Nim Compiler
#        (c) Copyright 2015 Andreas Rumpf
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

# abstract syntax tree + symbol table

import
  lineinfos, options, ropes, idents, int128, wordrecg

import std/[tables, hashes]
from std/strutils import toLowerAscii

when defined(nimPreviewSlimSystem):
  import std/assertions

export int128

import nodekinds
export nodekinds

type
  TCallingConvention* = enum
    ccNimCall = "nimcall"           # nimcall, also the default
    ccStdCall = "stdcall"           # procedure is stdcall
    ccCDecl = "cdecl"               # cdecl
    ccSafeCall = "safecall"         # safecall
    ccSysCall = "syscall"           # system call
    ccInline = "inline"             # proc should be inlined
    ccNoInline = "noinline"         # proc should not be inlined
    ccFastCall = "fastcall"         # fastcall (pass parameters in registers)
    ccThisCall = "thiscall"         # thiscall (parameters are pushed right-to-left)
    ccClosure  = "closure"          # proc has a closure
    ccNoConvention = "noconv"       # needed for generating proper C procs sometimes
    ccMember = "member"             # proc is a (cpp) member

  TNodeKinds* = set[TNodeKind]

type
  TSymFlag* = enum    # 52 flags!
    sfUsed,           # read access of sym (for warnings) or simply used
    sfExported,       # symbol is exported from module
    sfFromGeneric,    # symbol is instantiation of a generic; this is needed
                      # for symbol file generation; such symbols should always
                      # be written into the ROD file
    sfGlobal,         # symbol is at global scope

    sfForward,        # symbol is forward declared
    sfWasForwarded,   # symbol had a forward declaration
                      # (implies it's too dangerous to patch its type signature)
    sfImportc,        # symbol is external; imported
    sfExportc,        # symbol is exported (under a specified name)
    sfMangleCpp,      # mangle as cpp (combines with `sfExportc`)
    sfVolatile,       # variable is volatile
    sfRegister,       # variable should be placed in a register
    sfPure,           # object is "pure" that means it has no type-information
                      # enum is "pure", its values need qualified access
                      # variable is "pure"; it's an explicit "global"
    sfNoSideEffect,   # proc has no side effects
    sfSideEffect,     # proc may have side effects; cannot prove it has none
    sfMainModule,     # module is the main module
    sfSystemModule,   # module is the system module
    sfNoReturn,       # proc never returns (an exit proc)
    sfAddrTaken,      # the variable's address is taken (ex- or implicitly);
                      # *OR*: a proc is indirectly called (used as first class)
    sfCompilerProc,   # proc is a compiler proc, that is a C proc that is
                      # needed for the code generator
    sfEscapes         # param escapes
                      # currently unimplemented
    sfDiscriminant,   # field is a discriminant in a record/object
    sfRequiresInit,   # field must be initialized during construction
    sfDeprecated,     # symbol is deprecated
    sfExplain,        # provide more diagnostics when this symbol is used
    sfError,          # usage of symbol should trigger a compile-time error
    sfShadowed,       # a symbol that was shadowed in some inner scope
    sfThread,         # proc will run as a thread
                      # variable is a thread variable
    sfCppNonPod,      # tells compiler to treat such types as non-pod's, so that
                      # `thread_local` is used instead of `__thread` for
                      # {.threadvar.} + `--threads`. Only makes sense for importcpp types.
                      # This has a performance impact so isn't set by default.
    sfCompileTime,    # proc can be evaluated at compile time
    sfConstructor,    # proc is a C++ constructor
    sfDispatcher,     # copied method symbol is the dispatcher
                      # deprecated and unused, except for the con
    sfBorrow,         # proc is borrowed
    sfInfixCall,      # symbol needs infix call syntax in target language;
                      # for interfacing with C++, JS
    sfNamedParamCall, # symbol needs named parameter call syntax in target
                      # language; for interfacing with Objective C
    sfDiscardable,    # returned value may be discarded implicitly
    sfOverridden,      # proc is overridden
    sfCallsite        # A flag for template symbols to tell the
                      # compiler it should use line information from
                      # the calling side of the macro, not from the
                      # implementation.
    sfGenSym          # symbol is 'gensym'ed; do not add to symbol table
    sfNonReloadable   # symbol will be left as-is when hot code reloading is on -
                      # meaning that it won't be renamed and/or changed in any way
    sfGeneratedOp     # proc is a generated '='; do not inject destructors in it
                      # variable is generated closure environment; requires early
                      # destruction for --newruntime.
    sfTemplateParam   # symbol is a template parameter
    sfCursor          # variable/field is a cursor, see RFC 177 for details
    sfInjectDestructors # whether the proc needs the 'injectdestructors' transformation
    sfNeverRaises     # proc can never raise an exception, not even OverflowDefect
                      # or out-of-memory
    sfSystemRaisesDefect # proc in the system can raise defects
    sfUsedInFinallyOrExcept  # symbol is used inside an 'except' or 'finally'
    sfSingleUsedTemp  # For temporaries that we know will only be used once
    sfNoalias         # 'noalias' annotation, means C's 'restrict'
                      # for templates and macros, means cannot be called
                      # as a lone symbol (cannot use alias syntax)
    sfEffectsDelayed  # an 'effectsDelayed' parameter
    sfGeneratedType   # A anonymous generic type that is generated by the compiler for
                      # objects that do not have generic parameters in case one of the
                      # object fields has one.
                      #
                      # This is disallowed but can cause the typechecking to go into
                      # an infinite loop, this flag is used as a sentinel to stop it.
    sfVirtual         # proc is a C++ virtual function
    sfByCopy          # param is marked as pass bycopy
    sfMember          # proc is a C++ member of a type
    sfCodegenDecl     # type, proc, global or proc param is marked as codegenDecl
    sfWasGenSym       # symbol was 'gensym'ed
    sfForceLift       # variable has to be lifted into closure environment

  TSymFlags* = set[TSymFlag]

const
  sfNoInit* = sfMainModule       # don't generate code to init the variable

  sfAllUntyped* = sfVolatile # macro or template is immediately expanded \
    # in a generic context

  sfDirty* = sfPure
    # template is not hygienic (old styled template)
    # module, compiled from a dirty-buffer

  sfAnon* = sfDiscardable
    # symbol name that was generated by the compiler
    # the compiler will avoid printing such names
    # in user messages.

  sfNoForward* = sfRegister
    # forward declarations are not required (per module)
  sfReorder* = sfForward
    # reordering pass is enabled

  sfCompileToCpp* = sfInfixCall       # compile the module as C++ code
  sfCompileToObjc* = sfNamedParamCall # compile the module as Objective-C code
  sfExperimental* = sfOverridden       # module uses the .experimental switch
  sfGoto* = sfOverridden               # var is used for 'goto' code generation
  sfWrittenTo* = sfBorrow             # param is assigned to
                                      # currently unimplemented
  sfBase* = sfDiscriminant
  sfCustomPragma* = sfRegister        # symbol is custom pragma template
  sfTemplateRedefinition* = sfExportc # symbol is a redefinition of an earlier template
  sfCppMember* = { sfVirtual, sfMember, sfConstructor } # proc is a C++ member, meaning it will be attached to the type definition

const
  # getting ready for the future expr/stmt merge
  nkWhen* = nkWhenStmt
  nkWhenExpr* = nkWhenStmt
  nkEffectList* = nkArgList
  # hacks ahead: an nkEffectList is a node with 4 children:
  exceptionEffects* = 0 # exceptions at position 0
  requiresEffects* = 1      # 'requires' annotation
  ensuresEffects* = 2     # 'ensures' annotation
  tagEffects* = 3       # user defined tag ('gc', 'time' etc.)
  pragmasEffects* = 4    # not an effect, but a slot for pragmas in proc type
  forbiddenEffects* = 5    # list of illegal effects
  effectListLen* = 6    # list of effects list
  nkLastBlockStmts* = {nkRaiseStmt, nkReturnStmt, nkBreakStmt, nkContinueStmt}
                        # these must be last statements in a block

type
  TTypeKind* = enum  # order is important!
                     # Don't forget to change hti.nim if you make a change here
                     # XXX put this into an include file to avoid this issue!
                     # several types are no longer used (guess which), but a
                     # spot in the sequence is kept for backwards compatibility
                     # (apparently something with bootstrapping)
                     # if you need to add a type, they can apparently be reused
    tyNone, tyBool, tyChar,
    tyEmpty, tyAlias, tyNil, tyUntyped, tyTyped, tyTypeDesc,
    tyGenericInvocation, # ``T[a, b]`` for types to invoke
    tyGenericBody,       # ``T[a, b, body]`` last parameter is the body
    tyGenericInst,       # ``T[a, b, realInstance]`` instantiated generic type
                         # realInstance will be a concrete type like tyObject
                         # unless this is an instance of a generic alias type.
                         # then realInstance will be the tyGenericInst of the
                         # completely (recursively) resolved alias.

    tyGenericParam,      # ``a`` in the above patterns
    tyDistinct,
    tyEnum,
    tyOrdinal,           # integer types (including enums and boolean)
    tyArray,
    tyObject,
    tyTuple,
    tySet,
    tyRange,
    tyPtr, tyRef,
    tyVar,
    tySequence,
    tyProc,
    tyPointer, tyOpenArray,
    tyString, tyCstring, tyForward,
    tyInt, tyInt8, tyInt16, tyInt32, tyInt64, # signed integers
    tyFloat, tyFloat32, tyFloat64, tyFloat128,
    tyUInt, tyUInt8, tyUInt16, tyUInt32, tyUInt64,
    tyOwned, tySink, tyLent,
    tyVarargs,
    tyUncheckedArray
      # An array with boundaries [0,+∞]

    tyProxy # used as errornous type (for idetools)

    tyBuiltInTypeClass
      # Type such as the catch-all object, tuple, seq, etc

    tyUserTypeClass
      # the body of a user-defined type class

    tyUserTypeClassInst
      # Instance of a parametric user-defined type class.
      # Structured similarly to tyGenericInst.
      # tyGenericInst represents concrete types, while
      # this is still a "generic param" that will bind types
      # and resolves them during sigmatch and instantiation.

    tyCompositeTypeClass
      # Type such as seq[Number]
      # The notes for tyUserTypeClassInst apply here as well
      # sons[0]: the original expression used by the user.
      # sons[1]: fully expanded and instantiated meta type
      # (potentially following aliases)

    tyInferred
      # In the initial state `base` stores a type class constraining
      # the types that can be inferred. After a candidate type is
      # selected, it's stored in `last`. Between `base` and `last`
      # there may be 0, 2 or more types that were also considered as
      # possible candidates in the inference process (i.e. last will
      # be updated to store a type best conforming to all candidates)

    tyAnd, tyOr, tyNot
      # boolean type classes such as `string|int`,`not seq`,
      # `Sortable and Enumable`, etc

    tyAnything
      # a type class matching any type

    tyStatic
      # a value known at compile type (the underlying type is .base)

    tyFromExpr
      # This is a type representing an expression that depends
      # on generic parameters (the expression is stored in t.n)
      # It will be converted to a real type only during generic
      # instantiation and prior to this it has the potential to
      # be any type.

    tyConcept
      # new style concept.

    tyVoid
      # now different from tyEmpty, hurray!
    tyIterable

static:
  # remind us when TTypeKind stops to fit in a single 64-bit word
  # assert TTypeKind.high.ord <= 63
  discard

const
  tyPureObject* = tyTuple
  GcTypeKinds* = {tyRef, tySequence, tyString}
  tyError* = tyProxy # as an errornous node should match everything
  tyUnknown* = tyFromExpr

  tyUnknownTypes* = {tyError, tyFromExpr}

  tyTypeClasses* = {tyBuiltInTypeClass, tyCompositeTypeClass,
                    tyUserTypeClass, tyUserTypeClassInst,
                    tyAnd, tyOr, tyNot, tyAnything}

  tyMetaTypes* = {tyGenericParam, tyTypeDesc, tyUntyped} + tyTypeClasses
  tyUserTypeClasses* = {tyUserTypeClass, tyUserTypeClassInst}
  # consider renaming as `tyAbstractVarRange`
  abstractVarRange* = {tyGenericInst, tyRange, tyVar, tyDistinct, tyOrdinal,
                       tyTypeDesc, tyAlias, tyInferred, tySink, tyOwned}
  abstractInst* = {tyGenericInst, tyDistinct, tyOrdinal, tyTypeDesc, tyAlias,
                   tyInferred, tySink, tyOwned} # xxx what about tyStatic?

type
  TTypeKinds* = set[TTypeKind]

  TNodeFlag* = enum
    nfNone,
    nfBase2,    # nfBase10 is default, so not needed
    nfBase8,
    nfBase16,
    nfAllConst, # used to mark complex expressions constant; easy to get rid of
                # but unfortunately it has measurable impact for compilation
                # efficiency
    nfTransf,   # node has been transformed
    nfNoRewrite # node should not be transformed anymore
    nfSem       # node has been checked for semantics
    nfLL        # node has gone through lambda lifting
    nfDotField  # the call can use a dot operator
    nfDotSetter # the call can use a setter dot operarator
    nfExplicitCall # x.y() was used instead of x.y
    nfExprCall  # this is an attempt to call a regular expression
    nfIsRef     # this node is a 'ref' node; used for the VM
    nfIsPtr     # this node is a 'ptr' node; used for the VM
    nfPreventCg # this node should be ignored by the codegen
    nfBlockArg  # this a stmtlist appearing in a call (e.g. a do block)
    nfFromTemplate # a top-level node returned from a template
    nfDefaultParam # an automatically inserter default parameter
    nfDefaultRefsParam # a default param value references another parameter
                       # the flag is applied to proc default values and to calls
    nfExecuteOnReload  # A top-level statement that will be executed during reloads
    nfLastRead  # this node is a last read
    nfFirstWrite # this node is a first write
    nfHasComment # node has a comment
    nfSkipFieldChecking # node skips field visable checking
    nfOpenSym # node is a captured sym but can be overriden by local symbols

  TNodeFlags* = set[TNodeFlag]
  TTypeFlag* = enum   # keep below 32 for efficiency reasons (now: 47)
    tfVarargs,        # procedure has C styled varargs
                      # tyArray type represeting a varargs list
    tfNoSideEffect,   # procedure type does not allow side effects
    tfFinal,          # is the object final?
    tfInheritable,    # is the object inheritable?
    tfHasOwned,       # type contains an 'owned' type and must be moved
    tfEnumHasHoles,   # enum cannot be mapped into a range
    tfShallow,        # type can be shallow copied on assignment
    tfThread,         # proc type is marked as ``thread``; alias for ``gcsafe``
    tfFromGeneric,    # type is an instantiation of a generic; this is needed
                      # because for instantiations of objects, structural
                      # type equality has to be used
    tfUnresolved,     # marks unresolved typedesc/static params: e.g.
                      # proc foo(T: typedesc, list: seq[T]): var T
                      # proc foo(L: static[int]): array[L, int]
                      # can be attached to ranges to indicate that the range
                      # can be attached to generic procs with free standing
                      # type parameters: e.g. proc foo[T]()
                      # depends on unresolved static params.
    tfResolved        # marks a user type class, after it has been bound to a
                      # concrete type (lastSon becomes the concrete type)
    tfRetType,        # marks return types in proc (used to detect type classes
                      # used as return types for return type inference)
    tfCapturesEnv,    # whether proc really captures some environment
    tfByCopy,         # pass object/tuple by copy (C backend)
    tfByRef,          # pass object/tuple by reference (C backend)
    tfIterator,       # type is really an iterator, not a tyProc
    tfPartial,        # type is declared as 'partial'
    tfNotNil,         # type cannot be 'nil'
    tfRequiresInit,   # type contains a "not nil" constraint somewhere or
                      # a `requiresInit` field, so the default zero init
                      # is not appropriate
    tfNeedsFullInit,  # object type marked with {.requiresInit.}
                      # all fields must be initialized
    tfVarIsPtr,       # 'var' type is translated like 'ptr' even in C++ mode
    tfHasMeta,        # type contains "wildcard" sub-types such as generic params
                      # or other type classes
    tfHasGCedMem,     # type contains GC'ed memory
    tfPacked
    tfHasStatic
    tfGenericTypeParam
    tfImplicitTypeParam
    tfInferrableStatic
    tfConceptMatchedTypeSym
    tfExplicit        # for typedescs, marks types explicitly prefixed with the
                      # `type` operator (e.g. type int)
    tfWildcard        # consider a proc like foo[T, I](x: Type[T, I])
                      # T and I here can bind to both typedesc and static types
                      # before this is determined, we'll consider them to be a
                      # wildcard type.
    tfHasAsgn         # type has overloaded assignment operator
    tfBorrowDot       # distinct type borrows '.'
    tfTriggersCompileTime # uses the NimNode type which make the proc
                          # implicitly '.compiletime'
    tfRefsAnonObj     # used for 'ref object' and 'ptr object'
    tfCovariant       # covariant generic param mimicking a ptr type
    tfWeakCovariant   # covariant generic param mimicking a seq/array type
    tfContravariant   # contravariant generic param
    tfCheckedForDestructor # type was checked for having a destructor.
                           # If it has one, t.destructor is not nil.
    tfAcyclic # object type was annotated as .acyclic
    tfIncompleteStruct # treat this type as if it had sizeof(pointer)
    tfCompleteStruct
      # (for importc types); type is fully specified, allowing to compute
      # sizeof, alignof, offsetof at CT
    tfExplicitCallConv
    tfIsConstructor
    tfEffectSystemWorkaround
    tfIsOutParam
    tfSendable
    tfImplicitStatic

  TTypeFlags* = set[TTypeFlag]

  TSymKind* = enum        # the different symbols (start with the prefix sk);
                          # order is important for the documentation generator!
    skUnknown,            # unknown symbol: used for parsing assembler blocks
                          # and first phase symbol lookup in generics
    skConditional,        # symbol for the preprocessor (may become obsolete)
    skDynLib,             # symbol represents a dynamic library; this is used
                          # internally; it does not exist in Nim code
    skParam,              # a parameter
    skGenericParam,       # a generic parameter; eq in ``proc x[eq=`==`]()``
    skTemp,               # a temporary variable (introduced by compiler)
    skModule,             # module identifier
    skType,               # a type
    skVar,                # a variable
    skLet,                # a 'let' symbol
    skConst,              # a constant
    skResult,             # special 'result' variable
    skProc,               # a proc
    skFunc,               # a func
    skMethod,             # a method
    skIterator,           # an iterator
    skConverter,          # a type converter
    skMacro,              # a macro
    skTemplate,           # a template; currently also misused for user-defined
                          # pragmas
    skField,              # a field in a record or object
    skEnumField,          # an identifier in an enum
    skForVar,             # a for loop variable
    skLabel,              # a label (for block statement)
    skStub,               # symbol is a stub and not yet loaded from the ROD
                          # file (it is loaded on demand, which may
                          # mean: never)
    skPackage,            # symbol is a package (used for canonicalization)
  TSymKinds* = set[TSymKind]

const
  routineKinds* = {skProc, skFunc, skMethod, skIterator,
                   skConverter, skMacro, skTemplate}
  ExportableSymKinds* = {skVar, skLet, skConst, skType, skEnumField, skStub} + routineKinds

  tfUnion* = tfNoSideEffect
  tfGcSafe* = tfThread
  tfObjHasKids* = tfEnumHasHoles
  tfReturnsNew* = tfInheritable
  skError* = skUnknown

var
  eqTypeFlags* = {tfIterator, tfNotNil, tfVarIsPtr, tfGcSafe, tfNoSideEffect, tfIsOutParam}
    ## type flags that are essential for type equality.
    ## This is now a variable because for emulation of version:1.0 we
    ## might exclude {tfGcSafe, tfNoSideEffect}.

type
  TMagic* = enum # symbols that require compiler magic:
    mNone,
    mDefined, mDeclared, mDeclaredInScope, mCompiles, mArrGet, mArrPut, mAsgn,
    mLow, mHigh, mSizeOf, mAlignOf, mOffsetOf, mTypeTrait,
    mIs, mOf, mAddr, mType, mTypeOf,
    mPlugin, mEcho, mShallowCopy, mSlurp, mStaticExec, mStatic,
    mParseExprToAst, mParseStmtToAst, mExpandToAst, mQuoteAst,
    mInc, mDec, mOrd,
    mNew, mNewFinalize, mNewSeq, mNewSeqOfCap,
    mLengthOpenArray, mLengthStr, mLengthArray, mLengthSeq,
    mIncl, mExcl, mCard, mChr,
    mGCref, mGCunref,
    mAddI, mSubI, mMulI, mDivI, mModI,
    mSucc, mPred,
    mAddF64, mSubF64, mMulF64, mDivF64,
    mShrI, mShlI, mAshrI, mBitandI, mBitorI, mBitxorI,
    mMinI, mMaxI,
    mAddU, mSubU, mMulU, mDivU, mModU,
    mEqI, mLeI, mLtI,
    mEqF64, mLeF64, mLtF64,
    mLeU, mLtU,
    mEqEnum, mLeEnum, mLtEnum,
    mEqCh, mLeCh, mLtCh,
    mEqB, mLeB, mLtB,
    mEqRef, mLePtr, mLtPtr,
    mXor, mEqCString, mEqProc,
    mUnaryMinusI, mUnaryMinusI64, mAbsI, mNot,
    mUnaryPlusI, mBitnotI,
    mUnaryPlusF64, mUnaryMinusF64,
    mCharToStr, mBoolToStr,
    mCStrToStr,
    mStrToStr, mEnumToStr,
    mAnd, mOr,
    mImplies, mIff, mExists, mForall, mOld,
    mEqStr, mLeStr, mLtStr,
    mEqSet, mLeSet, mLtSet, mMulSet, mPlusSet, mMinusSet,
    mConStrStr, mSlice,
    mDotDot, # this one is only necessary to give nice compile time warnings
    mFields, mFieldPairs, mOmpParFor,
    mAppendStrCh, mAppendStrStr, mAppendSeqElem,
    mInSet, mRepr, mExit,
    mSetLengthStr, mSetLengthSeq,
    mIsPartOf, mAstToStr, mParallel,
    mSwap, mIsNil, mArrToSeq, mOpenArrayToSeq,
    mNewString, mNewStringOfCap, mParseBiggestFloat,
    mMove, mEnsureMove, mWasMoved, mDup, mDestroy, mTrace,
    mDefault, mUnown, mFinished, mIsolate, mAccessEnv, mAccessTypeField,
    mArray, mOpenArray, mRange, mSet, mSeq, mVarargs,
    mRef, mPtr, mVar, mDistinct, mVoid, mTuple,
    mOrdinal, mIterableType,
    mInt, mInt8, mInt16, mInt32, mInt64,
    mUInt, mUInt8, mUInt16, mUInt32, mUInt64,
    mFloat, mFloat32, mFloat64, mFloat128,
    mBool, mChar, mString, mCstring,
    mPointer, mNil, mExpr, mStmt, mTypeDesc,
    mVoidType, mPNimrodNode, mSpawn, mDeepCopy,
    mIsMainModule, mCompileDate, mCompileTime, mProcCall,
    mCpuEndian, mHostOS, mHostCPU, mBuildOS, mBuildCPU, mAppType,
    mCompileOption, mCompileOptionArg,
    mNLen, mNChild, mNSetChild, mNAdd, mNAddMultiple, mNDel,
    mNKind, mNSymKind,

    mNccValue, mNccInc, mNcsAdd, mNcsIncl, mNcsLen, mNcsAt,
    mNctPut, mNctLen, mNctGet, mNctHasNext, mNctNext,

    mNIntVal, mNFloatVal, mNSymbol, mNIdent, mNGetType, mNStrVal, mNSetIntVal,
    mNSetFloatVal, mNSetSymbol, mNSetIdent, mNSetStrVal, mNLineInfo,
    mNNewNimNode, mNCopyNimNode, mNCopyNimTree, mStrToIdent, mNSigHash, mNSizeOf,
    mNBindSym, mNCallSite,
    mEqIdent, mEqNimrodNode, mSameNodeType, mGetImpl, mNGenSym,
    mNHint, mNWarning, mNError,
    mInstantiationInfo, mGetTypeInfo, mGetTypeInfoV2,
    mNimvm, mIntDefine, mStrDefine, mBoolDefine, mGenericDefine, mRunnableExamples,
    mException, mBuiltinType, mSymOwner, mUncheckedArray, mGetImplTransf,
    mSymIsInstantiationOf, mNodeId, mPrivateAccess, mZeroDefault


const
  # things that we can evaluate safely at compile time, even if not asked for it:
  ctfeWhitelist* = {mNone, mSucc,
    mPred, mInc, mDec, mOrd, mLengthOpenArray,
    mLengthStr, mLengthArray, mLengthSeq,
    mArrGet, mArrPut, mAsgn, mDestroy,
    mIncl, mExcl, mCard, mChr,
    mAddI, mSubI, mMulI, mDivI, mModI,
    mAddF64, mSubF64, mMulF64, mDivF64,
    mShrI, mShlI, mBitandI, mBitorI, mBitxorI,
    mMinI, mMaxI,
    mAddU, mSubU, mMulU, mDivU, mModU,
    mEqI, mLeI, mLtI,
    mEqF64, mLeF64, mLtF64,
    mLeU, mLtU,
    mEqEnum, mLeEnum, mLtEnum,
    mEqCh, mLeCh, mLtCh,
    mEqB, mLeB, mLtB,
    mEqRef, mEqProc, mLePtr, mLtPtr, mEqCString, mXor,
    mUnaryMinusI, mUnaryMinusI64, mAbsI, mNot, mUnaryPlusI, mBitnotI,
    mUnaryPlusF64, mUnaryMinusF64,
    mCharToStr, mBoolToStr,
    mCStrToStr,
    mStrToStr, mEnumToStr,
    mAnd, mOr,
    mEqStr, mLeStr, mLtStr,
    mEqSet, mLeSet, mLtSet, mMulSet, mPlusSet, mMinusSet,
    mConStrStr, mAppendStrCh, mAppendStrStr, mAppendSeqElem,
    mInSet, mRepr, mOpenArrayToSeq}

  generatedMagics* = {mNone, mIsolate, mFinished, mOpenArrayToSeq}
    ## magics that are generated as normal procs in the backend

type
  ItemId* = object
    module*: int32
    item*: int32

proc `$`*(x: ItemId): string =
  "(module: " & $x.module & ", item: " & $x.item & ")"

proc `==`*(a, b: ItemId): bool {.inline.} =
  a.item == b.item and a.module == b.module

proc hash*(x: ItemId): Hash =
  var h: Hash = hash(x.module)
  h = h !& hash(x.item)
  result = !$h


type
  PNode* = ref TNode
  TNodeSeq* = seq[PNode]
  PType* = ref TType
  PSym* = ref TSym
  TNode*{.final, acyclic.} = object # on a 32bit machine, this takes 32 bytes
    when defined(useNodeIds):
      id*: int
    typ*: PType
    info*: TLineInfo
    flags*: TNodeFlags
    case kind*: TNodeKind
    of nkCharLit..nkUInt64Lit:
      intVal*: BiggestInt
    of nkFloatLit..nkFloat128Lit:
      floatVal*: BiggestFloat
    of nkStrLit..nkTripleStrLit:
      strVal*: string
    of nkSym:
      sym*: PSym
    of nkIdent:
      ident*: PIdent
    else:
      sons*: TNodeSeq
    when defined(nimsuggest):
      endInfo*: TLineInfo

  TStrTable* = object         # a table[PIdent] of PSym
    counter*: int
    data*: seq[PSym]

  # -------------- backend information -------------------------------
  TLocKind* = enum
    locNone,                  # no location
    locTemp,                  # temporary location
    locLocalVar,              # location is a local variable
    locGlobalVar,             # location is a global variable
    locParam,                 # location is a parameter
    locField,                 # location is a record field
    locExpr,                  # "location" is really an expression
    locProc,                  # location is a proc (an address of a procedure)
    locData,                  # location is a constant
    locCall,                  # location is a call expression
    locOther                  # location is something other
  TLocFlag* = enum
    lfIndirect,               # backend introduced a pointer
    lfNoDeepCopy,             # no need for a deep copy
    lfNoDecl,                 # do not declare it in C
    lfDynamicLib,             # link symbol to dynamic library
    lfExportLib,              # export symbol for dynamic library generation
    lfHeader,                 # include header file for symbol
    lfImportCompilerProc,     # ``importc`` of a compilerproc
    lfSingleUse               # no location yet and will only be used once
    lfEnforceDeref            # a copyMem is required to dereference if this a
                              # ptr array due to C array limitations.
                              # See #1181, #6422, #11171
    lfPrepareForMutation      # string location is about to be mutated (V2)
  TStorageLoc* = enum
    OnUnknown,                # location is unknown (stack, heap or static)
    OnStatic,                 # in a static section
    OnStack,                  # location is on hardware stack
    OnHeap                    # location is on heap or global
                              # (reference counting needed)
  TLocFlags* = set[TLocFlag]
  TLoc* = object
    k*: TLocKind              # kind of location
    storage*: TStorageLoc
    flags*: TLocFlags         # location's flags
    lode*: PNode              # Node where the location came from; can be faked
    r*: Rope                  # rope value of location (code generators)

  # ---------------- end of backend information ------------------------------

  TLibKind* = enum
    libHeader, libDynamic

  TLib* = object              # also misused for headers!
                              # keep in sync with PackedLib
    kind*: TLibKind
    generated*: bool          # needed for the backends:
    isOverridden*: bool
    name*: Rope
    path*: PNode              # can be a string literal!


  CompilesId* = int ## id that is used for the caching logic within
                    ## ``system.compiles``. See the seminst module.
  TInstantiation* = object
    sym*: PSym
    concreteTypes*: seq[PType]
    compilesId*: CompilesId

  PInstantiation* = ref TInstantiation

  TScope* {.acyclic.} = object
    depthLevel*: int
    symbols*: TStrTable
    parent*: PScope
    allowPrivateAccess*: seq[PSym] #  # enable access to private fields

  PScope* = ref TScope

  PLib* = ref TLib
  TSym* {.acyclic.} = object # Keep in sync with PackedSym
    itemId*: ItemId
    # proc and type instantiations are cached in the generic symbol
    case kind*: TSymKind
    of routineKinds:
      #procInstCache*: seq[PInstantiation]
      gcUnsafetyReason*: PSym  # for better error messages regarding gcsafe
      transformedBody*: PNode  # cached body after transf pass
    of skLet, skVar, skField, skForVar:
      guard*: PSym
      bitsize*: int
      alignment*: int # for alignment
    else: nil
    magic*: TMagic
    typ*: PType
    name*: PIdent
    info*: TLineInfo
    when defined(nimsuggest):
      endInfo*: TLineInfo
      hasUserSpecifiedType*: bool  # used for determining whether to display inlay type hints
    owner*: PSym
    flags*: TSymFlags
    ast*: PNode               # syntax tree of proc, iterator, etc.:
                              # the whole proc including header; this is used
                              # for easy generation of proper error messages
                              # for variant record fields the discriminant
                              # expression
                              # for modules, it's a placeholder for compiler
                              # generated code that will be appended to the
                              # module after the sem pass (see appendToModule)
    options*: TOptions
    position*: int            # used for many different things:
                              # for enum fields its position;
                              # for fields its offset
                              # for parameters its position (starting with 0)
                              # for a conditional:
                              # 1 iff the symbol is defined, else 0
                              # (or not in symbol table)
                              # for modules, an unique index corresponding
                              # to the module's fileIdx
                              # for variables a slot index for the evaluator
    offset*: int32            # offset of record field
    disamb*: int32            # disambiguation number; the basic idea is that
                              # `<procname>__<module>_<disamb>` is unique
    loc*: TLoc
    annex*: PLib              # additional fields (seldom used, so we use a
                              # reference to another object to save space)
    when hasFFI:
      cname*: string          # resolved C declaration name in importc decl, e.g.:
                              # proc fun() {.importc: "$1aux".} => cname = funaux
    constraint*: PNode        # additional constraints like 'lit|result'; also
                              # misused for the codegenDecl and virtual pragmas in the hope
                              # it won't cause problems
                              # for skModule the string literal to output for
                              # deprecated modules.
    instantiatedFrom*: PSym   # for instances, the generic symbol where it came from.
    when defined(nimsuggest):
      allUsages*: seq[TLineInfo]

  TTypeSeq* = seq[PType]

  TTypeAttachedOp* = enum ## as usual, order is important here
    attachedWasMoved,
    attachedDestructor,
    attachedAsgn,
    attachedDup,
    attachedSink,
    attachedTrace,
    attachedDeepCopy

  TType* {.acyclic.} = object # \
                              # types are identical iff they have the
                              # same id; there may be multiple copies of a type
                              # in memory!
                              # Keep in sync with PackedType
    itemId*: ItemId
    kind*: TTypeKind          # kind of type
    callConv*: TCallingConvention # for procs
    flags*: TTypeFlags        # flags of the type
    sons: TTypeSeq           # base types, etc.
    n*: PNode                 # node for types:
                              # for range types a nkRange node
                              # for record types a nkRecord node
                              # for enum types a list of symbols
                              # if kind == tyInt: it is an 'int literal(x)' type
                              # for procs and tyGenericBody, it's the
                              # formal param list
                              # for concepts, the concept body
                              # else: unused
    owner*: PSym              # the 'owner' of the type
    sym*: PSym                # types have the sym associated with them
                              # it is used for converting types to strings
    size*: BiggestInt         # the size of the type in bytes
                              # -1 means that the size is unkwown
    align*: int16             # the type's alignment requirements
    paddingAtEnd*: int16      #
    loc*: TLoc
    typeInst*: PType          # for generic instantiations the tyGenericInst that led to this
                              # type.
    uniqueId*: ItemId         # due to a design mistake, we need to keep the real ID here as it
                              # is required by the --incremental:on mode.

  TPair* = object
    key*, val*: RootRef

  TPairSeq* = seq[TPair]

  TNodePair* = object
    h*: Hash                 # because it is expensive to compute!
    key*: PNode
    val*: int

  TNodePairSeq* = seq[TNodePair]
  TNodeTable* = object # the same as table[PNode] of int;
                                # nodes are compared by structure!
    counter*: int
    data*: TNodePairSeq

  TObjectSeq* = seq[RootRef]
  TObjectSet* = object
    counter*: int
    data*: TObjectSeq

  TImplication* = enum
    impUnknown, impNo, impYes

template nodeId(n: PNode): int = cast[int](n)

type Gconfig = object
  # we put comments in a side channel to avoid increasing `sizeof(TNode)`, which
  # reduces memory usage given that `PNode` is the most allocated type by far.
  comments: Table[int, string] # nodeId => comment
  useIc*: bool

var gconfig {.threadvar.}: Gconfig

proc setUseIc*(useIc: bool) = gconfig.useIc = useIc

proc comment*(n: PNode): string =
  if nfHasComment in n.flags and not gconfig.useIc:
    # IC doesn't track comments, see `packed_ast`, so this could fail
    result = gconfig.comments[n.nodeId]
  else:
    result = ""

proc `comment=`*(n: PNode, a: string) =
  let id = n.nodeId
  if a.len > 0:
    # if needed, we could periodically cleanup gconfig.comments when its size increases,
    # to ensure only live nodes (and with nfHasComment) have an entry in gconfig.comments;
    # for compiling compiler, the waste is very small:
    # num calls to newNodeImpl: 14984160 (num of PNode allocations)
    # size of gconfig.comments: 33585
    # num of nodes with comments that were deleted and hence wasted: 3081
    n.flags.incl nfHasComment
    gconfig.comments[id] = a
  elif nfHasComment in n.flags:
    n.flags.excl nfHasComment
    gconfig.comments.del(id)

# BUGFIX: a module is overloadable so that a proc can have the
# same name as an imported module. This is necessary because of
# the poor naming choices in the standard library.

const
  OverloadableSyms* = {skProc, skFunc, skMethod, skIterator,
    skConverter, skModule, skTemplate, skMacro, skEnumField}

  GenericTypes*: TTypeKinds = {tyGenericInvocation, tyGenericBody,
    tyGenericParam}

  StructuralEquivTypes*: TTypeKinds = {tyNil, tyTuple, tyArray,
    tySet, tyRange, tyPtr, tyRef, tyVar, tyLent, tySequence, tyProc, tyOpenArray,
    tyVarargs}

  ConcreteTypes*: TTypeKinds = { # types of the expr that may occur in::
                                 # var x = expr
    tyBool, tyChar, tyEnum, tyArray, tyObject,
    tySet, tyTuple, tyRange, tyPtr, tyRef, tyVar, tyLent, tySequence, tyProc,
    tyPointer,
    tyOpenArray, tyString, tyCstring, tyInt..tyInt64, tyFloat..tyFloat128,
    tyUInt..tyUInt64}
  IntegralTypes* = {tyBool, tyChar, tyEnum, tyInt..tyInt64,
    tyFloat..tyFloat128, tyUInt..tyUInt64} # weird name because it contains tyFloat
  ConstantDataTypes*: TTypeKinds = {tyArray, tySet,
                                    tyTuple, tySequence}
  NilableTypes*: TTypeKinds = {tyPointer, tyCstring, tyRef, tyPtr,
    tyProc, tyError} # TODO
  PtrLikeKinds*: TTypeKinds = {tyPointer, tyPtr} # for VM
  PersistentNodeFlags*: TNodeFlags = {nfBase2, nfBase8, nfBase16,
                                      nfDotSetter, nfDotField,
                                      nfIsRef, nfIsPtr, nfPreventCg, nfLL,
                                      nfFromTemplate, nfDefaultRefsParam,
                                      nfExecuteOnReload, nfLastRead,
                                      nfFirstWrite, nfSkipFieldChecking,
                                      nfOpenSym}
  namePos* = 0
  patternPos* = 1    # empty except for term rewriting macros
  genericParamsPos* = 2
  paramsPos* = 3
  pragmasPos* = 4
  miscPos* = 5  # used for undocumented and hacky stuff
  bodyPos* = 6       # position of body; use rodread.getBody() instead!
  resultPos* = 7
  dispatcherPos* = 8

  nfAllFieldsSet* = nfBase2

  nkIdentKinds* = {nkIdent, nkSym, nkAccQuoted, nkOpenSymChoice,
                   nkClosedSymChoice}

  nkPragmaCallKinds* = {nkExprColonExpr, nkCall, nkCallStrLit}
  nkLiterals* = {nkCharLit..nkTripleStrLit}
  nkFloatLiterals* = {nkFloatLit..nkFloat128Lit}
  nkLambdaKinds* = {nkLambda, nkDo}
  declarativeDefs* = {nkProcDef, nkFuncDef, nkMethodDef, nkIteratorDef, nkConverterDef}
  routineDefs* = declarativeDefs + {nkMacroDef, nkTemplateDef}
  procDefs* = nkLambdaKinds + declarativeDefs
  callableDefs* = nkLambdaKinds + routineDefs

  nkSymChoices* = {nkClosedSymChoice, nkOpenSymChoice}
  nkStrKinds* = {nkStrLit..nkTripleStrLit}

  skLocalVars* = {skVar, skLet, skForVar, skParam, skResult}
  skProcKinds* = {skProc, skFunc, skTemplate, skMacro, skIterator,
                  skMethod, skConverter}

  defaultSize = -1
  defaultAlignment = -1
  defaultOffset* = -1

proc getPIdent*(a: PNode): PIdent {.inline.} =
  ## Returns underlying `PIdent` for `{nkSym, nkIdent}`, or `nil`.
  case a.kind
  of nkSym: a.sym.name
  of nkIdent: a.ident
  of nkOpenSymChoice, nkClosedSymChoice: a.sons[0].sym.name
  else: nil

const
  moduleShift = when defined(cpu32): 20 else: 24

template id*(a: PType | PSym): int =
  let x = a
  (x.itemId.module.int shl moduleShift) + x.itemId.item.int

type
  IdGenerator* = ref object # unfortunately, we really need the 'shared mutable' aspect here.
    module*: int32
    symId*: int32
    typeId*: int32
    sealed*: bool
    disambTable*: CountTable[PIdent]

const
  PackageModuleId* = -3'i32

proc idGeneratorFromModule*(m: PSym): IdGenerator =
  assert m.kind == skModule
  result = IdGenerator(module: m.itemId.module, symId: m.itemId.item, typeId: 0, disambTable: initCountTable[PIdent]())

proc idGeneratorForPackage*(nextIdWillBe: int32): IdGenerator =
  result = IdGenerator(module: PackageModuleId, symId: nextIdWillBe - 1'i32, typeId: 0, disambTable: initCountTable[PIdent]())

proc nextSymId(x: IdGenerator): ItemId {.inline.} =
  assert(not x.sealed)
  inc x.symId
  result = ItemId(module: x.module, item: x.symId)

proc nextTypeId*(x: IdGenerator): ItemId {.inline.} =
  assert(not x.sealed)
  inc x.typeId
  result = ItemId(module: x.module, item: x.typeId)

when false:
  proc nextId*(x: IdGenerator): ItemId {.inline.} =
    inc x.item
    result = x[]

when false:
  proc storeBack*(dest: var IdGenerator; src: IdGenerator) {.inline.} =
    assert dest.ItemId.module == src.ItemId.module
    if dest.ItemId.item > src.ItemId.item:
      echo dest.ItemId.item, " ", src.ItemId.item, " ", src.ItemId.module
    assert dest.ItemId.item <= src.ItemId.item
    dest = src

var ggDebug* {.deprecated.}: bool ## convenience switch for trying out things

proc isCallExpr*(n: PNode): bool =
  result = n.kind in nkCallKinds

proc discardSons*(father: PNode)

proc len*(n: PNode): int {.inline.} =
  result = n.sons.len

proc safeLen*(n: PNode): int {.inline.} =
  ## works even for leaves.
  if n.kind in {nkNone..nkNilLit}: result = 0
  else: result = n.len

proc safeArrLen*(n: PNode): int {.inline.} =
  ## works for array-like objects (strings passed as openArray in VM).
  if n.kind in {nkStrLit..nkTripleStrLit}: result = n.strVal.len
  elif n.kind in {nkNone..nkFloat128Lit}: result = 0
  else: result = n.len

proc add*(father, son: PNode) =
  assert son != nil
  father.sons.add(son)

proc addAllowNil*(father, son: PNode) {.inline.} =
  father.sons.add(son)

template `[]`*(n: PNode, i: int): PNode = n.sons[i]
template `[]=`*(n: PNode, i: int; x: PNode) = n.sons[i] = x

template `[]`*(n: PNode, i: BackwardsIndex): PNode = n[n.len - i.int]
template `[]=`*(n: PNode, i: BackwardsIndex; x: PNode) = n[n.len - i.int] = x

proc add*(father, son: PType) =
  assert son != nil
  father.sons.add(son)

proc addAllowNil*(father, son: PType) {.inline.} =
  father.sons.add(son)

template `[]`*(n: PType, i: int): PType = n.sons[i]
template `[]=`*(n: PType, i: int; x: PType) = n.sons[i] = x

template `[]`*(n: PType, i: BackwardsIndex): PType = n[n.len - i.int]
template `[]=`*(n: PType, i: BackwardsIndex; x: PType) = n[n.len - i.int] = x

proc getDeclPragma*(n: PNode): PNode =
  ## return the `nkPragma` node for declaration `n`, or `nil` if no pragma was found.
  ## Currently only supports routineDefs + {nkTypeDef}.
  case n.kind
  of routineDefs:
    if n[pragmasPos].kind != nkEmpty: result = n[pragmasPos]
    else: result = nil
  of nkTypeDef:
    #[
    type F3*{.deprecated: "x3".} = int

    TypeSection
      TypeDef
        PragmaExpr
          Postfix
            Ident "*"
            Ident "F3"
          Pragma
            ExprColonExpr
              Ident "deprecated"
              StrLit "x3"
        Empty
        Ident "int"
    ]#
    if n[0].kind == nkPragmaExpr:
      result = n[0][1]
    else:
      result = nil
  else:
    # support as needed for `nkIdentDefs` etc.
    result = nil
  if result != nil:
    assert result.kind == nkPragma, $(result.kind, n.kind)

proc extractPragma*(s: PSym): PNode =
  ## gets the pragma node of routine/type/var/let/const symbol `s`
  if s.kind in routineKinds:
    result = s.ast[pragmasPos]
  elif s.kind in {skType, skVar, skLet, skConst}:
    if s.ast != nil and s.ast.len > 0:
      if s.ast[0].kind == nkPragmaExpr and s.ast[0].len > 1:
        # s.ast = nkTypedef / nkPragmaExpr / [nkSym, nkPragma]
        result = s.ast[0][1]
      else:
        result = nil
    else:
      result = nil
  else:
    result = nil
  assert result == nil or result.kind == nkPragma

proc skipPragmaExpr*(n: PNode): PNode =
  ## if pragma expr, give the node the pragmas are applied to,
  ## otherwise give node itself
  if n.kind == nkPragmaExpr:
    result = n[0]
  else:
    result = n

proc setInfoRecursive*(n: PNode, info: TLineInfo) =
  ## set line info recursively
  if n != nil:
    for i in 0..<n.safeLen: setInfoRecursive(n[i], info)
    n.info = info

when defined(useNodeIds):
  const nodeIdToDebug* = -1 # 2322968
  var gNodeId: int

template newNodeImpl(info2) =
  result = PNode(kind: kind, info: info2)
  when false:
    # this would add overhead, so we skip it; it results in a small amount of leaked entries
    # for old PNode that gets re-allocated at the same address as a PNode that
    # has `nfHasComment` set (and an entry in that table). Only `nfHasComment`
    # should be used to test whether a PNode has a comment; gconfig.comments
    # can contain extra entries for deleted PNode's with comments.
    gconfig.comments.del(cast[int](result))

template setIdMaybe() =
  when defined(useNodeIds):
    result.id = gNodeId
    if result.id == nodeIdToDebug:
      echo "KIND ", result.kind
      writeStackTrace()
    inc gNodeId

proc newNode*(kind: TNodeKind): PNode =
  ## new node with unknown line info, no type, and no children
  newNodeImpl(unknownLineInfo)
  setIdMaybe()

proc newNodeI*(kind: TNodeKind, info: TLineInfo): PNode =
  ## new node with line info, no type, and no children
  newNodeImpl(info)
  setIdMaybe()

proc newNodeI*(kind: TNodeKind, info: TLineInfo, children: int): PNode =
  ## new node with line info, type, and children
  newNodeImpl(info)
  if children > 0:
    newSeq(result.sons, children)
  setIdMaybe()

proc newNodeIT*(kind: TNodeKind, info: TLineInfo, typ: PType): PNode =
  ## new node with line info, type, and no children
  result = newNode(kind)
  result.info = info
  result.typ = typ

proc newNode*(kind: TNodeKind, info: TLineInfo): PNode =
  ## new node with line info, no type, and no children
  newNodeImpl(info)
  setIdMaybe()

proc newAtom*(ident: PIdent, info: TLineInfo): PNode =
  result = newNode(nkIdent, info)
  result.ident = ident

proc newAtom*(kind: TNodeKind, intVal: BiggestInt, info: TLineInfo): PNode =
  result = newNode(kind, info)
  result.intVal = intVal

proc newAtom*(kind: TNodeKind, floatVal: BiggestFloat, info: TLineInfo): PNode =
  result = newNode(kind, info)
  result.floatVal = floatVal

proc newAtom*(kind: TNodeKind; strVal: sink string; info: TLineInfo): PNode =
  result = newNode(kind, info)
  result.strVal = strVal

proc newTree*(kind: TNodeKind; info: TLineInfo; children: varargs[PNode]): PNode =
  result = newNodeI(kind, info)
  if children.len > 0:
    result.info = children[0].info
  result.sons = @children

proc newTree*(kind: TNodeKind; children: varargs[PNode]): PNode =
  result = newNode(kind)
  if children.len > 0:
    result.info = children[0].info
  result.sons = @children

proc newTreeI*(kind: TNodeKind; info: TLineInfo; children: varargs[PNode]): PNode =
  result = newNodeI(kind, info)
  if children.len > 0:
    result.info = children[0].info
  result.sons = @children

proc newTreeIT*(kind: TNodeKind; info: TLineInfo; typ: PType; children: varargs[PNode]): PNode =
  result = newNodeIT(kind, info, typ)
  if children.len > 0:
    result.info = children[0].info
  result.sons = @children

template previouslyInferred*(t: PType): PType =
  if t.sons.len > 1: t.last else: nil

when false:
  import tables, strutils
  var x: CountTable[string]

  addQuitProc proc () {.noconv.} =
    for k, v in pairs(x):
      echo k
      echo v

proc newSym*(symKind: TSymKind, name: PIdent, idgen: IdGenerator; owner: PSym,
             info: TLineInfo; options: TOptions = {}): PSym =
  # generates a symbol and initializes the hash field too
  assert not name.isNil
  let id = nextSymId idgen
  result = PSym(name: name, kind: symKind, flags: {}, info: info, itemId: id,
                options: options, owner: owner, offset: defaultOffset,
                disamb: getOrDefault(idgen.disambTable, name).int32)
  idgen.disambTable.inc name
  when false:
    if id.module == 48 and id.item == 39:
      writeStackTrace()
      echo "kind ", symKind, " ", name.s
      if owner != nil: echo owner.name.s

proc astdef*(s: PSym): PNode =
  # get only the definition (initializer) portion of the ast
  if s.ast != nil and s.ast.kind in {nkIdentDefs, nkConstDef}:
    s.ast[2]
  else:
    s.ast

proc isMetaType*(t: PType): bool =
  return t.kind in tyMetaTypes or
         (t.kind == tyStatic and t.n == nil) or
         tfHasMeta in t.flags

proc isUnresolvedStatic*(t: PType): bool =
  return t.kind == tyStatic and t.n == nil

proc linkTo*(t: PType, s: PSym): PType {.discardable.} =
  t.sym = s
  s.typ = t
  result = t

proc linkTo*(s: PSym, t: PType): PSym {.discardable.} =
  t.sym = s
  s.typ = t
  result = s

template fileIdx*(c: PSym): FileIndex =
  # XXX: this should be used only on module symbols
  c.position.FileIndex

template filename*(c: PSym): string =
  # XXX: this should be used only on module symbols
  c.position.FileIndex.toFilename

proc appendToModule*(m: PSym, n: PNode) =
  ## The compiler will use this internally to add nodes that will be
  ## appended to the module after the sem pass
  if m.ast == nil:
    m.ast = newNode(nkStmtList)
    m.ast.sons = @[n]
  else:
    assert m.ast.kind == nkStmtList
    m.ast.sons.add(n)

const                         # for all kind of hash tables:
  GrowthFactor* = 2           # must be power of 2, > 0
  StartSize* = 8              # must be power of 2, > 0

proc copyStrTable*(dest: var TStrTable, src: TStrTable) =
  dest.counter = src.counter
  setLen(dest.data, src.data.len)
  for i in 0..high(src.data): dest.data[i] = src.data[i]

proc copyObjectSet*(dest: var TObjectSet, src: TObjectSet) =
  dest.counter = src.counter
  setLen(dest.data, src.data.len)
  for i in 0..high(src.data): dest.data[i] = src.data[i]

proc discardSons*(father: PNode) =
  father.sons = @[]

proc withInfo*(n: PNode, info: TLineInfo): PNode =
  n.info = info
  return n

proc newIdentNode*(ident: PIdent, info: TLineInfo): PNode =
  result = newNode(nkIdent)
  result.ident = ident
  result.info = info

proc newSymNode*(sym: PSym): PNode =
  result = newNode(nkSym)
  result.sym = sym
  result.typ = sym.typ
  result.info = sym.info

proc newSymNode*(sym: PSym, info: TLineInfo): PNode =
  result = newNode(nkSym)
  result.sym = sym
  result.typ = sym.typ
  result.info = info

proc newIntNode*(kind: TNodeKind, intVal: BiggestInt): PNode =
  result = newNode(kind)
  result.intVal = intVal

proc newIntNode*(kind: TNodeKind, intVal: Int128): PNode =
  result = newNode(kind)
  result.intVal = castToInt64(intVal)

proc lastSon*(n: PNode): PNode {.inline.} = n.sons[^1]
template setLastSon*(n: PNode, s: PNode) = n.sons[^1] = s

template firstSon*(n: PNode): PNode = n.sons[0]
template secondSon*(n: PNode): PNode = n.sons[1]

template hasSon*(n: PNode): bool = n.len > 0
template has2Sons*(n: PNode): bool = n.len > 1

proc replaceFirstSon*(n, newson: PNode) {.inline.} =
  n.sons[0] = newson

proc replaceSon*(n: PNode; i: int; newson: PNode) {.inline.} =
  n.sons[i] = newson

proc last*(n: PType): PType {.inline.} = n.sons[^1]

proc elementType*(n: PType): PType {.inline.} = n.sons[^1]
proc skipModifier*(n: PType): PType {.inline.} = n.sons[^1]

proc indexType*(n: PType): PType {.inline.} = n.sons[0]
proc baseClass*(n: PType): PType {.inline.} = n.sons[0]

proc base*(t: PType): PType {.inline.} =
  result = t.sons[0]

proc returnType*(n: PType): PType {.inline.} = n.sons[0]
proc setReturnType*(n, r: PType) {.inline.} = n.sons[0] = r
proc setIndexType*(n, idx: PType) {.inline.} = n.sons[0] = idx

proc firstParamType*(n: PType): PType {.inline.} = n.sons[1]
proc firstGenericParam*(n: PType): PType {.inline.} = n.sons[1]

proc typeBodyImpl*(n: PType): PType {.inline.} = n.sons[^1]

proc genericHead*(n: PType): PType {.inline.} = n.sons[0]

proc skipTypes*(t: PType, kinds: TTypeKinds): PType =
  ## Used throughout the compiler code to test whether a type tree contains or
  ## doesn't contain a specific type/types - it is often the case that only the
  ## last child nodes of a type tree need to be searched. This is a really hot
  ## path within the compiler!
  result = t
  while result.kind in kinds: result = last(result)

proc newIntTypeNode*(intVal: BiggestInt, typ: PType): PNode =
  let kind = skipTypes(typ, abstractVarRange).kind
  case kind
  of tyInt:     result = newNode(nkIntLit)
  of tyInt8:    result = newNode(nkInt8Lit)
  of tyInt16:   result = newNode(nkInt16Lit)
  of tyInt32:   result = newNode(nkInt32Lit)
  of tyInt64:   result = newNode(nkInt64Lit)
  of tyChar:    result = newNode(nkCharLit)
  of tyUInt:    result = newNode(nkUIntLit)
  of tyUInt8:   result = newNode(nkUInt8Lit)
  of tyUInt16:  result = newNode(nkUInt16Lit)
  of tyUInt32:  result = newNode(nkUInt32Lit)
  of tyUInt64:  result = newNode(nkUInt64Lit)
  of tyBool, tyEnum:
    # XXX: does this really need to be the kind nkIntLit?
    result = newNode(nkIntLit)
  of tyStatic: # that's a pre-existing bug, will fix in another PR
    result = newNode(nkIntLit)
  else: raiseAssert $kind
  result.intVal = intVal
  result.typ = typ

proc newIntTypeNode*(intVal: Int128, typ: PType): PNode =
  # XXX: introduce range check
  newIntTypeNode(castToInt64(intVal), typ)

proc newFloatNode*(kind: TNodeKind, floatVal: BiggestFloat): PNode =
  result = newNode(kind)
  result.floatVal = floatVal

proc newStrNode*(kind: TNodeKind, strVal: string): PNode =
  result = newNode(kind)
  result.strVal = strVal

proc newStrNode*(strVal: string; info: TLineInfo): PNode =
  result = newNodeI(nkStrLit, info)
  result.strVal = strVal

proc newProcNode*(kind: TNodeKind, info: TLineInfo, body: PNode,
                 params,
                 name, pattern, genericParams,
                 pragmas, exceptions: PNode): PNode =
  result = newNodeI(kind, info)
  result.sons = @[name, pattern, genericParams, params,
                  pragmas, exceptions, body]

const
  AttachedOpToStr*: array[TTypeAttachedOp, string] = [
    "=wasMoved", "=destroy", "=copy", "=dup", "=sink", "=trace", "=deepcopy"]

proc `$`*(s: PSym): string =
  if s != nil:
    result = s.name.s & "@" & $s.id
  else:
    result = "<nil>"

when false:
  iterator items*(t: PType): PType =
    for i in 0..<t.sons.len: yield t.sons[i]

  iterator pairs*(n: PType): tuple[i: int, n: PType] =
    for i in 0..<n.sons.len: yield (i, n.sons[i])

when true:
  proc len*(n: PType): int {.inline.} =
    result = n.sons.len

proc sameTupleLengths*(a, b: PType): bool {.inline.} =
  result = a.sons.len == b.sons.len

iterator tupleTypePairs*(a, b: PType): (int, PType, PType) =
  for i in 0 ..< a.sons.len:
    yield (i, a.sons[i], b.sons[i])

iterator underspecifiedPairs*(a, b: PType; start = 0; without = 0): (PType, PType) =
  # XXX Figure out with what typekinds this is called.
  for i in start ..< min(a.sons.len, b.sons.len) + without:
    yield (a.sons[i], b.sons[i])

proc signatureLen*(t: PType): int {.inline.} =
  result = t.sons.len

proc paramsLen*(t: PType): int {.inline.} =
  result = t.sons.len - 1

proc genericParamsLen*(t: PType): int {.inline.} =
  assert t.kind == tyGenericInst
  result = t.sons.len - 2 # without 'head' and 'body'

proc genericInvocationParamsLen*(t: PType): int {.inline.} =
  assert t.kind == tyGenericInvocation
  result = t.sons.len - 1 # without 'head'

proc kidsLen*(t: PType): int {.inline.} =
  result = t.sons.len

proc genericParamHasConstraints*(t: PType): bool {.inline.} = t.sons.len > 0

proc hasElementType*(t: PType): bool {.inline.} = t.sons.len > 0
proc isEmptyTupleType*(t: PType): bool {.inline.} = t.sons.len == 0
proc isSingletonTupleType*(t: PType): bool {.inline.} = t.sons.len == 1

proc genericConstraint*(t: PType): PType {.inline.} = t.sons[0]

iterator genericInstParams*(t: PType): (bool, PType) =
  for i in 1..<t.sons.len-1:
    yield (i!=1, t.sons[i])

iterator genericInstParamPairs*(a, b: PType): (int, PType, PType) =
  for i in 1..<min(a.sons.len, b.sons.len)-1:
    yield (i-1, a.sons[i], b.sons[i])

iterator genericInvocationParams*(t: PType): (bool, PType) =
  for i in 1..<t.sons.len:
    yield (i!=1, t.sons[i])

iterator genericInvocationAndBodyElements*(a, b: PType): (PType, PType) =
  for i in 1..<a.sons.len:
    yield (a.sons[i], b.sons[i-1])

iterator genericInvocationParamPairs*(a, b: PType): (bool, PType, PType) =
  for i in 1..<a.sons.len:
    if i >= b.sons.len:
      yield (false, nil, nil)
    else:
      yield (true, a.sons[i], b.sons[i])

iterator genericBodyParams*(t: PType): (int, PType) =
  for i in 0..<t.sons.len-1:
    yield (i, t.sons[i])

iterator userTypeClassInstParams*(t: PType): (bool, PType) =
  for i in 1..<t.sons.len-1:
    yield (i!=1, t.sons[i])

iterator ikids*(t: PType): (int, PType) =
  for i in 0..<t.sons.len: yield (i, t.sons[i])

const
  FirstParamAt* = 1
  FirstGenericParamAt* = 1

iterator paramTypes*(t: PType): (int, PType) =
  for i in FirstParamAt..<t.sons.len: yield (i, t.sons[i])

iterator paramTypePairs*(a, b: PType): (PType, PType) =
  for i in FirstParamAt..<a.sons.len: yield (a.sons[i], b.sons[i])

template paramTypeToNodeIndex*(x: int): int = x

iterator kids*(t: PType): PType =
  for i in 0..<t.sons.len: yield t.sons[i]

iterator signature*(t: PType): PType =
  # yields return type + parameter types
  for i in 0..<t.sons.len: yield t.sons[i]

proc newType*(kind: TTypeKind; idgen: IdGenerator; owner: PSym; son: sink PType = nil): PType =
  let id = nextTypeId idgen
  result = PType(kind: kind, owner: owner, size: defaultSize,
                 align: defaultAlignment, itemId: id,
                 uniqueId: id, sons: @[])
  if son != nil: result.sons.add son
  when false:
    if result.itemId.module == 55 and result.itemId.item == 2:
      echo "KNID ", kind
      writeStackTrace()

proc setSons*(dest: PType; sons: sink seq[PType]) {.inline.} = dest.sons = sons
proc setSon*(dest: PType; son: sink PType) {.inline.} = dest.sons = @[son]

proc mergeLoc(a: var TLoc, b: TLoc) =
  if a.k == low(typeof(a.k)): a.k = b.k
  if a.storage == low(typeof(a.storage)): a.storage = b.storage
  a.flags.incl b.flags
  if a.lode == nil: a.lode = b.lode
  if a.r == "": a.r = b.r

proc newSons*(father: PNode, length: int) =
  setLen(father.sons, length)

proc newSons*(father: PType, length: int) =
  setLen(father.sons, length)

proc truncateInferredTypeCandidates*(t: PType) {.inline.} =
  assert t.kind == tyInferred
  if t.sons.len > 1:
    setLen(t.sons, 1)

proc assignType*(dest, src: PType) =
  dest.kind = src.kind
  dest.flags = src.flags
  dest.callConv = src.callConv
  dest.n = src.n
  dest.size = src.size
  dest.align = src.align
  # this fixes 'type TLock = TSysLock':
  if src.sym != nil:
    if dest.sym != nil:
      dest.sym.flags.incl src.sym.flags-{sfUsed, sfExported}
      if dest.sym.annex == nil: dest.sym.annex = src.sym.annex
      mergeLoc(dest.sym.loc, src.sym.loc)
    else:
      dest.sym = src.sym
  newSons(dest, src.sons.len)
  for i in 0..<src.sons.len: dest[i] = src[i]

proc copyType*(t: PType, idgen: IdGenerator, owner: PSym): PType =
  result = newType(t.kind, idgen, owner)
  assignType(result, t)
  result.sym = t.sym          # backend-info should not be copied

proc exactReplica*(t: PType): PType =
  result = PType(kind: t.kind, owner: t.owner, size: defaultSize,
                 align: defaultAlignment, itemId: t.itemId,
                 uniqueId: t.uniqueId)
  assignType(result, t)
  result.sym = t.sym          # backend-info should not be copied

proc copySym*(s: PSym; idgen: IdGenerator): PSym =
  result = newSym(s.kind, s.name, idgen, s.owner, s.info, s.options)
  #result.ast = nil            # BUGFIX; was: s.ast which made problems
  result.typ = s.typ
  result.flags = s.flags
  result.magic = s.magic
  result.options = s.options
  result.position = s.position
  result.loc = s.loc
  result.annex = s.annex      # BUGFIX
  result.constraint = s.constraint
  if result.kind in {skVar, skLet, skField}:
    result.guard = s.guard
    result.bitsize = s.bitsize
    result.alignment = s.alignment

proc createModuleAlias*(s: PSym, idgen: IdGenerator, newIdent: PIdent, info: TLineInfo;
                        options: TOptions): PSym =
  result = newSym(s.kind, newIdent, idgen, s.owner, info, options)
  # keep ID!
  result.ast = s.ast
  #result.id = s.id # XXX figure out what to do with the ID.
  result.flags = s.flags
  result.options = s.options
  result.position = s.position
  result.loc = s.loc
  result.annex = s.annex

proc initStrTable*(): TStrTable =
  result = TStrTable(counter: 0)
  newSeq(result.data, StartSize)

proc initObjectSet*(): TObjectSet =
  result = TObjectSet(counter: 0)
  newSeq(result.data, StartSize)

proc initNodeTable*(): TNodeTable =
  result = TNodeTable(counter: 0)
  newSeq(result.data, StartSize)

proc skipTypes*(t: PType, kinds: TTypeKinds; maxIters: int): PType =
  result = t
  var i = maxIters
  while result.kind in kinds:
    result = last(result)
    dec i
    if i == 0: return nil

proc skipTypesOrNil*(t: PType, kinds: TTypeKinds): PType =
  ## same as skipTypes but handles 'nil'
  result = t
  while result != nil and result.kind in kinds:
    if result.sons.len == 0: return nil
    result = last(result)

proc isGCedMem*(t: PType): bool {.inline.} =
  result = t.kind in {tyString, tyRef, tySequence} or
           t.kind == tyProc and t.callConv == ccClosure

proc propagateToOwner*(owner, elem: PType; propagateHasAsgn = true) =
  owner.flags.incl elem.flags * {tfHasMeta, tfTriggersCompileTime}
  if tfNotNil in elem.flags:
    if owner.kind in {tyGenericInst, tyGenericBody, tyGenericInvocation}:
      owner.flags.incl tfNotNil

  if elem.isMetaType:
    owner.flags.incl tfHasMeta

  let mask = elem.flags * {tfHasAsgn, tfHasOwned}
  if mask != {} and propagateHasAsgn:
    let o2 = owner.skipTypes({tyGenericInst, tyAlias, tySink})
    if o2.kind in {tyTuple, tyObject, tyArray,
                   tySequence, tySet, tyDistinct}:
      o2.flags.incl mask
      owner.flags.incl mask

  if owner.kind notin {tyProc, tyGenericInst, tyGenericBody,
                       tyGenericInvocation, tyPtr}:
    let elemB = elem.skipTypes({tyGenericInst, tyAlias, tySink})
    if elemB.isGCedMem or tfHasGCedMem in elemB.flags:
      # for simplicity, we propagate this flag even to generics. We then
      # ensure this doesn't bite us in sempass2.
      owner.flags.incl tfHasGCedMem

proc rawAddSon*(father, son: PType; propagateHasAsgn = true) =
  father.sons.add(son)
  if not son.isNil: propagateToOwner(father, son, propagateHasAsgn)

proc addSonNilAllowed*(father, son: PNode) =
  father.sons.add(son)

proc delSon*(father: PNode, idx: int) =
  if father.len == 0: return
  for i in idx..<father.len - 1: father[i] = father[i + 1]
  father.sons.setLen(father.len - 1)

proc copyNode*(src: PNode): PNode =
  # does not copy its sons!
  if src == nil:
    return nil
  result = newNode(src.kind)
  result.info = src.info
  result.typ = src.typ
  result.flags = src.flags * PersistentNodeFlags
  result.comment = src.comment
  when defined(useNodeIds):
    if result.id == nodeIdToDebug:
      echo "COMES FROM ", src.id
  case src.kind
  of nkCharLit..nkUInt64Lit: result.intVal = src.intVal
  of nkFloatLiterals: result.floatVal = src.floatVal
  of nkSym: result.sym = src.sym
  of nkIdent: result.ident = src.ident
  of nkStrLit..nkTripleStrLit: result.strVal = src.strVal
  else: discard
  when defined(nimsuggest):
    result.endInfo = src.endInfo

template transitionNodeKindCommon(k: TNodeKind) =
  let obj {.inject.} = n[]
  n[] = TNode(kind: k, typ: obj.typ, info: obj.info, flags: obj.flags)
  # n.comment = obj.comment # shouldn't be needed, the address doesnt' change
  when defined(useNodeIds):
    n.id = obj.id

proc transitionSonsKind*(n: PNode, kind: range[nkComesFrom..nkTupleConstr]) =
  transitionNodeKindCommon(kind)
  n.sons = obj.sons

proc transitionIntKind*(n: PNode, kind: range[nkCharLit..nkUInt64Lit]) =
  transitionNodeKindCommon(kind)
  n.intVal = obj.intVal

proc transitionIntToFloatKind*(n: PNode, kind: range[nkFloatLit..nkFloat128Lit]) =
  transitionNodeKindCommon(kind)
  n.floatVal = BiggestFloat(obj.intVal)

proc transitionNoneToSym*(n: PNode) =
  transitionNodeKindCommon(nkSym)

template transitionSymKindCommon*(k: TSymKind) =
  let obj {.inject.} = s[]
  s[] = TSym(kind: k, itemId: obj.itemId, magic: obj.magic, typ: obj.typ, name: obj.name,
             info: obj.info, owner: obj.owner, flags: obj.flags, ast: obj.ast,
             options: obj.options, position: obj.position, offset: obj.offset,
             loc: obj.loc, annex: obj.annex, constraint: obj.constraint)
  when hasFFI:
    s.cname = obj.cname
  when defined(nimsuggest):
    s.allUsages = obj.allUsages

proc transitionGenericParamToType*(s: PSym) =
  transitionSymKindCommon(skType)

proc transitionRoutineSymKind*(s: PSym, kind: range[skProc..skTemplate]) =
  transitionSymKindCommon(kind)
  s.gcUnsafetyReason = obj.gcUnsafetyReason
  s.transformedBody = obj.transformedBody

proc transitionToLet*(s: PSym) =
  transitionSymKindCommon(skLet)
  s.guard = obj.guard
  s.bitsize = obj.bitsize
  s.alignment = obj.alignment

template copyNodeImpl(dst, src, processSonsStmt) =
  if src == nil: return
  dst = newNode(src.kind)
  dst.info = src.info
  when defined(nimsuggest):
    result.endInfo = src.endInfo
  dst.typ = src.typ
  dst.flags = src.flags * PersistentNodeFlags
  dst.comment = src.comment
  when defined(useNodeIds):
    if dst.id == nodeIdToDebug:
      echo "COMES FROM ", src.id
  case src.kind
  of nkCharLit..nkUInt64Lit: dst.intVal = src.intVal
  of nkFloatLiterals: dst.floatVal = src.floatVal
  of nkSym: dst.sym = src.sym
  of nkIdent: dst.ident = src.ident
  of nkStrLit..nkTripleStrLit: dst.strVal = src.strVal
  else: processSonsStmt

proc shallowCopy*(src: PNode): PNode =
  # does not copy its sons, but provides space for them:
  copyNodeImpl(result, src):
    newSeq(result.sons, src.len)

proc copyTree*(src: PNode): PNode =
  # copy a whole syntax tree; performs deep copying
  copyNodeImpl(result, src):
    newSeq(result.sons, src.len)
    for i in 0..<src.len:
      result[i] = copyTree(src[i])

proc copyTreeWithoutNode*(src, skippedNode: PNode): PNode =
  copyNodeImpl(result, src):
    result.sons = newSeqOfCap[PNode](src.len)
    for n in src.sons:
      if n != skippedNode:
        result.sons.add copyTreeWithoutNode(n, skippedNode)

proc hasSonWith*(n: PNode, kind: TNodeKind): bool =
  for i in 0..<n.len:
    if n[i].kind == kind:
      return true
  result = false

proc hasNilSon*(n: PNode): bool =
  for i in 0..<n.safeLen:
    if n[i] == nil:
      return true
    elif hasNilSon(n[i]):
      return true
  result = false

proc containsNode*(n: PNode, kinds: TNodeKinds): bool =
  result = false
  if n == nil: return
  case n.kind
  of nkEmpty..nkNilLit: result = n.kind in kinds
  else:
    for i in 0..<n.len:
      if n.kind in kinds or containsNode(n[i], kinds): return true

proc hasSubnodeWith*(n: PNode, kind: TNodeKind): bool =
  case n.kind
  of nkEmpty..nkNilLit, nkFormalParams: result = n.kind == kind
  else:
    for i in 0..<n.len:
      if (n[i].kind == kind) or hasSubnodeWith(n[i], kind):
        return true
    result = false

proc getInt*(a: PNode): Int128 =
  case a.kind
  of nkCharLit, nkUIntLit..nkUInt64Lit:
    result = toInt128(cast[uint64](a.intVal))
  of nkInt8Lit..nkInt64Lit:
    result = toInt128(a.intVal)
  of nkIntLit:
    # XXX: enable this assert
    # assert a.typ.kind notin {tyChar, tyUint..tyUInt64}
    result = toInt128(a.intVal)
  else:
    raiseRecoverableError("cannot extract number from invalid AST node")

proc getInt64*(a: PNode): int64 {.deprecated: "use getInt".} =
  case a.kind
  of nkCharLit, nkUIntLit..nkUInt64Lit, nkIntLit..nkInt64Lit:
    result = a.intVal
  else:
    raiseRecoverableError("cannot extract number from invalid AST node")

proc getFloat*(a: PNode): BiggestFloat =
  case a.kind
  of nkFloatLiterals: result = a.floatVal
  of nkCharLit, nkUIntLit..nkUInt64Lit, nkIntLit..nkInt64Lit:
    result = BiggestFloat a.intVal
  else:
    raiseRecoverableError("cannot extract number from invalid AST node")
    #doAssert false, "getFloat"
    #internalError(a.info, "getFloat")
    #result = 0.0

proc getStr*(a: PNode): string =
  case a.kind
  of nkStrLit..nkTripleStrLit: result = a.strVal
  of nkNilLit:
    # let's hope this fixes more problems than it creates:
    result = ""
  else:
    raiseRecoverableError("cannot extract string from invalid AST node")
    #doAssert
quot; proc getStrOrChar*(a: PNode): string = case a.kind of nkStrLit..nkTripleStrLit: result = a.strVal of nkCharLit..nkUInt64Lit: result = $chr(int(a.intVal)) else: raiseRecoverableError("cannot extract string from invalid AST node") #doAssert false, "getStrOrChar" #internalError(a.info, "getStrOrChar") #result = "" proc isGenericParams*(n: PNode): bool {.inline.} = ## used to judge whether a node is generic params. n != nil and n.kind == nkGenericParams proc isGenericRoutine*(n: PNode): bool {.inline.} = n != nil and n.kind in callableDefs and n[genericParamsPos].isGenericParams proc isGenericRoutineStrict*(s: PSym): bool {.inline.} = ## determines if this symbol represents a generic routine ## the unusual name is so it doesn't collide and eventually replaces ## `isGenericRoutine` s.kind in skProcKinds and s.ast.isGenericRoutine proc isGenericRoutine*(s: PSym): bool {.inline.} = ## determines if this symbol represents a generic routine or an instance of ## one. This should be renamed accordingly and `isGenericRoutineStrict` ## should take this name instead. ## ## Warning/XXX: Unfortunately, it considers a proc kind symbol flagged with ## sfFromGeneric as a generic routine. Instead this should likely not be the ## case and the concepts should be teased apart: ## - generic definition ## - generic instance ## - either generic definition or instance s.kind in skProcKinds and (sfFromGeneric in s.flags or s.ast.isGenericRoutine) proc skipGenericOwner*(s: PSym): PSym = ## Generic instantiations are owned by their originating generic ## symbol. This proc skips such owners and goes straight to the owner ## of the generic itself (the module or the enclosing proc). result = if s.kind == skModule: s elif s.kind in skProcKinds and sfFromGeneric in s.flags and s.owner.kind != skModule: s.owner.owner else: s.owner proc originatingModule*(s: PSym): PSym = result = s while result.kind != skModule: result = result.owner proc isRoutine*(s: PSym): bool {.inline.} = result = s.kind in skProcKinds proc isCompileTimeProc*(s: PSym): bool {.inline.} = result = s.kind == skMacro or s.kind in {skProc, skFunc} and sfCompileTime in s.flags proc hasPattern*(s: PSym): bool {.inline.} = result = isRoutine(s) and s.ast[patternPos].kind != nkEmpty iterator items*(n: PNode): PNode = for i in 0..<n.safeLen: yield n[i] iterator pairs*(n: PNode): tuple[i: int, n: PNode] = for i in 0..<n.safeLen: yield (i, n[i]) proc isAtom*(n: PNode): bool {.inline.} = result = n.kind >= nkNone and n.kind <= nkNilLit proc isEmptyType*(t: PType): bool {.inline.} = ## 'void' and 'typed' types are often equivalent to 'nil' these days: result = t == nil or t.kind in {tyVoid, tyTyped} proc makeStmtList*(n: PNode): PNode = if n.kind == nkStmtList: result = n else: result = newNodeI(nkStmtList, n.info) result.add n proc skipStmtList*(n: PNode): PNode = if n.kind in {nkStmtList, nkStmtListExpr}: for i in 0..<n.len-1: if n[i].kind notin {nkEmpty, nkCommentStmt}: return n result = n.lastSon else: result = n proc toVar*(typ: PType; kind: TTypeKind; idgen: IdGenerator): PType = ## If ``typ`` is not a tyVar then it is converted into a `var <typ>` and ## returned. Otherwise ``typ`` is simply returned as-is. result = typ if typ.kind != kind: result = newType(kind, idgen, typ.owner, typ) proc toRef*(typ: PType; idgen: IdGenerator): PType = ## If ``typ`` is a tyObject then it is converted into a `ref <typ>` and ## returned. Otherwise ``typ`` is simply returned as-is. result = typ if typ.skipTypes({tyAlias, tyGenericInst}).kind == tyObject: result = newType(tyRef, idgen, typ.owner, typ) proc toObject*(typ: PType): PType = ## If ``typ`` is a tyRef then its immediate son is returned (which in many ## cases should be a ``tyObject``). ## Otherwise ``typ`` is simply returned as-is. let t = typ.skipTypes({tyAlias, tyGenericInst}) if t.kind == tyRef: t.elementType else: typ proc toObjectFromRefPtrGeneric*(typ: PType): PType = #[ See also `toObject`. Finds the underlying `object`, even in cases like these: type B[T] = object f0: int A1[T] = ref B[T] A2[T] = ref object f1: int A3 = ref object f2: int A4 = object f3: int ]# result = typ while true: case result.kind of tyGenericBody: result = result.last of tyRef, tyPtr, tyGenericInst, tyGenericInvocation, tyAlias: result = result[0] # automatic dereferencing is deep, refs #18298. else: break # result does not have to be object type proc isImportedException*(t: PType; conf: ConfigRef): bool = assert t != nil if conf.exc != excCpp: return false let base = t.skipTypes({tyAlias, tyPtr, tyDistinct, tyGenericInst}) result = base.sym != nil and {sfCompileToCpp, sfImportc} * base.sym.flags != {} proc isInfixAs*(n: PNode): bool = return n.kind == nkInfix and n[0].kind == nkIdent and n[0].ident.id == ord(wAs) proc skipColon*(n: PNode): PNode = result = n if n.kind == nkExprColonExpr: result = n[1] proc findUnresolvedStatic*(n: PNode): PNode = if n.kind == nkSym and n.typ != nil and n.typ.kind == tyStatic and n.typ.n == nil: return n if n.typ != nil and n.typ.kind == tyTypeDesc: let t = skipTypes(n.typ, {tyTypeDesc}) if t.kind == tyGenericParam and not t.genericParamHasConstraints: return n for son in n: let n = son.findUnresolvedStatic if n != nil: return n return nil when false: proc containsNil*(n: PNode): bool = # only for debugging if n.isNil: return true for i in 0..<n.safeLen: if n[i].containsNil: return true template hasDestructor*(t: PType): bool = {tfHasAsgn, tfHasOwned} * t.flags != {} template incompleteType*(t: PType): bool = t.sym != nil and {sfForward, sfNoForward} * t.sym.flags == {sfForward} template typeCompleted*(s: PSym) = incl s.flags, sfNoForward template detailedInfo*(sym: PSym): string = sym.name.s proc isInlineIterator*(typ: PType): bool {.inline.} = typ.kind == tyProc and tfIterator in typ.flags and typ.callConv != ccClosure proc isIterator*(typ: PType): bool {.inline.} = typ.kind == tyProc and tfIterator in typ.flags proc isClosureIterator*(typ: PType): bool {.inline.} = typ.kind == tyProc and tfIterator in typ.flags and typ.callConv == ccClosure proc isClosure*(typ: PType): bool {.inline.} = typ.kind == tyProc and typ.callConv == ccClosure proc isNimcall*(s: PSym): bool {.inline.} = s.typ.callConv == ccNimCall proc isExplicitCallConv*(s: PSym): bool {.inline.} = tfExplicitCallConv in s.typ.flags proc isSinkParam*(s: PSym): bool {.inline.} = s.kind == skParam and (s.typ.kind == tySink or tfHasOwned in s.typ.flags) proc isSinkType*(t: PType): bool {.inline.} = t.kind == tySink or tfHasOwned in t.flags proc newProcType*(info: TLineInfo; idgen: IdGenerator; owner: PSym): PType = result = newType(tyProc, idgen, owner) result.n = newNodeI(nkFormalParams, info) rawAddSon(result, nil) # return type # result.n[0] used to be `nkType`, but now it's `nkEffectList` because # the effects are now stored in there too ... this is a bit hacky, but as # usual we desperately try to save memory: result.n.add newNodeI(nkEffectList, info) proc addParam*(procType: PType; param: PSym) = param.position = procType.sons.len-1 procType.n.add newSymNode(param) rawAddSon(procType, param.typ) const magicsThatCanRaise = { mNone, mSlurp, mStaticExec, mParseExprToAst, mParseStmtToAst, mEcho} proc canRaiseConservative*(fn: PNode): bool = if fn.kind == nkSym and fn.sym.magic notin magicsThatCanRaise: result = false else: result = true proc canRaise*(fn: PNode): bool = if fn.kind == nkSym and (fn.sym.magic notin magicsThatCanRaise or {sfImportc, sfInfixCall} * fn.sym.flags == {sfImportc} or sfGeneratedOp in fn.sym.flags): result = false elif fn.kind == nkSym and fn.sym.magic == mEcho: result = true else: # TODO check for n having sons? or just return false for now if not if fn.typ != nil and fn.typ.n != nil and fn.typ.n[0].kind == nkSym: result = false else: result = fn.typ != nil and fn.typ.n != nil and ((fn.typ.n[0].len < effectListLen) or (fn.typ.n[0][exceptionEffects] != nil and fn.typ.n[0][exceptionEffects].safeLen > 0)) proc toHumanStrImpl[T](kind: T, num: static int): string = result = $kind result = result[num..^1] result[0] = result[0].toLowerAscii proc toHumanStr*(kind: TSymKind): string = ## strips leading `sk` result = toHumanStrImpl(kind, 2) proc toHumanStr*(kind: TTypeKind): string = ## strips leading `tk` result = toHumanStrImpl(kind, 2) proc skipHiddenAddr*(n: PNode): PNode {.inline.} = (if n.kind == nkHiddenAddr: n[0] else: n) proc isNewStyleConcept*(n: PNode): bool {.inline.} = assert n.kind == nkTypeClassTy result = n[0].kind == nkEmpty proc isOutParam*(t: PType): bool {.inline.} = tfIsOutParam in t.flags const nodesToIgnoreSet* = {nkNone..pred(nkSym), succ(nkSym)..nkNilLit, nkTypeSection, nkProcDef, nkConverterDef, nkMethodDef, nkIteratorDef, nkMacroDef, nkTemplateDef, nkLambda, nkDo, nkFuncDef, nkConstSection, nkConstDef, nkIncludeStmt, nkImportStmt, nkExportStmt, nkPragma, nkCommentStmt, nkBreakState, nkTypeOfExpr, nkMixinStmt, nkBindStmt} proc isTrue*(n: PNode): bool = n.kind == nkSym and n.sym.kind == skEnumField and n.sym.position != 0 or n.kind == nkIntLit and n.intVal != 0 type TypeMapping* = Table[ItemId, PType] SymMapping* = Table[ItemId, PSym] template idTableGet*(tab: typed; key: PSym | PType): untyped = tab.getOrDefault(key.itemId) template idTablePut*(tab: typed; key, val: PSym | PType) = tab[key.itemId] = val template initSymMapping*(): Table[ItemId, PSym] = initTable[ItemId, PSym]() template initTypeMapping*(): Table[ItemId, PType] = initTable[ItemId, PType]() template resetIdTable*(tab: Table[ItemId, PSym]) = tab.clear() template resetIdTable*(tab: Table[ItemId, PType]) = tab.clear()