1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
|
//
//
// The Nimrod Compiler
// (c) Copyright 2009 Andreas Rumpf
//
// See the file "copying.txt", included in this
// distribution, for details about the copyright.
//
unit nimsets;
// this unit handles Nimrod sets; it implements symbolic sets
interface
{$include 'config.inc'}
uses
nsystem, ast, astalgo, trees, nversion, msgs, platform,
bitsets, types, rnimsyn;
procedure toBitSet(s: PNode; out b: TBitSet);
// this function is used for case statement checking:
function overlap(a, b: PNode): Boolean;
function inSet(s: PNode; const elem: PNode): Boolean;
function someInSet(s: PNode; const a, b: PNode): Boolean;
function emptyRange(const a, b: PNode): Boolean;
function SetHasRange(s: PNode): Boolean;
// returns true if set contains a range (needed by the code generator)
// these are used for constant folding:
function unionSets(a, b: PNode): PNode;
function diffSets(a, b: PNode): PNode;
function intersectSets(a, b: PNode): PNode;
function symdiffSets(a, b: PNode): PNode;
function containsSets(a, b: PNode): Boolean;
function equalSets(a, b: PNode): Boolean;
function cardSet(s: PNode): BiggestInt;
implementation
function inSet(s: PNode; const elem: PNode): Boolean;
var
i: int;
begin
if s.kind <> nkCurly then InternalError(s.info, 'inSet');
for i := 0 to sonsLen(s)-1 do
if s.sons[i].kind = nkRange then begin
if leValue(s.sons[i].sons[0], elem)
and leValue(elem, s.sons[i].sons[1]) then begin
result := true; exit
end
end
else begin
if sameValue(s.sons[i], elem) then begin
result := true; exit
end
end;
result := false
end;
function overlap(a, b: PNode): Boolean;
begin
if a.kind = nkRange then begin
if b.kind = nkRange then begin
result := leValue(a.sons[0], b.sons[1])
and leValue(b.sons[1], a.sons[1])
or leValue(a.sons[0], b.sons[0])
and leValue(b.sons[0], a.sons[1])
end
else begin
result := leValue(a.sons[0], b)
and leValue(b, a.sons[1])
end
end
else begin
if b.kind = nkRange then begin
result := leValue(b.sons[0], a)
and leValue(a, b.sons[1])
end
else begin
result := sameValue(a, b)
end
end
end;
function SomeInSet(s: PNode; const a, b: PNode): Boolean;
// checks if some element of a..b is in the set s
var
i: int;
begin
if s.kind <> nkCurly then InternalError(s.info, 'SomeInSet');
for i := 0 to sonsLen(s)-1 do
if s.sons[i].kind = nkRange then begin
if leValue(s.sons[i].sons[0], b)
and leValue(b, s.sons[i].sons[1])
or leValue(s.sons[i].sons[0], a)
and leValue(a, s.sons[i].sons[1]) then begin
result := true; exit
end
end
else begin
// a <= elem <= b
if leValue(a, s.sons[i]) and leValue(s.sons[i], b) then begin
result := true; exit
end
end;
result := false
end;
procedure toBitSet(s: PNode; out b: TBitSet);
var
i: int;
first, j: BiggestInt;
begin
first := firstOrd(s.typ.sons[0]);
bitSetInit(b, int(getSize(s.typ)));
for i := 0 to sonsLen(s)-1 do
if s.sons[i].kind = nkRange then begin
j := getOrdValue(s.sons[i].sons[0]);
while j <= getOrdValue(s.sons[i].sons[1]) do begin
BitSetIncl(b, j - first);
inc(j)
end
end
else
BitSetIncl(b, getOrdValue(s.sons[i]) - first)
end;
function ToTreeSet(const s: TBitSet; settype: PType;
const info: TLineInfo): PNode;
var
a, b, e, first: BiggestInt; // a, b are interval borders
elemType: PType;
n: PNode;
begin
elemType := settype.sons[0];
first := firstOrd(elemType);
result := newNodeI(nkCurly, info);
result.typ := settype;
result.info := info;
e := 0;
while e < high(s)*elemSize do begin
if bitSetIn(s, e) then begin
a := e; b := e;
repeat
Inc(b);
until (b > high(s)*elemSize) or not bitSetIn(s, b);
Dec(b);
if a = b then // a single element:
addSon(result, newIntTypeNode(nkIntLit, a + first, elemType))
else begin
n := newNodeI(nkRange, info);
n.typ := elemType;
addSon(n, newIntTypeNode(nkIntLit, a + first, elemType));
addSon(n, newIntTypeNode(nkIntLit, b + first, elemType));
addSon(result, n);
end;
e := b
end;
Inc(e)
end
end;
type
TSetOP = (soUnion, soDiff, soSymDiff, soIntersect);
function nodeSetOp(a, b: PNode; op: TSetOp): PNode;
var
x, y: TBitSet;
begin
toBitSet(a, x);
toBitSet(b, y);
case op of
soUnion: BitSetUnion(x, y);
soDiff: BitSetDiff(x, y);
soSymDiff: BitSetSymDiff(x, y);
soIntersect: BitSetIntersect(x, y);
end;
result := toTreeSet(x, a.typ, a.info);
end;
function unionSets(a, b: PNode): PNode;
begin
result := nodeSetOp(a, b, soUnion);
end;
function diffSets(a, b: PNode): PNode;
begin
result := nodeSetOp(a, b, soDiff);
end;
function intersectSets(a, b: PNode): PNode;
begin
result := nodeSetOp(a, b, soIntersect)
end;
function symdiffSets(a, b: PNode): PNode;
begin
result := nodeSetOp(a, b, soSymDiff);
end;
function containsSets(a, b: PNode): Boolean;
var
x, y: TBitSet;
begin
toBitSet(a, x);
toBitSet(b, y);
result := bitSetContains(x, y)
end;
function equalSets(a, b: PNode): Boolean;
var
x, y: TBitSet;
begin
toBitSet(a, x);
toBitSet(b, y);
result := bitSetEquals(x, y)
end;
function cardSet(s: PNode): BiggestInt;
var
i: int;
begin
// here we can do better than converting it into a compact set
// we just count the elements directly
result := 0;
for i := 0 to sonsLen(s)-1 do
if s.sons[i].kind = nkRange then
result := result + getOrdValue(s.sons[i].sons[1]) -
getOrdValue(s.sons[i].sons[0]) + 1
else
Inc(result);
end;
function SetHasRange(s: PNode): Boolean;
var
i: int;
begin
if s.kind <> nkCurly then InternalError(s.info, 'SetHasRange');
for i := 0 to sonsLen(s)-1 do
if s.sons[i].kind = nkRange then begin
result := true; exit
end;
result := false
end;
function emptyRange(const a, b: PNode): Boolean;
begin
result := not leValue(a, b) // a > b iff not (a <= b)
end;
end.
|