1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
|
//
//
// The Nimrod Compiler
// (c) Copyright 2009 Andreas Rumpf
//
// See the file "copying.txt", included in this
// distribution, for details about the copyright.
//
unit semfold;
// this module folds constants; used by semantic checking phase
// and evaluation phase
interface
{$include 'config.inc'}
uses
sysutils, nsystem, charsets, strutils,
lists, options, ast, astalgo, trees, treetab, nimsets, ntime, nversion,
platform, nmath, msgs, nos, condsyms, idents, rnimsyn, types;
function getConstExpr(module: PSym; n: PNode): PNode;
// evaluates the constant expression or returns nil if it is no constant
// expression
function evalOp(m: TMagic; n, a, b, c: PNode): PNode;
function leValueConv(a, b: PNode): Boolean;
function newIntNodeT(const intVal: BiggestInt; n: PNode): PNode;
function newFloatNodeT(const floatVal: BiggestFloat; n: PNode): PNode;
function newStrNodeT(const strVal: string; n: PNode): PNode;
function getInt(a: PNode): biggestInt;
function getFloat(a: PNode): biggestFloat;
function getStr(a: PNode): string;
function getStrOrChar(a: PNode): string;
implementation
function newIntNodeT(const intVal: BiggestInt; n: PNode): PNode;
begin
if skipTypes(n.typ, abstractVarRange).kind = tyChar then
result := newIntNode(nkCharLit, intVal)
else
result := newIntNode(nkIntLit, intVal);
result.typ := n.typ;
result.info := n.info;
end;
function newFloatNodeT(const floatVal: BiggestFloat; n: PNode): PNode;
begin
result := newFloatNode(nkFloatLit, floatVal);
result.typ := n.typ;
result.info := n.info;
end;
function newStrNodeT(const strVal: string; n: PNode): PNode;
begin
result := newStrNode(nkStrLit, strVal);
result.typ := n.typ;
result.info := n.info;
end;
function getInt(a: PNode): biggestInt;
begin
case a.kind of
nkIntLit..nkInt64Lit: result := a.intVal;
else begin internalError(a.info, 'getInt'); result := 0 end;
end
end;
function getFloat(a: PNode): biggestFloat;
begin
case a.kind of
nkFloatLit..nkFloat64Lit: result := a.floatVal;
else begin internalError(a.info, 'getFloat'); result := 0.0 end;
end
end;
function getStr(a: PNode): string;
begin
case a.kind of
nkStrLit..nkTripleStrLit: result := a.strVal;
else begin internalError(a.info, 'getStr'); result := '' end;
end
end;
function getStrOrChar(a: PNode): string;
begin
case a.kind of
nkStrLit..nkTripleStrLit: result := a.strVal;
nkCharLit: result := chr(int(a.intVal))+'';
else begin internalError(a.info, 'getStrOrChar'); result := '' end;
end
end;
function enumValToString(a: PNode): string;
var
n: PNode;
field: PSym;
x: biggestInt;
i: int;
begin
x := getInt(a);
n := skipTypes(a.typ, abstractInst).n;
for i := 0 to sonsLen(n)-1 do begin
if n.sons[i].kind <> nkSym then InternalError(a.info, 'enumValToString');
field := n.sons[i].sym;
if field.position = x then begin
result := field.name.s; exit
end;
end;
InternalError(a.info, 'no symbol for ordinal value: ' + toString(x));
end;
function evalOp(m: TMagic; n, a, b, c: PNode): PNode;
// b and c may be nil
begin
result := nil;
case m of
mOrd: result := newIntNodeT(getOrdValue(a), n);
mChr: result := newIntNodeT(getInt(a), n);
mUnaryMinusI, mUnaryMinusI64: result := newIntNodeT(-getInt(a), n);
mUnaryMinusF64: result := newFloatNodeT(-getFloat(a), n);
mNot: result := newIntNodeT(1 - getInt(a), n);
mCard: result := newIntNodeT(nimsets.cardSet(a), n);
mBitnotI, mBitnotI64: result := newIntNodeT(not getInt(a), n);
mLengthStr: result := newIntNodeT(length(getStr(a)), n);
mLengthArray: result := newIntNodeT(lengthOrd(a.typ), n);
mLengthSeq, mLengthOpenArray:
result := newIntNodeT(sonsLen(a), n); // BUGFIX
mUnaryPlusI, mUnaryPlusI64, mUnaryPlusF64: result := a; // throw `+` away
mToFloat, mToBiggestFloat:
result := newFloatNodeT(toFloat(int(getInt(a))), n);
mToInt, mToBiggestInt: result := newIntNodeT(nsystem.toInt(getFloat(a)), n);
mAbsF64: result := newFloatNodeT(abs(getFloat(a)), n);
mAbsI, mAbsI64: begin
if getInt(a) >= 0 then result := a
else result := newIntNodeT(-getInt(a), n);
end;
mZe8ToI, mZe8ToI64, mZe16ToI, mZe16ToI64, mZe32ToI64, mZeIToI64: begin
// byte(-128) = 1...1..1000_0000'64 --> 0...0..1000_0000'64
result := newIntNodeT(getInt(a) and (shlu(1, getSize(a.typ)*8) - 1), n);
end;
mToU8: result := newIntNodeT(getInt(a) and $ff, n);
mToU16: result := newIntNodeT(getInt(a) and $ffff, n);
mToU32: result := newIntNodeT(getInt(a) and $00000000ffffffff, n);
mSucc: result := newIntNodeT(getOrdValue(a)+getInt(b), n);
mPred: result := newIntNodeT(getOrdValue(a)-getInt(b), n);
mAddI, mAddI64: result := newIntNodeT(getInt(a)+getInt(b), n);
mSubI, mSubI64: result := newIntNodeT(getInt(a)-getInt(b), n);
mMulI, mMulI64: result := newIntNodeT(getInt(a)*getInt(b), n);
mMinI, mMinI64: begin
if getInt(a) > getInt(b) then result := newIntNodeT(getInt(b), n)
else result := newIntNodeT(getInt(a), n);
end;
mMaxI, mMaxI64: begin
if getInt(a) > getInt(b) then result := newIntNodeT(getInt(a), n)
else result := newIntNodeT(getInt(b), n);
end;
mShlI, mShlI64: begin
case skipTypes(n.typ, abstractRange).kind of
tyInt8: result := newIntNodeT(int8(getInt(a)) shl int8(getInt(b)), n);
tyInt16: result := newIntNodeT(int16(getInt(a)) shl int16(getInt(b)), n);
tyInt32: result := newIntNodeT(int32(getInt(a)) shl int32(getInt(b)), n);
tyInt64, tyInt:
result := newIntNodeT(shlu(getInt(a), getInt(b)), n);
else InternalError(n.info, 'constant folding for shl');
end
end;
mShrI, mShrI64: begin
case skipTypes(n.typ, abstractRange).kind of
tyInt8: result := newIntNodeT(int8(getInt(a)) shr int8(getInt(b)), n);
tyInt16: result := newIntNodeT(int16(getInt(a)) shr int16(getInt(b)), n);
tyInt32: result := newIntNodeT(int32(getInt(a)) shr int32(getInt(b)), n);
tyInt64, tyInt:
result := newIntNodeT(shru(getInt(a), getInt(b)), n);
else InternalError(n.info, 'constant folding for shl');
end
end;
mDivI, mDivI64: result := newIntNodeT(getInt(a) div getInt(b), n);
mModI, mModI64: result := newIntNodeT(getInt(a) mod getInt(b), n);
mAddF64: result := newFloatNodeT(getFloat(a)+getFloat(b), n);
mSubF64: result := newFloatNodeT(getFloat(a)-getFloat(b), n);
mMulF64: result := newFloatNodeT(getFloat(a)*getFloat(b), n);
mDivF64: begin
if getFloat(b) = 0.0 then begin
if getFloat(a) = 0.0 then
result := newFloatNodeT(NaN, n)
else
result := newFloatNodeT(Inf, n);
end
else
result := newFloatNodeT(getFloat(a)/getFloat(b), n);
end;
mMaxF64: begin
if getFloat(a) > getFloat(b) then result := newFloatNodeT(getFloat(a), n)
else result := newFloatNodeT(getFloat(b), n);
end;
mMinF64: begin
if getFloat(a) > getFloat(b) then result := newFloatNodeT(getFloat(b), n)
else result := newFloatNodeT(getFloat(a), n);
end;
mIsNil: result := newIntNodeT(ord(a.kind = nkNilLit), n);
mLtI, mLtI64, mLtB, mLtEnum, mLtCh:
result := newIntNodeT(ord(getOrdValue(a) < getOrdValue(b)), n);
mLeI, mLeI64, mLeB, mLeEnum, mLeCh:
result := newIntNodeT(ord(getOrdValue(a) <= getOrdValue(b)), n);
mEqI, mEqI64, mEqB, mEqEnum, mEqCh:
result := newIntNodeT(ord(getOrdValue(a) = getOrdValue(b)), n);
// operators for floats
mLtF64: result := newIntNodeT(ord(getFloat(a) < getFloat(b)), n);
mLeF64: result := newIntNodeT(ord(getFloat(a) <= getFloat(b)), n);
mEqF64: result := newIntNodeT(ord(getFloat(a) = getFloat(b)), n);
// operators for strings
mLtStr: result := newIntNodeT(ord(getStr(a) < getStr(b)), n);
mLeStr: result := newIntNodeT(ord(getStr(a) <= getStr(b)), n);
mEqStr: result := newIntNodeT(ord(getStr(a) = getStr(b)), n);
mLtU, mLtU64:
result := newIntNodeT(ord(ltU(getOrdValue(a), getOrdValue(b))), n);
mLeU, mLeU64:
result := newIntNodeT(ord(leU(getOrdValue(a), getOrdValue(b))), n);
mBitandI, mBitandI64, mAnd:
result := newIntNodeT(getInt(a) and getInt(b), n);
mBitorI, mBitorI64, mOr:
result := newIntNodeT(getInt(a) or getInt(b), n);
mBitxorI, mBitxorI64, mXor:
result := newIntNodeT(getInt(a) xor getInt(b), n);
mAddU, mAddU64: result := newIntNodeT(addU(getInt(a), getInt(b)), n);
mSubU, mSubU64: result := newIntNodeT(subU(getInt(a), getInt(b)), n);
mMulU, mMulU64: result := newIntNodeT(mulU(getInt(a), getInt(b)), n);
mModU, mModU64: result := newIntNodeT(modU(getInt(a), getInt(b)), n);
mDivU, mDivU64: result := newIntNodeT(divU(getInt(a), getInt(b)), n);
mLeSet: result := newIntNodeT(Ord(containsSets(a, b)), n);
mEqSet: result := newIntNodeT(Ord(equalSets(a, b)), n);
mLtSet: result := newIntNodeT(Ord(containsSets(a, b)
and not equalSets(a, b)), n);
mMulSet: begin
result := nimsets.intersectSets(a, b);
result.info := n.info;
end;
mPlusSet: begin
result := nimsets.unionSets(a, b);
result.info := n.info;
end;
mMinusSet: begin
result := nimsets.diffSets(a, b);
result.info := n.info;
end;
mSymDiffSet: begin
result := nimsets.symdiffSets(a, b);
result.info := n.info;
end;
mConStrStr: result := newStrNodeT(getStrOrChar(a)+{&}getStrOrChar(b), n);
mInSet: result := newIntNodeT(Ord(inSet(a, b)), n);
mRepr: begin
// BUGFIX: we cannot eval mRepr here. But this means that it is not
// available for interpretation. I don't know how to fix this.
//result := newStrNodeT(renderTree(a, {@set}[renderNoComments]), n);
end;
mIntToStr, mInt64ToStr:
result := newStrNodeT(toString(getOrdValue(a)), n);
mBoolToStr: begin
if getOrdValue(a) = 0 then
result := newStrNodeT('false', n)
else
result := newStrNodeT('true', n)
end;
mCopyStr:
result := newStrNodeT(ncopy(getStr(a), int(getOrdValue(b))+strStart), n);
mCopyStrLast:
result := newStrNodeT(ncopy(getStr(a), int(getOrdValue(b))+strStart,
int(getOrdValue(c))+strStart), n);
mFloatToStr: result := newStrNodeT(toStringF(getFloat(a)), n);
mCStrToStr, mCharToStr: result := newStrNodeT(getStrOrChar(a), n);
mStrToStr: result := a;
mEnumToStr: result := newStrNodeT(enumValToString(a), n);
mArrToSeq: begin
result := copyTree(a);
result.typ := n.typ;
end;
mNewString, mExit, mInc, ast.mDec, mEcho, mAssert, mSwap,
mAppendStrCh, mAppendStrStr, mAppendSeqElem,
mSetLengthStr, mSetLengthSeq, mNLen..mNError: begin end;
else InternalError(a.info, 'evalOp(' +{&} magicToStr[m] +{&} ')');
end
end;
function getConstIfExpr(c: PSym; n: PNode): PNode;
var
i: int;
it, e: PNode;
begin
result := nil;
for i := 0 to sonsLen(n) - 1 do begin
it := n.sons[i];
case it.kind of
nkElifExpr: begin
e := getConstExpr(c, it.sons[0]);
if e = nil then begin result := nil; exit end;
if getOrdValue(e) <> 0 then
if result = nil then begin
result := getConstExpr(c, it.sons[1]);
if result = nil then exit
end
end;
nkElseExpr: begin
if result = nil then
result := getConstExpr(c, it.sons[0]);
end;
else internalError(it.info, 'getConstIfExpr()');
end
end
end;
function partialAndExpr(c: PSym; n: PNode): PNode;
// partial evaluation
var
a, b: PNode;
begin
result := n;
a := getConstExpr(c, n.sons[1]);
b := getConstExpr(c, n.sons[2]);
if a <> nil then begin
if getInt(a) = 0 then result := a
else if b <> nil then result := b
else result := n.sons[2]
end
else if b <> nil then begin
if getInt(b) = 0 then result := b
else result := n.sons[1]
end
end;
function partialOrExpr(c: PSym; n: PNode): PNode;
// partial evaluation
var
a, b: PNode;
begin
result := n;
a := getConstExpr(c, n.sons[1]);
b := getConstExpr(c, n.sons[2]);
if a <> nil then begin
if getInt(a) <> 0 then result := a
else if b <> nil then result := b
else result := n.sons[2]
end
else if b <> nil then begin
if getInt(b) <> 0 then result := b
else result := n.sons[1]
end
end;
function leValueConv(a, b: PNode): Boolean;
begin
result := false;
case a.kind of
nkCharLit..nkInt64Lit:
case b.kind of
nkCharLit..nkInt64Lit: result := a.intVal <= b.intVal;
nkFloatLit..nkFloat64Lit: result := a.intVal <= round(b.floatVal);
else InternalError(a.info, 'leValueConv');
end;
nkFloatLit..nkFloat64Lit:
case b.kind of
nkFloatLit..nkFloat64Lit: result := a.floatVal <= b.floatVal;
nkCharLit..nkInt64Lit: result := a.floatVal <= toFloat(int(b.intVal));
else InternalError(a.info, 'leValueConv');
end;
else InternalError(a.info, 'leValueConv');
end
end;
function getConstExpr(module: PSym; n: PNode): PNode;
var
s: PSym;
a, b, c: PNode;
i: int;
begin
result := nil;
case n.kind of
nkSym: begin
s := n.sym;
if s.kind = skEnumField then
result := newIntNodeT(s.position, n)
else if (s.kind = skConst) then begin
case s.magic of
mIsMainModule:
result := newIntNodeT(ord(sfMainModule in module.flags), n);
mCompileDate: result := newStrNodeT(ntime.getDateStr(), n);
mCompileTime: result := newStrNodeT(ntime.getClockStr(), n);
mNimrodVersion: result := newStrNodeT(VersionAsString, n);
mNimrodMajor: result := newIntNodeT(VersionMajor, n);
mNimrodMinor: result := newIntNodeT(VersionMinor, n);
mNimrodPatch: result := newIntNodeT(VersionPatch, n);
mCpuEndian: result := newIntNodeT(ord(CPU[targetCPU].endian), n);
mHostOS:
result := newStrNodeT(toLower(platform.OS[targetOS].name), n);
mHostCPU:
result := newStrNodeT(toLower(platform.CPU[targetCPU].name),n);
mNaN: result := newFloatNodeT(NaN, n);
mInf: result := newFloatNodeT(Inf, n);
mNegInf: result := newFloatNodeT(NegInf, n);
else result := copyTree(s.ast); // BUGFIX
end
end
else if s.kind in [skProc, skMethod] then // BUGFIX
result := n
end;
nkCharLit..nkNilLit: result := copyNode(n);
nkIfExpr: result := getConstIfExpr(module, n);
nkCall, nkCommand, nkCallStrLit: begin
if (n.sons[0].kind <> nkSym) then exit;
s := n.sons[0].sym;
if (s.kind <> skProc) then exit;
try
case s.magic of
mNone: begin
exit
// XXX: if it has no sideEffect, it should be evaluated
end;
mSizeOf: begin
a := n.sons[1];
if computeSize(a.typ) < 0 then
liMessage(a.info, errCannotEvalXBecauseIncompletelyDefined,
'sizeof');
if a.typ.kind in [tyArray, tyObject, tyTuple] then
result := nil // XXX: size computation for complex types
// is still wrong
else
result := newIntNodeT(getSize(a.typ), n);
end;
mLow: result := newIntNodeT(firstOrd(n.sons[1].typ), n);
mHigh: begin
if not (skipTypes(n.sons[1].typ, abstractVar).kind in [tyOpenArray,
tySequence, tyString]) then
result := newIntNodeT(lastOrd(
skipTypes(n.sons[1].typ, abstractVar)), n);
end;
else begin
a := getConstExpr(module, n.sons[1]);
if a = nil then exit;
if sonsLen(n) > 2 then begin
b := getConstExpr(module, n.sons[2]);
if b = nil then exit;
if sonsLen(n) > 3 then begin
c := getConstExpr(module, n.sons[3]);
if c = nil then exit;
end
end
else b := nil;
result := evalOp(s.magic, n, a, b, c);
end
end
except
on EIntOverflow do liMessage(n.info, errOverOrUnderflow);
on EDivByZero do liMessage(n.info, errConstantDivisionByZero);
end
end;
nkAddr: begin
a := getConstExpr(module, n.sons[0]);
if a <> nil then begin
result := n;
n.sons[0] := a
end;
end;
nkBracket: begin
result := copyTree(n);
for i := 0 to sonsLen(n)-1 do begin
a := getConstExpr(module, n.sons[i]);
if a = nil then begin result := nil; exit end;
result.sons[i] := a;
end;
include(result.flags, nfAllConst);
end;
nkRange: begin
a := getConstExpr(module, n.sons[0]);
if a = nil then exit;
b := getConstExpr(module, n.sons[1]);
if b = nil then exit;
result := copyNode(n);
addSon(result, a);
addSon(result, b);
end;
nkCurly: begin
result := copyTree(n);
for i := 0 to sonsLen(n)-1 do begin
a := getConstExpr(module, n.sons[i]);
if a = nil then begin result := nil; exit end;
result.sons[i] := a;
end;
include(result.flags, nfAllConst);
end;
nkPar: begin // tuple constructor
result := copyTree(n);
if (sonsLen(n) > 0) and (n.sons[0].kind = nkExprColonExpr) then begin
for i := 0 to sonsLen(n)-1 do begin
a := getConstExpr(module, n.sons[i].sons[1]);
if a = nil then begin result := nil; exit end;
result.sons[i].sons[1] := a;
end
end
else begin
for i := 0 to sonsLen(n)-1 do begin
a := getConstExpr(module, n.sons[i]);
if a = nil then begin result := nil; exit end;
result.sons[i] := a;
end
end;
include(result.flags, nfAllConst);
end;
nkChckRangeF, nkChckRange64, nkChckRange: begin
a := getConstExpr(module, n.sons[0]);
if a = nil then exit;
if leValueConv(n.sons[1], a) and leValueConv(a, n.sons[2]) then begin
result := a; // a <= x and x <= b
result.typ := n.typ
end
else
liMessage(n.info, errGenerated,
format(msgKindToString(errIllegalConvFromXtoY),
[typeToString(n.sons[0].typ), typeToString(n.typ)]));
end;
nkStringToCString, nkCStringToString: begin
a := getConstExpr(module, n.sons[0]);
if a = nil then exit;
result := a;
result.typ := n.typ;
end;
nkHiddenStdConv, nkHiddenSubConv, nkConv, nkCast: begin
a := getConstExpr(module, n.sons[1]);
if a = nil then exit;
case skipTypes(n.typ, abstractRange).kind of
tyInt..tyInt64: begin
case skipTypes(a.typ, abstractRange).kind of
tyFloat..tyFloat64:
result := newIntNodeT(nsystem.toInt(getFloat(a)), n);
tyChar:
result := newIntNodeT(getOrdValue(a), n);
else begin
result := a;
result.typ := n.typ;
end
end
end;
tyFloat..tyFloat64: begin
case skipTypes(a.typ, abstractRange).kind of
tyInt..tyInt64, tyEnum, tyBool, tyChar:
result := newFloatNodeT(toFloat(int(getOrdValue(a))), n);
else begin
result := a;
result.typ := n.typ;
end
end
end;
tyOpenArray, tyProc: begin end;
else begin
//n.sons[1] := a;
//result := n;
result := a;
result.typ := n.typ;
end
end
end
else begin
end
end
end;
end.
|