summary refs log tree commit diff stats
path: root/nim/transf.pas
blob: 97ad315402743e762a0a8f886dc302449a330d79 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
//
//
//           The Nimrod Compiler
//        (c) Copyright 2008 Andreas Rumpf
//
//    See the file "copying.txt", included in this
//    distribution, for details about the copyright.
//

// This module implements the transformator. It transforms the syntax tree
// to ease the work of the code generators. Does some transformations:
//
// * inlines iterators
// * looks up constants

// ------------ helpers -----------------------------------------------------

var
  gTmpId: int;

function newTemp(c: PContext; typ: PType; const info: TLineInfo): PSym;
begin
  inc(gTmpId);
  result := newSym(skTemp, getIdent(genPrefix +{&} ToString(gTmpId)),
                   c.transCon.owner);
  result.info := info;
  result.typ := skipGeneric(typ);
end;

// --------------------------------------------------------------------------

(*

Transforming iterators into non-inlined versions is pretty hard, but
unavoidable for not bloating the code too much. If we had direct access to
the program counter, things'd be much easier.
::

  iterator items(a: string): char =
    var i = 0
    while i < length(a):
      yield a[i]
      inc(i)

  for ch in items("hello world"): # `ch` is an iteration variable
    echo(ch)

Should be transformed into::

  type
    TItemsClosure = record
      i: int
      state: int
  proc items(a: string, c: var TItemsClosure): char =
    case c.state
    of 0: goto L0 # very difficult without goto!
    of 1: goto L1 # can be implemented by GCC's computed gotos

    block L0:
      c.i = 0
      while c.i < length(a):
        c.state = 1
        return a[i]
        block L1: inc(c.i)

More efficient, but not implementable:

  type
    TItemsClosure = record
      i: int
      pc: pointer

  proc items(a: string, c: var TItemsClosure): char =
    goto c.pc
    c.i = 0
    while c.i < length(a):
      c.pc = label1
      return a[i]
      label1: inc(c.i)
*)


function transform(c: PContext; n: PNode): PNode; forward;

function newAsgnStmt(c: PContext; le, ri: PNode): PNode;
begin
  result := newNodeI(nkAsgn, ri.info);
  addSon(result, le);
  addSon(result, ri);
end;

function transformSym(c: PContext; n: PNode): PNode;
var
  tc: PTransCon;
begin
  if (n.kind <> nkSym) then internalError(n.info, 'transformSym');
  tc := c.transCon;
  //writeln('transformSym', n.sym.id : 5);
  while tc <> nil do begin
    result := IdNodeTableGet(tc.mapping, n.sym);
    if result <> nil then exit;
    //write('not found in: ');
    //writeIdNodeTable(tc.mapping);
    tc := tc.next
  end;
  result := n;
  case n.sym.kind of
    skConst, skEnumField: begin // BUGFIX: skEnumField was missing
      if not (skipGeneric(n.sym.typ).kind in ConstantDataTypes) then begin
        result := getConstExpr(c, n);
        if result = nil then InternalError(n.info, 'transformSym: const');
      end
    end
    else begin end
  end
end;

procedure transformContinueAux(c: PContext; n: PNode; labl: PSym;
                               var counter: int);
var
  i: int;
begin
  if n = nil then exit;
  case n.kind of
    nkEmpty..nkNilLit, nkForStmt, nkWhileStmt: begin end;
    nkContinueStmt: begin
      n.kind := nkBreakStmt;
      addSon(n, newSymNode(labl));
      inc(counter);
    end;
    else begin
      for i := 0 to sonsLen(n)-1 do
        transformContinueAux(c, n.sons[i], labl, counter);
    end
  end
end;

function transformContinue(c: PContext; n: PNode): PNode;
// we transform the continue statement into a block statement
var
  i, counter: int;
  x: PNode;
  labl: PSym;
begin
  result := n;
  for i := 0 to sonsLen(n)-1 do
    result.sons[i] := transform(c, n.sons[i]);
  counter := 0;
  inc(gTmpId);
  labl := newSym(skLabel, getIdent(genPrefix +{&} ToString(gTmpId)),
                 getCurrOwner(c));
  labl.info := result.info;
  transformContinueAux(c, result, labl, counter);
  if counter > 0 then begin
    x := newNodeI(nkBlockStmt, result.info);
    addSon(x, newSymNode(labl));
    addSon(x, result);
    result := x
  end
end;

function skipConv(n: PNode): PNode;
begin
  case n.kind of
    nkObjUpConv, nkObjDownConv, nkPassAsOpenArray, nkChckRange,
    nkChckRangeF, nkChckRange64:
      result := n.sons[0];
    nkHiddenStdConv, nkHiddenSubConv, nkConv: result := n.sons[1];
    else result := n
  end
end;

function transformYield(c: PContext; n: PNode): PNode;
var
  e: PNode;
  i: int;
begin
  result := newNodeI(nkStmtList, n.info);
  e := n.sons[0];
  if skipGeneric(e.typ).kind = tyTuple then begin
    e := skipConv(e);
    if e.kind = nkPar then begin
      for i := 0 to sonsLen(e)-1 do begin
        addSon(result, newAsgnStmt(c, c.transCon.forStmt.sons[i],
               transform(c, copyTree(e.sons[i]))));
      end
    end
    else begin
      // XXX: tuple unpacking:
      internalError(n.info, 'tuple unpacking is not implemented');
    end
  end
  else begin
    e := transform(c, copyTree(e));
    addSon(result, newAsgnStmt(c, c.transCon.forStmt.sons[0], e));
  end;
  // add body of the for loop:
  addSon(result, transform(c, lastSon(c.transCon.forStmt)));
end;

function inlineIter(c: PContext; n: PNode): PNode;
var
  i: int;
  it: PNode;
  newVar: PSym;
begin
  result := n;
  if n = nil then exit;
  case n.kind of
    nkEmpty..nkNilLit: begin
      result := transform(c, copyTree(n));
    end;
    nkYieldStmt: result := transformYield(c, n);
    nkVarSection: begin
      result := copyTree(n);
      for i := 0 to sonsLen(result)-1 do begin
        it := result.sons[i];
        if it.kind = nkCommentStmt then continue;
        if (it.kind <> nkIdentDefs) or (it.sons[0].kind <> nkSym) then
          InternalError(it.info, 'inlineIter');
        newVar := copySym(it.sons[0].sym);
        newVar.owner := getCurrOwner(c);
        IdNodeTablePut(c.transCon.mapping, it.sons[0].sym,
                       newSymNode(newVar));
        it.sons[0] := newSymNode(newVar);
        it.sons[2] := transform(c, it.sons[2]);
      end
    end
    else begin
      result := copyNode(n);
      for i := 0 to sonsLen(n)-1 do addSon(result, inlineIter(c, n.sons[i]));
      result := transform(c, result);
    end
  end
end;

procedure addVar(father, v: PNode);
var
  vpart: PNode;
begin
  vpart := newNodeI(nkIdentDefs, v.info);
  addSon(vpart, v);
  addSon(vpart, nil);
  addSon(vpart, nil);
  addSon(father, vpart);
end;

function transformAddrDeref(c: PContext; n: PNode; a, b: TNodeKind): PNode;
var
  m: PNode;
begin
  case n.sons[0].kind of
    nkObjUpConv, nkObjDownConv, nkPassAsOpenArray, nkChckRange,
    nkChckRangeF, nkChckRange64: begin
      m := n.sons[0].sons[0];
      if (m.kind = a) or (m.kind = b) then begin
        // addr ( nkPassAsOpenArray ( deref ( x ) ) ) --> nkPassAsOpenArray(x)
        n.sons[0].sons[0] := m.sons[0];
        result := transform(c, n.sons[0]);
        exit
      end
    end;
    nkHiddenStdConv, nkHiddenSubConv, nkConv: begin
      m := n.sons[0].sons[1];
      if (m.kind = a) or (m.kind = b) then begin
        // addr ( nkConv ( deref ( x ) ) ) --> nkConv(x)
        n.sons[0].sons[1] := m.sons[0];
        result := transform(c, n.sons[0]);
        exit
      end
    end;
    else begin
      if (n.sons[0].kind = a) or (n.sons[0].kind = b) then begin
        // addr ( deref ( x )) --> x
        result := transform(c, n.sons[0].sons[0]);
        exit
      end
    end
  end;
  n.sons[0] := transform(c, n.sons[0]);
  result := n;
end;

function transformConv(c: PContext; n: PNode): PNode;
var
  source, dest: PType;
  diff: int;
begin
  n.sons[1] := transform(c, n.sons[1]);
  result := n;
  // numeric types need range checks:
  dest := skipVarGenericRange(n.typ);
  source := skipVarGenericRange(n.sons[1].typ);
  case dest.kind of
    tyInt..tyInt64, tyEnum, tyChar, tyBool: begin
      if (firstOrd(dest) <= firstOrd(source)) and
          (lastOrd(source) <= lastOrd(dest)) then begin
        // BUGFIX: simply leave n as it is; we need a nkConv node,
        // but no range check:
        result := n;
      end
      else begin // generate a range check:
        if (dest.kind = tyInt64) or (source.kind = tyInt64) then
          result := newNodeIT(nkChckRange64, n.info, n.typ)
        else
          result := newNodeIT(nkChckRange, n.info, n.typ);
        dest := skipVarGeneric(n.typ);
        addSon(result, n.sons[1]);
        addSon(result, newIntTypeNode(nkIntLit, firstOrd(dest), source));
        addSon(result, newIntTypeNode(nkIntLit,  lastOrd(dest), source));
      end
    end;
    tyFloat..tyFloat128: begin
      if skipVarGeneric(n.typ).kind = tyRange then begin
        result := newNodeIT(nkChckRangeF, n.info, n.typ);
        dest := skipVarGeneric(n.typ);
        addSon(result, n.sons[1]);
        addSon(result, copyTree(dest.n.sons[0]));
        addSon(result, copyTree(dest.n.sons[1]));
      end
    end;
    tyOpenArray: begin
      result := newNodeIT(nkPassAsOpenArray, n.info, n.typ);
      addSon(result, n.sons[1]);
    end;
    tyCString: begin
      if source.kind = tyString then begin
        result := newNodeIT(nkStringToCString, n.info, n.typ);
        addSon(result, n.sons[1]);
      end;
    end;
    tyString: begin
      if source.kind = tyCString then begin
        result := newNodeIT(nkCStringToString, n.info, n.typ);
        addSon(result, n.sons[1]);
      end;
    end;
    tyRef, tyPtr: begin
      dest := skipPtrsGeneric(dest);
      source := skipPtrsGeneric(source);
      if source.kind = tyObject then begin
        diff := inheritanceDiff(dest, source);
        if diff < 0 then begin
          result := newNodeIT(nkObjUpConv, n.info, n.typ);
          addSon(result, n.sons[1]);
        end
        else if diff > 0 then begin
          result := newNodeIT(nkObjDownConv, n.info, n.typ);
          addSon(result, n.sons[1]);
        end
        else result := n.sons[1];
      end
    end;
    // conversions between different object types:
    tyObject: begin
      diff := inheritanceDiff(dest, source);
      if diff < 0 then begin
        result := newNodeIT(nkObjUpConv, n.info, n.typ);
        addSon(result, n.sons[1]);
      end
      else if diff > 0 then begin
        result := newNodeIT(nkObjDownConv, n.info, n.typ);
        addSon(result, n.sons[1]);
      end
      else result := n.sons[1];
    end;
    tyGenericParam, tyAnyEnum: result := n.sons[1];
      // happens sometimes for generated assignments, etc.
    else begin end
  end;
end;

function transformFor(c: PContext; n: PNode): PNode;
// generate access statements for the parameters (unless they are constant)
// put mapping from formal parameters to actual parameters
var
  i, len: int;
  call, e, v, body: PNode;
  newC: PTransCon;
  temp, formal: PSym;
begin
  assert(n.kind = nkForStmt);
  result := newNodeI(nkStmtList, n.info);
  len := sonsLen(n);
  n.sons[len-1] := transformContinue(c, n.sons[len-1]);
  v := newNodeI(nkVarSection, n.info);
  for i := 0 to len-3 do addVar(v, copyTree(n.sons[i])); // declare new vars
  addSon(result, v);
  newC := newTransCon();
  call := n.sons[len-2];
  assert(call.kind = nkCall);
  assert(call.sons[0].kind = nkSym);
  newC.owner := call.sons[0].sym;
  newC.forStmt := n;
  assert(newC.owner.kind = skIterator);
  // generate access statements for the parameters (unless they are constant)
  pushTransCon(c, newC);
  for i := 1 to sonsLen(call)-1 do begin
    e := getConstExpr(c, call.sons[i]);
    formal := skipGeneric(newC.owner.typ).n.sons[i].sym;
    if e <> nil then
      IdNodeTablePut(newC.mapping, formal, e)
    else if (skipConv(call.sons[i]).kind = nkSym) then begin
      // since parameters cannot be modified, we can identify the formal and
      // the actual params
      IdNodeTablePut(newC.mapping, formal, call.sons[i]);
    end
    else begin
      // generate a temporary and produce an assignment statement:
      temp := newTemp(c, formal.typ, formal.info);
      addVar(v, newSymNode(temp));
      addSon(result, newAsgnStmt(c, newSymNode(temp), copyTree(call.sons[i])));
      IdNodeTablePut(newC.mapping, formal, newSymNode(temp)); // BUGFIX
    end
  end;
  body := newC.owner.ast.sons[codePos];
  addSon(result, inlineIter(c, body));
  popTransCon(c);
end;

function getMagicOp(call: PNode): TMagic;
begin
  if (call.sons[0].kind = nkSym)
  and (call.sons[0].sym.kind in [skProc, skConverter]) then
    result := call.sons[0].sym.magic
  else
    result := mNone
end;

procedure gatherVars(c: PContext; n: PNode; var marked: TIntSet;
                     owner: PSym; container: PNode);
// gather used vars for closure generation
var
  i: int;
  s: PSym;
  found: bool;
begin
  if n = nil then exit;
  case n.kind of
    nkSym: begin
      s := n.sym;
      found := false;
      case s.kind of
        skVar: found := not (sfGlobal in s.flags);
        skTemp, skForVar, skParam: found := true;
        else begin end;
      end;
      if found and (owner.id <> s.owner.id)
      and not IntSetContainsOrIncl(marked, s.id) then begin
        include(s.flags, sfInClosure);
        addSon(container, copyNode(n)); // DON'T make a copy of the symbol!
      end
    end;
    nkEmpty..pred(nkSym), succ(nkSym)..nkNilLit: begin end;
    else begin
      for i := 0 to sonsLen(n)-1 do
        gatherVars(c, n.sons[i], marked, owner, container);
    end
  end
end;

(*
  # example:
  proc map(f: proc (x: int): int {.closure}, a: seq[int]): seq[int] =
    result = []
    for elem in a:
      add result, f(a)

  proc addList(a: seq[int], y: int): seq[int] =
    result = map(lambda (x: int): int = return x + y, a)

  should generate -->

  proc map(f: proc(x: int): int, closure: pointer,
           a: seq[int]): seq[int] =
    result = []
    for elem in a:
      add result, f(a, closure)

  type
    PMyClosure = ref record
      y: var int

  proc myLambda(x: int, closure: pointer) =
    var cl = cast[PMyClosure](closure)
    return x + cl.y

  proc addList(a: seq[int], y: int): seq[int] =
    var
      cl: PMyClosure
    new(cl)
    cl.y = y
    result = map(myLambda, cast[pointer](cl), a)


  or (but this is not easier and not binary compatible with C!) -->

  type
    PClosure = ref object of TObject
      f: proc (x: int, c: PClosure): int

  proc map(f: PClosure, a: seq[int]): seq[int] =
    result = []
    for elem in a:
      add result, f.f(a, f)

  type
    PMyClosure = ref object of PClosure
      y: var int

  proc myLambda(x: int, cl: PMyClosure) =
    return x + cl.y

  proc addList(a: seq[int], y: int): seq[int] =
    var
      cl: PMyClosure
    new(cl)
    cl.y = y
    cl.f = myLambda
    result = map(cl, a)
*)

procedure addFormalParam(routine: PSym; param: PSym);
begin
  addSon(routine.typ, param.typ);
  addSon(routine.ast.sons[paramsPos], newSymNode(param));
end;

function indirectAccess(a, b: PSym): PNode;
// returns a^ .b as a node
var
  x, y, deref: PNode;
begin
  x := newSymNode(a);
  y := newSymNode(b);
  deref := newNodeI(nkDerefExpr, x.info);
  deref.typ := x.typ.sons[0];
  addSon(deref, x);
  result := newNodeI(nkDotExpr, x.info);
  addSon(result, deref);
  addSon(result, y);
  result.typ := y.typ;
end;

function transformLambda(c: PContext; n: PNode): PNode;
var
  marked: TIntSet;
  closure: PNode;
  s, param: PSym;
  cl, p: PType;
  i: int;
  newC: PTransCon;
begin
  result := n;
  IntSetInit(marked);
  assert(n.sons[namePos].kind = nkSym);
  s := n.sons[namePos].sym;
  closure := newNodeI(nkRecList, n.sons[codePos].info);
  gatherVars(c, n.sons[codePos], marked, s, closure);
  // add closure type to the param list (even if closure is empty!):
  cl := newType(tyObject, s);
  cl.n := closure;
  addSon(cl, nil); // no super class
  p := newType(tyRef, s);
  addSon(p, cl);
  param := newSym(skParam, getIdent(genPrefix + 'Cl'), s);
  param.typ := p;
  addFormalParam(s, param);
  // all variables that are accessed should be accessed by the new closure
  // parameter:
  if sonsLen(closure) > 0 then begin
    newC := newTransCon();
    for i := 0 to sonsLen(closure)-1 do begin
      IdNodeTablePut(newC.mapping, closure.sons[i].sym,
                     indirectAccess(param, closure.sons[i].sym))
    end;
    pushTransCon(c, newC);
    n.sons[codePos] := transform(c, n.sons[codePos]);
    popTransCon(c);
  end;
  // Generate code to allocate and fill the closure. This has to be done in
  // the outer routine!
end;

function transformCase(c: PContext; n: PNode): PNode;
// removes `elif` branches of a case stmt
var
  len, i, j: int;
  ifs: PNode;
begin
  len := sonsLen(n);
  i := len-1;
  if n.sons[i].kind = nkElse then dec(i);
  if n.sons[i].kind = nkElifBranch then begin
    while n.sons[i].kind = nkElifBranch do dec(i);
    assert(n.sons[i].kind = nkOfBranch);
    ifs := newNodeI(nkIfStmt, n.sons[i+1].info);
    for j := i+1 to len-1 do addSon(ifs, n.sons[j]);
    setLength(n.sons, i+2);
    n.sons[i+1] := ifs;
  end;
  result := n;
  for j := 0 to sonsLen(n)-1 do result.sons[j] := transform(c, n.sons[j]);
end;

function transformArrayAccess(c: PContext; n: PNode): PNode;
var
  i: int;
begin
  result := copyTree(n);
  result.sons[0] := skipConv(result.sons[0]);
  result.sons[1] := skipConv(result.sons[1]);
  for i := 0 to sonsLen(result)-1 do
    result.sons[i] := transform(c, result.sons[i]);
end;

function transform(c: PContext; n: PNode): PNode;
var
  i: int;
  cnst: PNode;
begin
  result := n;
  if n = nil then exit;
  //result := getConstExpr(c, n); // try to evaluate the expressions
  //if result <> nil then exit;
  //result := n; // reset the result node
  case n.kind of
    nkSym: begin
      result := transformSym(c, n);
      exit
    end;
    nkEmpty..pred(nkSym), succ(nkSym)..nkNilLit: begin
      // nothing to be done for leafs
    end;
    nkBracketExpr: result := transformArrayAccess(c, n);
    nkLambda: result := transformLambda(c, n);
    nkForStmt: result := transformFor(c, n);
    nkCaseStmt: result := transformCase(c, n);
    nkProcDef, nkIteratorDef: begin
      if n.sons[genericParamsPos] = nil then
        n.sons[codePos] := transform(c, n.sons[codePos]);
    end;
    nkWhileStmt: begin
      assert(sonsLen(n) = 2);
      n.sons[0] := transform(c, n.sons[0]);
      n.sons[1] := transformContinue(c, n.sons[1]);
    end;
    nkAddr, nkHiddenAddr:
      result := transformAddrDeref(c, n, nkDerefExpr, nkHiddenDeref);
    nkDerefExpr, nkHiddenDeref:
      result := transformAddrDeref(c, n, nkAddr, nkHiddenAddr);
    nkHiddenStdConv, nkHiddenSubConv, nkConv:
      result := transformConv(c, n);
    nkCommentStmt, nkTemplateDef, nkMacroDef: exit;
    nkConstSection: exit; // do not replace ``const c = 3`` with ``const 3 = 3``
    else begin
      for i := 0 to sonsLen(n)-1 do
        result.sons[i] := transform(c, n.sons[i]);
    end
  end;
  cnst := getConstExpr(c, result);
  if cnst <> nil then result := cnst; // do not miss an optimization
end;