1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
|
#
#
# The Nimrod Compiler
# (c) Copyright 2009 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
# this module folds constants; used by semantic checking phase
# and evaluation phase
import
strutils, lists, options, ast, astalgo, trees, treetab, nimsets, times,
nversion, platform, math, msgs, os, condsyms, idents, rnimsyn, types
proc getConstExpr*(m: PSym, n: PNode): PNode
# evaluates the constant expression or returns nil if it is no constant
# expression
proc evalOp*(m: TMagic, n, a, b, c: PNode): PNode
proc leValueConv*(a, b: PNode): bool
proc newIntNodeT*(intVal: BiggestInt, n: PNode): PNode
proc newFloatNodeT*(floatVal: BiggestFloat, n: PNode): PNode
proc newStrNodeT*(strVal: string, n: PNode): PNode
# implementation
proc newIntNodeT(intVal: BiggestInt, n: PNode): PNode =
if skipTypes(n.typ, abstractVarRange).kind == tyChar:
result = newIntNode(nkCharLit, intVal)
else:
result = newIntNode(nkIntLit, intVal)
result.typ = n.typ
result.info = n.info
proc newFloatNodeT(floatVal: BiggestFloat, n: PNode): PNode =
result = newFloatNode(nkFloatLit, floatVal)
result.typ = n.typ
result.info = n.info
proc newStrNodeT(strVal: string, n: PNode): PNode =
result = newStrNode(nkStrLit, strVal)
result.typ = n.typ
result.info = n.info
proc enumValToString(a: PNode): string =
var
n: PNode
field: PSym
x: biggestInt
x = getInt(a)
n = skipTypes(a.typ, abstractInst).n
for i in countup(0, sonsLen(n) - 1):
if n.sons[i].kind != nkSym: InternalError(a.info, "enumValToString")
field = n.sons[i].sym
if field.position == x:
return field.name.s
InternalError(a.info, "no symbol for ordinal value: " & $(x))
proc evalOp(m: TMagic, n, a, b, c: PNode): PNode =
# b and c may be nil
result = nil
case m
of mOrd: result = newIntNodeT(getOrdValue(a), n)
of mChr: result = newIntNodeT(getInt(a), n)
of mUnaryMinusI, mUnaryMinusI64: result = newIntNodeT(- getInt(a), n)
of mUnaryMinusF64: result = newFloatNodeT(- getFloat(a), n)
of mNot: result = newIntNodeT(1 - getInt(a), n)
of mCard: result = newIntNodeT(nimsets.cardSet(a), n)
of mBitnotI, mBitnotI64: result = newIntNodeT(not getInt(a), n)
of mLengthStr: result = newIntNodeT(len(getStr(a)), n)
of mLengthArray: result = newIntNodeT(lengthOrd(a.typ), n)
of mLengthSeq, mLengthOpenArray: result = newIntNodeT(sonsLen(a), n) # BUGFIX
of mUnaryPlusI, mUnaryPlusI64, mUnaryPlusF64: result = a # throw `+` away
of mToFloat, mToBiggestFloat:
result = newFloatNodeT(toFloat(int(getInt(a))), n)
of mToInt, mToBiggestInt: result = newIntNodeT(system.toInt(getFloat(a)), n)
of mAbsF64: result = newFloatNodeT(abs(getFloat(a)), n)
of mAbsI, mAbsI64:
if getInt(a) >= 0: result = a
else: result = newIntNodeT(- getInt(a), n)
of mZe8ToI, mZe8ToI64, mZe16ToI, mZe16ToI64, mZe32ToI64, mZeIToI64:
# byte(-128) = 1...1..1000_0000'64 --> 0...0..1000_0000'64
result = newIntNodeT(getInt(a) and (`shl`(1, getSize(a.typ) * 8) - 1), n)
of mToU8: result = newIntNodeT(getInt(a) and 0x000000FF, n)
of mToU16: result = newIntNodeT(getInt(a) and 0x0000FFFF, n)
of mToU32: result = newIntNodeT(getInt(a) and 0x00000000FFFFFFFF'i64, n)
of mSucc: result = newIntNodeT(getOrdValue(a) + getInt(b), n)
of mPred: result = newIntNodeT(getOrdValue(a) - getInt(b), n)
of mAddI, mAddI64: result = newIntNodeT(getInt(a) + getInt(b), n)
of mSubI, mSubI64: result = newIntNodeT(getInt(a) - getInt(b), n)
of mMulI, mMulI64: result = newIntNodeT(getInt(a) * getInt(b), n)
of mMinI, mMinI64:
if getInt(a) > getInt(b): result = newIntNodeT(getInt(b), n)
else: result = newIntNodeT(getInt(a), n)
of mMaxI, mMaxI64:
if getInt(a) > getInt(b): result = newIntNodeT(getInt(a), n)
else: result = newIntNodeT(getInt(b), n)
of mShlI, mShlI64:
case skipTypes(n.typ, abstractRange).kind
of tyInt8: result = newIntNodeT(int8(getInt(a)) shl int8(getInt(b)), n)
of tyInt16: result = newIntNodeT(int16(getInt(a)) shl int16(getInt(b)), n)
of tyInt32: result = newIntNodeT(int32(getInt(a)) shl int32(getInt(b)), n)
of tyInt64, tyInt: result = newIntNodeT(`shl`(getInt(a), getInt(b)), n)
else: InternalError(n.info, "constant folding for shl")
of mShrI, mShrI64:
case skipTypes(n.typ, abstractRange).kind
of tyInt8: result = newIntNodeT(int8(getInt(a)) shr int8(getInt(b)), n)
of tyInt16: result = newIntNodeT(int16(getInt(a)) shr int16(getInt(b)), n)
of tyInt32: result = newIntNodeT(int32(getInt(a)) shr int32(getInt(b)), n)
of tyInt64, tyInt: result = newIntNodeT(`shr`(getInt(a), getInt(b)), n)
else: InternalError(n.info, "constant folding for shl")
of mDivI, mDivI64: result = newIntNodeT(getInt(a) div getInt(b), n)
of mModI, mModI64: result = newIntNodeT(getInt(a) mod getInt(b), n)
of mAddF64: result = newFloatNodeT(getFloat(a) + getFloat(b), n)
of mSubF64: result = newFloatNodeT(getFloat(a) - getFloat(b), n)
of mMulF64: result = newFloatNodeT(getFloat(a) * getFloat(b), n)
of mDivF64:
if getFloat(b) == 0.0:
if getFloat(a) == 0.0: result = newFloatNodeT(NaN, n)
else: result = newFloatNodeT(Inf, n)
else:
result = newFloatNodeT(getFloat(a) / getFloat(b), n)
of mMaxF64:
if getFloat(a) > getFloat(b): result = newFloatNodeT(getFloat(a), n)
else: result = newFloatNodeT(getFloat(b), n)
of mMinF64:
if getFloat(a) > getFloat(b): result = newFloatNodeT(getFloat(b), n)
else: result = newFloatNodeT(getFloat(a), n)
of mIsNil: result = newIntNodeT(ord(a.kind == nkNilLit), n)
of mLtI, mLtI64, mLtB, mLtEnum, mLtCh:
result = newIntNodeT(ord(getOrdValue(a) < getOrdValue(b)), n)
of mLeI, mLeI64, mLeB, mLeEnum, mLeCh:
result = newIntNodeT(ord(getOrdValue(a) <= getOrdValue(b)), n)
of mEqI, mEqI64, mEqB, mEqEnum, mEqCh:
result = newIntNodeT(ord(getOrdValue(a) == getOrdValue(b)), n)
of mLtF64: result = newIntNodeT(ord(getFloat(a) < getFloat(b)), n)
of mLeF64: result = newIntNodeT(ord(getFloat(a) <= getFloat(b)), n)
of mEqF64: result = newIntNodeT(ord(getFloat(a) == getFloat(b)), n)
of mLtStr: result = newIntNodeT(ord(getStr(a) < getStr(b)), n)
of mLeStr: result = newIntNodeT(ord(getStr(a) <= getStr(b)), n)
of mEqStr: result = newIntNodeT(ord(getStr(a) == getStr(b)), n)
of mLtU, mLtU64:
result = newIntNodeT(ord(`<%`(getOrdValue(a), getOrdValue(b))), n)
of mLeU, mLeU64:
result = newIntNodeT(ord(`<=%`(getOrdValue(a), getOrdValue(b))), n)
of mBitandI, mBitandI64, mAnd: result = newIntNodeT(getInt(a) and getInt(b), n)
of mBitorI, mBitorI64, mOr: result = newIntNodeT(getInt(a) or getInt(b), n)
of mBitxorI, mBitxorI64, mXor: result = newIntNodeT(getInt(a) xor getInt(b), n)
of mAddU, mAddU64: result = newIntNodeT(`+%`(getInt(a), getInt(b)), n)
of mSubU, mSubU64: result = newIntNodeT(`-%`(getInt(a), getInt(b)), n)
of mMulU, mMulU64: result = newIntNodeT(`*%`(getInt(a), getInt(b)), n)
of mModU, mModU64: result = newIntNodeT(`%%`(getInt(a), getInt(b)), n)
of mDivU, mDivU64: result = newIntNodeT(`/%`(getInt(a), getInt(b)), n)
of mLeSet: result = newIntNodeT(Ord(containsSets(a, b)), n)
of mEqSet: result = newIntNodeT(Ord(equalSets(a, b)), n)
of mLtSet:
result = newIntNodeT(Ord(containsSets(a, b) and not equalSets(a, b)), n)
of mMulSet:
result = nimsets.intersectSets(a, b)
result.info = n.info
of mPlusSet:
result = nimsets.unionSets(a, b)
result.info = n.info
of mMinusSet:
result = nimsets.diffSets(a, b)
result.info = n.info
of mSymDiffSet:
result = nimsets.symdiffSets(a, b)
result.info = n.info
of mConStrStr: result = newStrNodeT(getStrOrChar(a) & getStrOrChar(b), n)
of mInSet: result = newIntNodeT(Ord(inSet(a, b)), n)
of mRepr:
# BUGFIX: we cannot eval mRepr here. But this means that it is not
# available for interpretation. I don't know how to fix this.
#result := newStrNodeT(renderTree(a, {@set}[renderNoComments]), n);
of mIntToStr, mInt64ToStr: result = newStrNodeT($(getOrdValue(a)), n)
of mBoolToStr:
if getOrdValue(a) == 0: result = newStrNodeT("false", n)
else: result = newStrNodeT("true", n)
of mCopyStr: result = newStrNodeT(copy(getStr(a), int(getOrdValue(b))), n)
of mCopyStrLast:
result = newStrNodeT(copy(getStr(a), int(getOrdValue(b)),
int(getOrdValue(c))), n)
of mFloatToStr: result = newStrNodeT($(getFloat(a)), n)
of mCStrToStr, mCharToStr: result = newStrNodeT(getStrOrChar(a), n)
of mStrToStr: result = a
of mEnumToStr: result = newStrNodeT(enumValToString(a), n)
of mArrToSeq:
result = copyTree(a)
result.typ = n.typ
of mNewString, mExit, mInc, ast.mDec, mEcho, mAssert, mSwap, mAppendStrCh,
mAppendStrStr, mAppendSeqElem, mSetLengthStr, mSetLengthSeq, mNLen..mNError:
nil
else: InternalError(a.info, "evalOp(" & $m & ')')
proc getConstIfExpr(c: PSym, n: PNode): PNode =
result = nil
for i in countup(0, sonsLen(n) - 1):
var it = n.sons[i]
case it.kind
of nkElifExpr:
var e = getConstExpr(c, it.sons[0])
if e == nil: return nil
if getOrdValue(e) != 0:
if result == nil:
result = getConstExpr(c, it.sons[1])
if result == nil: return
of nkElseExpr:
if result == nil: result = getConstExpr(c, it.sons[0])
else: internalError(it.info, "getConstIfExpr()")
proc partialAndExpr(c: PSym, n: PNode): PNode =
# partial evaluation
result = n
var a = getConstExpr(c, n.sons[1])
var b = getConstExpr(c, n.sons[2])
if a != nil:
if getInt(a) == 0: result = a
elif b != nil: result = b
else: result = n.sons[2]
elif b != nil:
if getInt(b) == 0: result = b
else: result = n.sons[1]
proc partialOrExpr(c: PSym, n: PNode): PNode =
# partial evaluation
result = n
var a = getConstExpr(c, n.sons[1])
var b = getConstExpr(c, n.sons[2])
if a != nil:
if getInt(a) != 0: result = a
elif b != nil: result = b
else: result = n.sons[2]
elif b != nil:
if getInt(b) != 0: result = b
else: result = n.sons[1]
proc leValueConv(a, b: PNode): bool =
result = false
case a.kind
of nkCharLit..nkInt64Lit:
case b.kind
of nkCharLit..nkInt64Lit: result = a.intVal <= b.intVal
of nkFloatLit..nkFloat64Lit: result = a.intVal <= round(b.floatVal)
else: InternalError(a.info, "leValueConv")
of nkFloatLit..nkFloat64Lit:
case b.kind
of nkFloatLit..nkFloat64Lit: result = a.floatVal <= b.floatVal
of nkCharLit..nkInt64Lit: result = a.floatVal <= toFloat(int(b.intVal))
else: InternalError(a.info, "leValueConv")
else: InternalError(a.info, "leValueConv")
proc getConstExpr(m: PSym, n: PNode): PNode =
result = nil
case n.kind
of nkSym:
var s = n.sym
if s.kind == skEnumField:
result = newIntNodeT(s.position, n)
elif (s.kind == skConst):
case s.magic
of mIsMainModule: result = newIntNodeT(ord(sfMainModule in m.flags), n)
of mCompileDate: result = newStrNodeT(times.getDateStr(), n)
of mCompileTime: result = newStrNodeT(times.getClockStr(), n)
of mNimrodVersion: result = newStrNodeT(VersionAsString, n)
of mNimrodMajor: result = newIntNodeT(VersionMajor, n)
of mNimrodMinor: result = newIntNodeT(VersionMinor, n)
of mNimrodPatch: result = newIntNodeT(VersionPatch, n)
of mCpuEndian: result = newIntNodeT(ord(CPU[targetCPU].endian), n)
of mHostOS: result = newStrNodeT(toLower(platform.OS[targetOS].name), n)
of mHostCPU: result = newStrNodeT(toLower(platform.CPU[targetCPU].name), n)
of mNaN: result = newFloatNodeT(NaN, n)
of mInf: result = newFloatNodeT(Inf, n)
of mNegInf: result = newFloatNodeT(NegInf, n)
else: result = copyTree(s.ast)
elif s.kind in {skProc, skMethod}: # BUGFIX
result = n
of nkCharLit..nkNilLit:
result = copyNode(n)
of nkIfExpr:
result = getConstIfExpr(m, n)
of nkCall, nkCommand, nkCallStrLit:
if (n.sons[0].kind != nkSym): return
var s = n.sons[0].sym
if (s.kind != skProc): return
try:
case s.magic
of mNone:
return # XXX: if it has no sideEffect, it should be evaluated
of mSizeOf:
var a = n.sons[1]
if computeSize(a.typ) < 0:
liMessage(a.info, errCannotEvalXBecauseIncompletelyDefined, "sizeof")
if a.typ.kind in {tyArray, tyObject, tyTuple}:
result = nil
# XXX: size computation for complex types is still wrong
else:
result = newIntNodeT(getSize(a.typ), n)
of mLow:
result = newIntNodeT(firstOrd(n.sons[1].typ), n)
of mHigh:
if not (skipTypes(n.sons[1].typ, abstractVar).kind in
{tyOpenArray, tySequence, tyString}):
result = newIntNodeT(lastOrd(skipTypes(n.sons[1].typ, abstractVar)), n)
else:
var a = getConstExpr(m, n.sons[1])
var b, c: PNode
if a == nil: return
if sonsLen(n) > 2:
b = getConstExpr(m, n.sons[2])
if b == nil: return
if sonsLen(n) > 3:
c = getConstExpr(m, n.sons[3])
if c == nil: return
else:
b = nil
result = evalOp(s.magic, n, a, b, c)
except EOverflow:
liMessage(n.info, errOverOrUnderflow)
except EDivByZero:
liMessage(n.info, errConstantDivisionByZero)
of nkAddr:
var a = getConstExpr(m, n.sons[0])
if a != nil:
result = n
n.sons[0] = a
of nkBracket:
result = copyTree(n)
for i in countup(0, sonsLen(n) - 1):
var a = getConstExpr(m, n.sons[i])
if a == nil: return nil
result.sons[i] = a
incl(result.flags, nfAllConst)
of nkRange:
var a = getConstExpr(m, n.sons[0])
if a == nil: return
var b = getConstExpr(m, n.sons[1])
if b == nil: return
result = copyNode(n)
addSon(result, a)
addSon(result, b)
of nkCurly:
result = copyTree(n)
for i in countup(0, sonsLen(n) - 1):
var a = getConstExpr(m, n.sons[i])
if a == nil: return nil
result.sons[i] = a
incl(result.flags, nfAllConst)
of nkPar:
# tuple constructor
result = copyTree(n)
if (sonsLen(n) > 0) and (n.sons[0].kind == nkExprColonExpr):
for i in countup(0, sonsLen(n) - 1):
var a = getConstExpr(m, n.sons[i].sons[1])
if a == nil: return nil
result.sons[i].sons[1] = a
else:
for i in countup(0, sonsLen(n) - 1):
var a = getConstExpr(m, n.sons[i])
if a == nil: return nil
result.sons[i] = a
incl(result.flags, nfAllConst)
of nkChckRangeF, nkChckRange64, nkChckRange:
var a = getConstExpr(m, n.sons[0])
if a == nil: return
if leValueConv(n.sons[1], a) and leValueConv(a, n.sons[2]):
result = a # a <= x and x <= b
result.typ = n.typ
else:
liMessage(n.info, errGenerated, `%`(
msgKindToString(errIllegalConvFromXtoY),
[typeToString(n.sons[0].typ), typeToString(n.typ)]))
of nkStringToCString, nkCStringToString:
var a = getConstExpr(m, n.sons[0])
if a == nil: return
result = a
result.typ = n.typ
of nkHiddenStdConv, nkHiddenSubConv, nkConv, nkCast:
var a = getConstExpr(m, n.sons[1])
if a == nil: return
case skipTypes(n.typ, abstractRange).kind
of tyInt..tyInt64:
case skipTypes(a.typ, abstractRange).kind
of tyFloat..tyFloat64: result = newIntNodeT(system.toInt(getFloat(a)), n)
of tyChar: result = newIntNodeT(getOrdValue(a), n)
else:
result = a
result.typ = n.typ
of tyFloat..tyFloat64:
case skipTypes(a.typ, abstractRange).kind
of tyInt..tyInt64, tyEnum, tyBool, tyChar:
result = newFloatNodeT(toFloat(int(getOrdValue(a))), n)
else:
result = a
result.typ = n.typ
of tyOpenArray, tyProc:
nil
else:
#n.sons[1] := a;
#result := n;
result = a
result.typ = n.typ
else:
nil
|