summary refs log tree commit diff stats
path: root/tests/controlflow/tcontinue.nim
blob: ac4fdc2de2d9a07a847d00455077eea569136867 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
discard """
  output: "came here"
"""

var i = 0
while i < 400:

  if i == 10: break
  elif i == 3:
    inc i
    continue
  inc i

var f = "failure"
var j = 0
while j < 300:
  for x in 0..34:
    if j < 300: continue
    if x == 10:
      echo "failure: should never happen"
      break
  f = "came here"
  break

if i == 10:
  echo f
else:
  echo "failure"
15 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
#
#
#           The Nim Compiler
#        (c) Copyright 2012 Andreas Rumpf
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

# this module does the semantic checking of type declarations
# included from sem.nim

const
  errStringOrIdentNodeExpected = "string or ident node expected"
  errStringLiteralExpected = "string literal expected"
  errIntLiteralExpected = "integer literal expected"
  errWrongNumberOfVariables = "wrong number of variables"
  errInvalidOrderInEnumX = "invalid order in enum '$1'"
  errOrdinalTypeExpected = "ordinal type expected"
  errSetTooBig = "set is too large"
  errBaseTypeMustBeOrdinal = "base type of a set must be an ordinal"
  errInheritanceOnlyWithNonFinalObjects = "inheritance only works with non-final objects"
  errXExpectsOneTypeParam = "'$1' expects one type parameter"
  errArrayExpectsTwoTypeParams = "array expects two type parameters"
  errInvalidVisibilityX = "invalid visibility: '$1'"
  errInitHereNotAllowed = "initialization not allowed here"
  errXCannotBeAssignedTo = "'$1' cannot be assigned to"
  errIteratorNotAllowed = "iterators can only be defined at the module's top level"
  errXNeedsReturnType = "$1 needs a return type"
  errNoReturnTypeDeclared = "no return type declared"
  errTIsNotAConcreteType = "'$1' is not a concrete type"
  errTypeExpected = "type expected"
  errXOnlyAtModuleScope = "'$1' is only allowed at top level"
  errDuplicateCaseLabel = "duplicate case label"
  errMacroBodyDependsOnGenericTypes = "the macro body cannot be compiled, " &
    "because the parameter '$1' has a generic type"
  errIllegalRecursionInTypeX = "illegal recursion in type '$1'"
  errNoGenericParamsAllowedForX = "no generic parameters allowed for $1"
  errInOutFlagNotExtern = "the '$1' modifier can be used only with imported types"

const
  mStaticTy = {mStatic}
  mTypeTy = {mType, mTypeOf}
  # XXX: This should be needed only temporarily until the C
  # sources are rebuilt

proc newOrPrevType(kind: TTypeKind, prev: PType, c: PContext): PType =
  if prev == nil:
    result = newTypeS(kind, c)
  else:
    result = prev
    if result.kind == tyForward: result.kind = kind

proc newConstraint(c: PContext, k: TTypeKind): PType =
  result = newTypeS(tyBuiltInTypeClass, c)
  result.addSonSkipIntLit(newTypeS(k, c))

proc semEnum(c: PContext, n: PNode, prev: PType): PType =
  if n.sonsLen == 0: return newConstraint(c, tyEnum)
  elif n.sonsLen == 1:
    # don't create an empty tyEnum; fixes #3052
    return errorType(c)
  var
    counter, x: BiggestInt
    e: PSym
    base: PType
  counter = 0
  base = nil
  result = newOrPrevType(tyEnum, prev, c)
  result.n = newNodeI(nkEnumTy, n.info)
  checkMinSonsLen(n, 1, c.config)
  if n.sons[0].kind != nkEmpty:
    base = semTypeNode(c, n.sons[0].sons[0], nil)
    if base.kind != tyEnum:
      localError(c.config, n.sons[0].info, "inheritance only works with an enum")
    counter = lastOrd(c.config, base) + 1
  rawAddSon(result, base)
  let isPure = result.sym != nil and sfPure in result.sym.flags
  var symbols: TStrTable
  if isPure: initStrTable(symbols)
  var hasNull = false
  for i in countup(1, sonsLen(n) - 1):
    case n.sons[i].kind
    of nkEnumFieldDef:
      e = newSymS(skEnumField, n.sons[i].sons[0], c)
      var v = semConstExpr(c, n.sons[i].sons[1])
      var strVal: PNode = nil
      case skipTypes(v.typ, abstractInst-{tyTypeDesc}).kind
      of tyTuple:
        if sonsLen(v) == 2:
          strVal = v.sons[1] # second tuple part is the string value
          if skipTypes(strVal.typ, abstractInst).kind in {tyString, tyCString}:
            x = getOrdValue(v.sons[0]) # first tuple part is the ordinal
          else:
            localError(c.config, strVal.info, errStringLiteralExpected)
        else:
          localError(c.config, v.info, errWrongNumberOfVariables)
      of tyString, tyCString:
        strVal = v
        x = counter
      else:
        x = getOrdValue(v)
      if i != 1:
        if x != counter: incl(result.flags, tfEnumHasHoles)
        if x < counter:
          localError(c.config, n.sons[i].info, errInvalidOrderInEnumX % e.name.s)
          x = counter
      e.ast = strVal # might be nil
      counter = x
    of nkSym:
      e = n.sons[i].sym
    of nkIdent, nkAccQuoted:
      e = newSymS(skEnumField, n.sons[i], c)
    else:
      illFormedAst(n[i], c.config)
    e.typ = result
    e.position = int(counter)
    if e.position == 0: hasNull = true
    if result.sym != nil and sfExported in result.sym.flags:
      incl(e.flags, sfUsed)
      incl(e.flags, sfExported)
      if not isPure: strTableAdd(c.module.tab, e)
    addSon(result.n, newSymNode(e))
    styleCheckDef(c.config, e)
    onDef(e.info, e)
    if sfGenSym notin e.flags:
      if not isPure: addDecl(c, e)
      else: importPureEnumField(c, e)
    if isPure and (let conflict = strTableInclReportConflict(symbols, e); conflict != nil):
      wrongRedefinition(c, e.info, e.name.s, conflict.info)
    inc(counter)
  if not hasNull: incl(result.flags, tfNeedsInit)

proc semSet(c: PContext, n: PNode, prev: PType): PType =
  result = newOrPrevType(tySet, prev, c)
  if sonsLen(n) == 2:
    var base = semTypeNode(c, n.sons[1], nil)
    addSonSkipIntLit(result, base)
    if base.kind in {tyGenericInst, tyAlias, tySink}: base = lastSon(base)
    if base.kind != tyGenericParam:
      if not isOrdinalType(base, allowEnumWithHoles = true):
        localError(c.config, n.info, errOrdinalTypeExpected)
      elif lengthOrd(c.config, base) > MaxSetElements:
        localError(c.config, n.info, errSetTooBig)
  else:
    localError(c.config, n.info, errXExpectsOneTypeParam % "set")
    addSonSkipIntLit(result, errorType(c))

proc semContainerArg(c: PContext; n: PNode, kindStr: string; result: PType) =
  if sonsLen(n) == 2:
    var base = semTypeNode(c, n.sons[1], nil)
    if base.kind == tyVoid:
      localError(c.config, n.info, errTIsNotAConcreteType % typeToString(base))
    addSonSkipIntLit(result, base)
  else:
    localError(c.config, n.info, errXExpectsOneTypeParam % kindStr)
    addSonSkipIntLit(result, errorType(c))

proc semContainer(c: PContext, n: PNode, kind: TTypeKind, kindStr: string,
                  prev: PType): PType =
  result = newOrPrevType(kind, prev, c)
  semContainerArg(c, n, kindStr, result)

proc semVarargs(c: PContext, n: PNode, prev: PType): PType =
  result = newOrPrevType(tyVarargs, prev, c)
  if sonsLen(n) == 2 or sonsLen(n) == 3:
    var base = semTypeNode(c, n.sons[1], nil)
    addSonSkipIntLit(result, base)
    if sonsLen(n) == 3:
      result.n = newIdentNode(considerQuotedIdent(c, n.sons[2]), n.sons[2].info)
  else:
    localError(c.config, n.info, errXExpectsOneTypeParam % "varargs")
    addSonSkipIntLit(result, errorType(c))

proc semAnyRef(c: PContext; n: PNode; kind: TTypeKind; prev: PType): PType =
  if n.len < 1:
    result = newConstraint(c, kind)
  else:
    let isCall = int ord(n.kind in nkCallKinds+{nkBracketExpr})
    let n = if n[0].kind == nkBracket: n[0] else: n
    checkMinSonsLen(n, 1, c.config)
    var t = semTypeNode(c, n.lastSon, nil)
    if t.kind == tyTypeDesc and tfUnresolved notin t.flags:
      t = t.base
    if t.kind == tyVoid:
      const kindToStr: array[tyPtr..tyRef, string] = ["ptr", "ref"]
      localError(c.config, n.info, "type '$1 void' is not allowed" % kindToStr[kind])
    result = newOrPrevType(kind, prev, c)
    var isNilable = false
    # check every except the last is an object:
    for i in isCall .. n.len-2:
      let ni = n[i]
      if ni.kind == nkNilLit:
        isNilable = true
      else:
        let region = semTypeNode(c, ni, nil)
        if region.skipTypes({tyGenericInst, tyAlias, tySink}).kind notin {
              tyError, tyObject}:
          message c.config, n[i].info, errGenerated, "region needs to be an object type"
        else:
          message(c.config, n.info, warnDeprecated, "region for pointer types")
        addSonSkipIntLit(result, region)
    addSonSkipIntLit(result, t)
    if tfPartial in result.flags:
      if result.lastSon.kind == tyObject: incl(result.lastSon.flags, tfPartial)
    #if not isNilable: result.flags.incl tfNotNil

proc semVarType(c: PContext, n: PNode, prev: PType): PType =
  if sonsLen(n) == 1:
    result = newOrPrevType(tyVar, prev, c)
    var base = semTypeNode(c, n.sons[0], nil).skipTypes({tyTypeDesc})
    if base.kind == tyVar:
      localError(c.config, n.info, "type 'var var' is not allowed")
      base = base.sons[0]
    addSonSkipIntLit(result, base)
  else:
    result = newConstraint(c, tyVar)

proc semDistinct(c: PContext, n: PNode, prev: PType): PType =
  if n.len == 0: return newConstraint(c, tyDistinct)
  result = newOrPrevType(tyDistinct, prev, c)
  addSonSkipIntLit(result, semTypeNode(c, n.sons[0], nil))
  if n.len > 1: result.n = n[1]

proc semRangeAux(c: PContext, n: PNode, prev: PType): PType =
  assert isRange(n)
  checkSonsLen(n, 3, c.config)
  result = newOrPrevType(tyRange, prev, c)
  result.n = newNodeI(nkRange, n.info)
  # always create a 'valid' range type, but overwrite it later
  # because 'semExprWithType' can raise an exception. See bug #6895.
  addSonSkipIntLit(result, errorType(c))

  if (n[1].kind == nkEmpty) or (n[2].kind == nkEmpty):
    localError(c.config, n.info, "range is empty")

  var range: array[2, PNode]
  range[0] = semExprWithType(c, n[1], {efDetermineType})
  range[1] = semExprWithType(c, n[2], {efDetermineType})

  var rangeT: array[2, PType]
  for i in 0..1:
    rangeT[i] = range[i].typ.skipTypes({tyStatic}).skipIntLit

  let hasUnknownTypes = c.inGenericContext > 0 and
    rangeT[0].kind == tyFromExpr or rangeT[1].kind == tyFromExpr

  if not hasUnknownTypes:
    if not sameType(rangeT[0].skipTypes({tyRange}), rangeT[1].skipTypes({tyRange})):
      localError(c.config, n.info, "type mismatch")
    elif not rangeT[0].isOrdinalType and rangeT[0].kind notin tyFloat..tyFloat128:
      localError(c.config, n.info, "ordinal or float type expected")
    elif enumHasHoles(rangeT[0]):
      localError(c.config, n.info, "enum '$1' has holes" % typeToString(rangeT[0]))

  for i in 0..1:
    if hasUnresolvedArgs(c, range[i]):
      result.n.addSon makeStaticExpr(c, range[i])
      result.flags.incl tfUnresolved
    else:
      result.n.addSon semConstExpr(c, range[i])

  if weakLeValue(result.n[0], result.n[1]) == impNo:
    localError(c.config, n.info, "range is empty")

  result[0] = rangeT[0]

proc semRange(c: PContext, n: PNode, prev: PType): PType =
  result = nil
  if sonsLen(n) == 2:
    if isRange(n[1]):
      result = semRangeAux(c, n[1], prev)
      let n = result.n
      if n.sons[0].kind in {nkCharLit..nkUInt64Lit} and n.sons[0].intVal > 0:
        incl(result.flags, tfNeedsInit)
      elif n.sons[1].kind in {nkCharLit..nkUInt64Lit} and n.sons[1].intVal < 0:
        incl(result.flags, tfNeedsInit)
      elif n.sons[0].kind in {nkFloatLit..nkFloat64Lit} and
          n.sons[0].floatVal > 0.0:
        incl(result.flags, tfNeedsInit)
      elif n.sons[1].kind in {nkFloatLit..nkFloat64Lit} and
          n.sons[1].floatVal < 0.0:
        incl(result.flags, tfNeedsInit)
    else:
      if n[1].kind == nkInfix and considerQuotedIdent(c, n[1][0]).s == "..<":
        localError(c.config, n[0].info, "range types need to be constructed with '..', '..<' is not supported")
      else:
        localError(c.config, n.sons[0].info, "expected range")
      result = newOrPrevType(tyError, prev, c)
  else:
    localError(c.config, n.info, errXExpectsOneTypeParam % "range")
    result = newOrPrevType(tyError, prev, c)

proc semArrayIndex(c: PContext, n: PNode): PType =
  if isRange(n):
    result = semRangeAux(c, n, nil)
  else:
    let e = semExprWithType(c, n, {efDetermineType})
    if e.typ.kind == tyFromExpr:
      result = makeRangeWithStaticExpr(c, e.typ.n)
    elif e.kind in {nkIntLit..nkUInt64Lit}:
      if e.intVal < 0:
        localError(c.config, n[1].info,
          "Array length can't be negative, but was " & $e.intVal)
      result = makeRangeType(c, 0, e.intVal-1, n.info, e.typ)
    elif e.kind == nkSym and e.typ.kind == tyStatic:
      if e.sym.ast != nil:
        return semArrayIndex(c, e.sym.ast)
      if not isOrdinalType(e.typ.lastSon):
        let info = if n.safeLen > 1: n[1].info else: n.info
        localError(c.config, info, errOrdinalTypeExpected)
      result = makeRangeWithStaticExpr(c, e)
      if c.inGenericContext > 0: result.flags.incl tfUnresolved
    elif e.kind in (nkCallKinds + {nkBracketExpr}) and hasUnresolvedArgs(c, e):
      if not isOrdinalType(e.typ):
        localError(c.config, n[1].info, errOrdinalTypeExpected)
      # This is an int returning call, depending on an
      # yet unknown generic param (see tgenericshardcases).
      # We are going to construct a range type that will be
      # properly filled-out in semtypinst (see how tyStaticExpr
      # is handled there).
      result = makeRangeWithStaticExpr(c, e)
    elif e.kind == nkIdent:
      result = e.typ.skipTypes({tyTypeDesc})
    else:
      let x = semConstExpr(c, e)
      if x.kind in {nkIntLit..nkUInt64Lit}:
        result = makeRangeType(c, 0, x.intVal-1, n.info,
                             x.typ.skipTypes({tyTypeDesc}))
      else:
        result = x.typ.skipTypes({tyTypeDesc})
        #localError(c.config, n[1].info, errConstExprExpected)

proc semArray(c: PContext, n: PNode, prev: PType): PType =
  var base: PType
  if sonsLen(n) == 3:
    # 3 = length(array indx base)
    let indx = semArrayIndex(c, n[1])
    var indxB = indx
    if indxB.kind in {tyGenericInst, tyAlias, tySink}: indxB = lastSon(indxB)
    if indxB.kind notin {tyGenericParam, tyStatic, tyFromExpr}:
      if indxB.skipTypes({tyRange}).kind in {tyUInt, tyUInt64}:
        discard
      elif not isOrdinalType(indxB):
        localError(c.config, n.sons[1].info, errOrdinalTypeExpected)
      elif enumHasHoles(indxB):
        localError(c.config, n.sons[1].info, "enum '$1' has holes" %
                   typeToString(indxB.skipTypes({tyRange})))
    base = semTypeNode(c, n.sons[2], nil)
    # ensure we only construct a tyArray when there was no error (bug #3048):
    result = newOrPrevType(tyArray, prev, c)
    # bug #6682: Do not propagate initialization requirements etc for the
    # index type:
    rawAddSonNoPropagationOfTypeFlags(result, indx)
    addSonSkipIntLit(result, base)
  else:
    localError(c.config, n.info, errArrayExpectsTwoTypeParams)
    result = newOrPrevType(tyError, prev, c)

proc semOrdinal(c: PContext, n: PNode, prev: PType): PType =
  result = newOrPrevType(tyOrdinal, prev, c)
  if sonsLen(n) == 2:
    var base = semTypeNode(c, n.sons[1], nil)
    if base.kind != tyGenericParam:
      if not isOrdinalType(base):
        localError(c.config, n.sons[1].info, errOrdinalTypeExpected)
    addSonSkipIntLit(result, base)
  else:
    localError(c.config, n.info, errXExpectsOneTypeParam % "ordinal")
    result = newOrPrevType(tyError, prev, c)

proc semTypeIdent(c: PContext, n: PNode): PSym =
  if n.kind == nkSym:
    result = getGenSym(c, n.sym)
  else:
    result = pickSym(c, n, {skType, skGenericParam, skParam})
    if result.isNil:
      result = qualifiedLookUp(c, n, {checkAmbiguity, checkUndeclared})
    if result != nil:
      markUsed(c.config, n.info, result, c.graph.usageSym)
      onUse(n.info, result)

      if result.kind == skParam and result.typ.kind == tyTypeDesc:
        # This is a typedesc param. is it already bound?
        # it's not bound when it's used multiple times in the
        # proc signature for example
        if c.inGenericInst > 0:
          let bound = result.typ.sons[0].sym
          if bound != nil: return bound
          return result
        if result.typ.sym == nil:
          localError(c.config, n.info, errTypeExpected)
          return errorSym(c, n)
        result = result.typ.sym.copySym
        result.typ = copyType(result.typ, result.typ.owner, true)
        result.typ.flags.incl tfUnresolved

      if result.kind == skGenericParam:
        if result.typ.kind == tyGenericParam and result.typ.len == 0 and
           tfWildcard in result.typ.flags:
          # collapse the wild-card param to a type
          result.kind = skType
          result.typ.flags.excl tfWildcard
          return
        else:
          localError(c.config, n.info, errTypeExpected)
          return errorSym(c, n)
      if result.kind != skType and result.magic notin (mStaticTy + mTypeTy):
        # this implements the wanted ``var v: V, x: V`` feature ...
        var ov: TOverloadIter
        var amb = initOverloadIter(ov, c, n)
        while amb != nil and amb.kind != skType:
          amb = nextOverloadIter(ov, c, n)
        if amb != nil: result = amb
        else:
          if result.kind != skError: localError(c.config, n.info, errTypeExpected)
          return errorSym(c, n)
      if result.typ.kind != tyGenericParam:
        # XXX get rid of this hack!
        var oldInfo = n.info
        when defined(useNodeIds):
          let oldId = n.id
        reset(n[])
        when defined(useNodeIds):
          n.id = oldId
        n.kind = nkSym
        n.sym = result
        n.info = oldInfo
        n.typ = result.typ
    else:
      localError(c.config, n.info, "identifier expected")
      result = errorSym(c, n)

proc semAnonTuple(c: PContext, n: PNode, prev: PType): PType =
  if sonsLen(n) == 0:
    localError(c.config, n.info, errTypeExpected)
  result = newOrPrevType(tyTuple, prev, c)
  for it in n:
    addSonSkipIntLit(result, semTypeNode(c, it, nil))

proc semTuple(c: PContext, n: PNode, prev: PType): PType =
  var typ: PType
  result = newOrPrevType(tyTuple, prev, c)
  result.n = newNodeI(nkRecList, n.info)
  var check = initIntSet()
  var counter = 0
  for i in countup(ord(n.kind == nkBracketExpr), sonsLen(n) - 1):
    var a = n.sons[i]
    if (a.kind != nkIdentDefs): illFormedAst(a, c.config)
    checkMinSonsLen(a, 3, c.config)
    var length = sonsLen(a)
    if a.sons[length - 2].kind != nkEmpty:
      typ = semTypeNode(c, a.sons[length - 2], nil)
    else:
      localError(c.config, a.info, errTypeExpected)
      typ = errorType(c)
    if a.sons[length - 1].kind != nkEmpty:
      localError(c.config, a.sons[length - 1].info, errInitHereNotAllowed)
    for j in countup(0, length - 3):
      var field = newSymG(skField, a.sons[j], c)
      field.typ = typ
      field.position = counter
      inc(counter)
      if containsOrIncl(check, field.name.id):
        localError(c.config, a.sons[j].info, "attempt to redefine: '" & field.name.s & "'")
      else:
        addSon(result.n, newSymNode(field))
        addSonSkipIntLit(result, typ)
      styleCheckDef(c.config, a.sons[j].info, field)
      onDef(field.info, field)
  if result.n.len == 0: result.n = nil

proc semIdentVis(c: PContext, kind: TSymKind, n: PNode,
                 allowed: TSymFlags): PSym =
  # identifier with visibility
  if n.kind == nkPostfix:
    if sonsLen(n) == 2:
      # for gensym'ed identifiers the identifier may already have been
      # transformed to a symbol and we need to use that here:
      result = newSymG(kind, n.sons[1], c)
      var v = considerQuotedIdent(c, n.sons[0])
      if sfExported in allowed and v.id == ord(wStar):
        incl(result.flags, sfExported)
      else:
        if not (sfExported in allowed):
          localError(c.config, n.sons[0].info, errXOnlyAtModuleScope % "export")
        else:
          localError(c.config, n.sons[0].info, errInvalidVisibilityX % renderTree(n[0]))
    else:
      illFormedAst(n, c.config)
  else:
    result = newSymG(kind, n, c)

proc semIdentWithPragma(c: PContext, kind: TSymKind, n: PNode,
                        allowed: TSymFlags): PSym =
  if n.kind == nkPragmaExpr:
    checkSonsLen(n, 2, c.config)
    result = semIdentVis(c, kind, n.sons[0], allowed)
    case kind
    of skType:
      # process pragmas later, because result.typ has not been set yet
      discard
    of skField: pragma(c, result, n.sons[1], fieldPragmas)
    of skVar:   pragma(c, result, n.sons[1], varPragmas)
    of skLet:   pragma(c, result, n.sons[1], letPragmas)
    of skConst: pragma(c, result, n.sons[1], constPragmas)
    else: discard
  else:
    result = semIdentVis(c, kind, n, allowed)

proc checkForOverlap(c: PContext, t: PNode, currentEx, branchIndex: int) =
  let ex = t[branchIndex][currentEx].skipConv
  for i in countup(1, branchIndex):
    for j in countup(0, sonsLen(t.sons[i]) - 2):
      if i == branchIndex and j == currentEx: break
      if overlap(t.sons[i].sons[j].skipConv, ex):
        localError(c.config, ex.info, errDuplicateCaseLabel)

proc semBranchRange(c: PContext, t, a, b: PNode, covered: var BiggestInt): PNode =
  checkMinSonsLen(t, 1, c.config)
  let ac = semConstExpr(c, a)
  let bc = semConstExpr(c, b)
  let at = fitNode(c, t.sons[0].typ, ac, ac.info).skipConvTakeType
  let bt = fitNode(c, t.sons[0].typ, bc, bc.info).skipConvTakeType

  result = newNodeI(nkRange, a.info)
  result.add(at)
  result.add(bt)
  if emptyRange(ac, bc): localError(c.config, b.info, "range is empty")
  else: covered = covered + getOrdValue(bc) - getOrdValue(ac) + 1

proc semCaseBranchRange(c: PContext, t, b: PNode,
                        covered: var BiggestInt): PNode =
  checkSonsLen(b, 3, c.config)
  result = semBranchRange(c, t, b.sons[1], b.sons[2], covered)

proc semCaseBranchSetElem(c: PContext, t, b: PNode,
                          covered: var BiggestInt): PNode =
  if isRange(b):
    checkSonsLen(b, 3, c.config)
    result = semBranchRange(c, t, b.sons[1], b.sons[2], covered)
  elif b.kind == nkRange:
    checkSonsLen(b, 2, c.config)
    result = semBranchRange(c, t, b.sons[0], b.sons[1], covered)
  else:
    result = fitNode(c, t.sons[0].typ, b, b.info)
    inc(covered)

proc semCaseBranch(c: PContext, t, branch: PNode, branchIndex: int,
                   covered: var BiggestInt) =
  let lastIndex = sonsLen(branch) - 2
  for i in 0..lastIndex:
    var b = branch.sons[i]
    if b.kind == nkRange:
      branch.sons[i] = b
    elif isRange(b):
      branch.sons[i] = semCaseBranchRange(c, t, b, covered)
    else:
      # constant sets and arrays are allowed:
      var r = semConstExpr(c, b)
      if r.kind in {nkCurly, nkBracket} and len(r) == 0  and sonsLen(branch)==2:
        # discarding ``{}`` and ``[]`` branches silently
        delSon(branch, 0)
        return
      elif r.kind notin {nkCurly, nkBracket} or len(r) == 0:
        checkMinSonsLen(t, 1, c.config)
        var tmp = fitNode(c, t.sons[0].typ, r, r.info)
        # the call to fitNode may introduce a call to a converter
        if tmp.kind in {nkHiddenCallConv}: tmp = semConstExpr(c, tmp)
        branch.sons[i] = skipConv(tmp)
        inc(covered)
      else:
        if r.kind == nkCurly:
          r = deduplicate(c.config, r)

        # first element is special and will overwrite: branch.sons[i]:
        branch.sons[i] = semCaseBranchSetElem(c, t, r[0], covered)

        # other elements have to be added to ``branch``
        for j in 1 ..< r.len:
          branch.add(semCaseBranchSetElem(c, t, r[j], covered))
          # caution! last son of branch must be the actions to execute:
          swap(branch.sons[^2], branch.sons[^1])
    checkForOverlap(c, t, i, branchIndex)

  # Elements added above needs to be checked for overlaps.
  for i in lastIndex.succ..(sonsLen(branch) - 2):
    checkForOverlap(c, t, i, branchIndex)

proc semRecordNodeAux(c: PContext, n: PNode, check: var IntSet, pos: var int,
                      father: PNode, rectype: PType, hasCaseFields = false)
proc semRecordCase(c: PContext, n: PNode, check: var IntSet, pos: var int,
                   father: PNode, rectype: PType) =
  var a = copyNode(n)
  checkMinSonsLen(n, 2, c.config)
  semRecordNodeAux(c, n.sons[0], check, pos, a, rectype, hasCaseFields = true)
  if a.sons[0].kind != nkSym:
    internalError(c.config, "semRecordCase: discriminant is no symbol")
    return
  incl(a.sons[0].sym.flags, sfDiscriminant)
  var covered: BiggestInt = 0
  var typ = skipTypes(a.sons[0].typ, abstractVar-{tyTypeDesc})
  if not isOrdinalType(typ):
    localError(c.config, n.info, "selector must be of an ordinal type")
  elif firstOrd(c.config, typ) != 0:
    localError(c.config, n.info, "low(" & $a.sons[0].sym.name.s &
                                     ") must be 0 for discriminant")
  elif lengthOrd(c.config, typ) > 0x00007FFF:
    localError(c.config, n.info, "len($1) must be less than 32768" % a.sons[0].sym.name.s)
  var chckCovered = true
  for i in countup(1, sonsLen(n) - 1):
    var b = copyTree(n.sons[i])
    addSon(a, b)
    case n.sons[i].kind
    of nkOfBranch:
      checkMinSonsLen(b, 2, c.config)
      semCaseBranch(c, a, b, i, covered)
    of nkElse:
      chckCovered = false
      checkSonsLen(b, 1, c.config)
    else: illFormedAst(n, c.config)
    delSon(b, sonsLen(b) - 1)
    semRecordNodeAux(c, lastSon(n.sons[i]), check, pos, b, rectype, hasCaseFields = true)
  if chckCovered and covered != lengthOrd(c.config, a.sons[0].typ):
    localError(c.config, a.info, "not all cases are covered")
  addSon(father, a)

proc semRecordNodeAux(c: PContext, n: PNode, check: var IntSet, pos: var int,
                      father: PNode, rectype: PType, hasCaseFields = false) =
  if n == nil: return
  case n.kind
  of nkRecWhen:
    var branch: PNode = nil   # the branch to take
    for i in countup(0, sonsLen(n) - 1):
      var it = n.sons[i]
      if it == nil: illFormedAst(n, c.config)
      var idx = 1
      case it.kind
      of nkElifBranch:
        checkSonsLen(it, 2, c.config)
        if c.inGenericContext == 0:
          var e = semConstBoolExpr(c, it.sons[0])
          if e.kind != nkIntLit: internalError(c.config, e.info, "semRecordNodeAux")
          elif e.intVal != 0 and branch == nil: branch = it.sons[1]
        else:
          it.sons[0] = forceBool(c, semExprWithType(c, it.sons[0]))
      of nkElse:
        checkSonsLen(it, 1, c.config)
        if branch == nil: branch = it.sons[0]
        idx = 0
      else: illFormedAst(n, c.config)
      if c.inGenericContext > 0:
        # use a new check intset here for each branch:
        var newCheck: IntSet
        assign(newCheck, check)
        var newPos = pos
        var newf = newNodeI(nkRecList, n.info)
        semRecordNodeAux(c, it.sons[idx], newCheck, newPos, newf, rectype)
        it.sons[idx] = if newf.len == 1: newf[0] else: newf
    if c.inGenericContext > 0:
      addSon(father, n)
    elif branch != nil:
      semRecordNodeAux(c, branch, check, pos, father, rectype)
  of nkRecCase:
    semRecordCase(c, n, check, pos, father, rectype)
  of nkNilLit:
    if father.kind != nkRecList: addSon(father, newNodeI(nkRecList, n.info))
  of nkRecList:
    # attempt to keep the nesting at a sane level:
    var a = if father.kind == nkRecList: father else: copyNode(n)
    for i in countup(0, sonsLen(n) - 1):
      semRecordNodeAux(c, n.sons[i], check, pos, a, rectype)
    if a != father: addSon(father, a)
  of nkIdentDefs:
    checkMinSonsLen(n, 3, c.config)
    var length = sonsLen(n)
    var a: PNode
    if father.kind != nkRecList and length>=4: a = newNodeI(nkRecList, n.info)
    else: a = newNodeI(nkEmpty, n.info)
    if n.sons[length-1].kind != nkEmpty:
      localError(c.config, n.sons[length-1].info, errInitHereNotAllowed)
    var typ: PType
    if n.sons[length-2].kind == nkEmpty:
      localError(c.config, n.info, errTypeExpected)
      typ = errorType(c)
    else:
      typ = semTypeNode(c, n.sons[length-2], nil)
      propagateToOwner(rectype, typ)
    var fieldOwner = if c.inGenericContext > 0: c.getCurrOwner
                     else: rectype.sym
    for i in countup(0, sonsLen(n)-3):
      var f = semIdentWithPragma(c, skField, n.sons[i], {sfExported})
      suggestSym(c.config, n.sons[i].info, f, c.graph.usageSym)
      f.typ = typ
      f.position = pos
      if fieldOwner != nil and
         {sfImportc, sfExportc} * fieldOwner.flags != {} and
         not hasCaseFields and f.loc.r == nil:
        f.loc.r = rope(f.name.s)
        f.flags = f.flags + ({sfImportc, sfExportc} * fieldOwner.flags)
      inc(pos)
      if containsOrIncl(check, f.name.id):
        localError(c.config, n.sons[i].info, "attempt to redefine: '" & f.name.s & "'")
      if a.kind == nkEmpty: addSon(father, newSymNode(f))
      else: addSon(a, newSymNode(f))
      styleCheckDef(c.config, f)
      onDef(f.info, f)
    if a.kind != nkEmpty: addSon(father, a)
  of nkSym:
    # This branch only valid during generic object
    # inherited from generic/partial specialized parent second check.
    # There is no branch validity check here
    if containsOrIncl(check, n.sym.name.id):
      localError(c.config, n.info, "attempt to redefine: '" & n.sym.name.s & "'")
    addSon(father, n)
  of nkEmpty: discard
  else: illFormedAst(n, c.config)

proc addInheritedFieldsAux(c: PContext, check: var IntSet, pos: var int,
                           n: PNode) =
  case n.kind
  of nkRecCase:
    if (n.sons[0].kind != nkSym): internalError(c.config, n.info, "addInheritedFieldsAux")
    addInheritedFieldsAux(c, check, pos, n.sons[0])
    for i in countup(1, sonsLen(n) - 1):
      case n.sons[i].kind
      of nkOfBranch, nkElse:
        addInheritedFieldsAux(c, check, pos, lastSon(n.sons[i]))
      else: internalError(c.config, n.info, "addInheritedFieldsAux(record case branch)")
  of nkRecList:
    for i in countup(0, sonsLen(n) - 1):
      addInheritedFieldsAux(c, check, pos, n.sons[i])
  of nkSym:
    incl(check, n.sym.name.id)
    inc(pos)
  else: internalError(c.config, n.info, "addInheritedFieldsAux()")

proc skipGenericInvocation(t: PType): PType {.inline.} =
  result = t
  if result.kind == tyGenericInvocation:
    result = result.sons[0]
  while result.kind in {tyGenericInst, tyGenericBody, tyRef, tyPtr, tyAlias, tySink}:
    result = lastSon(result)

proc addInheritedFields(c: PContext, check: var IntSet, pos: var int,
                        obj: PType) =
  assert obj.kind == tyObject
  if (sonsLen(obj) > 0) and (obj.sons[0] != nil):
    addInheritedFields(c, check, pos, obj.sons[0].skipGenericInvocation)
  addInheritedFieldsAux(c, check, pos, obj.n)

proc semObjectNode(c: PContext, n: PNode, prev: PType): PType =
  if n.sonsLen == 0:
    return newConstraint(c, tyObject)
  var check = initIntSet()
  var pos = 0
  var base, realBase: PType = nil
  # n.sons[0] contains the pragmas (if any). We process these later...
  checkSonsLen(n, 3, c.config)
  if n.sons[1].kind != nkEmpty:
    realBase = semTypeNode(c, n.sons[1].sons[0], nil)
    base = skipTypesOrNil(realBase, skipPtrs)
    if base.isNil:
      localError(c.config, n.info, "cannot inherit from a type that is not an object type")
    else:
      var concreteBase = skipGenericInvocation(base)
      if concreteBase.kind in {tyObject, tyGenericParam,
        tyGenericInvocation} and tfFinal notin concreteBase.flags:
        # we only check fields duplication of object inherited from
        # concrete object. If inheriting from generic object or partial
        # specialized object, there will be second check after instantiation
        # located in semGeneric.
        if concreteBase.kind == tyObject:
          addInheritedFields(c, check, pos, concreteBase)
      else:
        if concreteBase.kind != tyError:
          localError(c.config, n.sons[1].info, "inheritance only works with non-final objects; " &
             "to enable inheritance write '" & typeToString(realBase) & " of RootObj'")
        base = nil
        realBase = nil
  if n.kind != nkObjectTy: internalError(c.config, n.info, "semObjectNode")
  result = newOrPrevType(tyObject, prev, c)
  rawAddSon(result, realBase)
  if result.n.isNil:
    result.n = newNodeI(nkRecList, n.info)
  else:
    # partial object so add things to the check
    addInheritedFields(c, check, pos, result)
  semRecordNodeAux(c, n.sons[2], check, pos, result.n, result)
  if n.sons[0].kind != nkEmpty:
    # dummy symbol for `pragma`:
    var s = newSymS(skType, newIdentNode(getIdent(c.cache, "dummy"), n.info), c)
    s.typ = result
    pragma(c, s, n.sons[0], typePragmas)
  if base == nil and tfInheritable notin result.flags:
    incl(result.flags, tfFinal)

proc findEnforcedStaticType(t: PType): PType =
  # This handles types such as `static[T] and Foo`,
  # which are subset of `static[T]`, hence they could
  # be treated in the same way
  if t.kind == tyStatic: return t
  if t.kind == tyAnd:
    for s in t.sons:
      let t = findEnforcedStaticType(s)
      if t != nil: return t

proc addParamOrResult(c: PContext, param: PSym, kind: TSymKind) =
  if kind == skMacro:
    let staticType = findEnforcedStaticType(param.typ)
    if staticType != nil:
      var a = copySym(param)
      a.typ = staticType.base
      addDecl(c, a)
    elif param.typ.kind == tyTypeDesc:
      addDecl(c, param)
    else:
      # within a macro, every param has the type NimNode!
      let nn = getSysSym(c.graph, param.info, "NimNode")
      var a = copySym(param)
      a.typ = nn.typ
      addDecl(c, a)
  else:
    if sfGenSym notin param.flags: addDecl(c, param)

template shouldHaveMeta(t) =
  internalAssert c.config, tfHasMeta in t.flags
  # result.lastSon.flags.incl tfHasMeta

proc liftParamType(c: PContext, procKind: TSymKind, genericParams: PNode,
                   paramType: PType, paramName: string,
                   info: TLineInfo, anon = false): PType =
  if paramType == nil: return # (e.g. proc return type)

  proc addImplicitGenericImpl(c: PContext; typeClass: PType, typId: PIdent): PType =
    if genericParams == nil:
      # This happens with anonymous proc types appearing in signatures
      # XXX: we need to lift these earlier
      return
    let finalTypId = if typId != nil: typId
                     else: getIdent(c.cache, paramName & ":type")
    # is this a bindOnce type class already present in the param list?
    for i in countup(0, genericParams.len - 1):
      if genericParams.sons[i].sym.name.id == finalTypId.id:
        return genericParams.sons[i].typ

    let owner = if typeClass.sym != nil: typeClass.sym
                else: getCurrOwner(c)
    var s = newSym(skType, finalTypId, owner, info)
    if sfExplain in owner.flags: s.flags.incl sfExplain
    if typId == nil: s.flags.incl(sfAnon)
    s.linkTo(typeClass)
    typeClass.flags.incl tfImplicitTypeParam
    s.position = genericParams.len
    genericParams.addSon(newSymNode(s))
    result = typeClass
    addDecl(c, s)

  # XXX: There are codegen errors if this is turned into a nested proc
  template liftingWalk(typ: PType, anonFlag = false): untyped =
    liftParamType(c, procKind, genericParams, typ, paramName, info, anonFlag)
  #proc liftingWalk(paramType: PType, anon = false): PType =

  var paramTypId = if not anon and paramType.sym != nil: paramType.sym.name
                   else: nil

  template maybeLift(typ: PType): untyped =
    let lifted = liftingWalk(typ)
    (if lifted != nil: lifted else: typ)

  template addImplicitGeneric(e): untyped =
    addImplicitGenericImpl(c, e, paramTypId)

  case paramType.kind:
  of tyAnything:
    result = addImplicitGenericImpl(c, newTypeS(tyGenericParam, c), nil)

  of tyStatic:
    if paramType.base.kind != tyNone and paramType.n != nil:
      # this is a concrete static value
      return
    if tfUnresolved in paramType.flags: return # already lifted
    let base = paramType.base.maybeLift
    if base.isMetaType and procKind == skMacro:
      localError(c.config, info, errMacroBodyDependsOnGenericTypes % paramName)
    result = addImplicitGeneric(c.newTypeWithSons(tyStatic, @[base]))
    if result != nil: result.flags.incl({tfHasStatic, tfUnresolved})

  of tyTypeDesc:
    if tfUnresolved notin paramType.flags:
      # naked typedescs are not bindOnce types
      if paramType.base.kind == tyNone and paramTypId != nil and
          paramTypId.id == getIdent(c.cache, "typedesc").id:
        # XXX Why doesn't this check for tyTypeDesc instead?
        paramTypId = nil
      result = addImplicitGeneric(
        c.newTypeWithSons(tyTypeDesc, @[paramType.base]))

  of tyDistinct:
    if paramType.sonsLen == 1:
      # disable the bindOnce behavior for the type class
      result = liftingWalk(paramType.base, true)

  of tyAlias:
    result = liftingWalk(paramType.base)

  of tySequence, tySet, tyArray, tyOpenArray,
     tyVar, tyLent, tyPtr, tyRef, tyProc:
    # XXX: this is a bit strange, but proc(s: seq)
    # produces tySequence(tyGenericParam, tyNone).
    # This also seems to be true when creating aliases
    # like: type myseq = distinct seq.
    # Maybe there is another better place to associate
    # the seq type class with the seq identifier.
    if paramType.kind == tySequence and paramType.lastSon.kind == tyNone:
      let typ = c.newTypeWithSons(tyBuiltInTypeClass,
                                  @[newTypeS(paramType.kind, c)])
      result = addImplicitGeneric(typ)
    else:
      for i in 0 ..< paramType.len:
        if paramType.sons[i] == paramType:
          globalError(c.config, info, errIllegalRecursionInTypeX % typeToString(paramType))
        var lifted = liftingWalk(paramType.sons[i])
        if lifted != nil:
          paramType.sons[i] = lifted
          result = paramType

  of tyGenericBody:
    result = newTypeS(tyGenericInvocation, c)
    result.rawAddSon(paramType)

    for i in 0 .. paramType.sonsLen - 2:
      if paramType.sons[i].kind == tyStatic:
        var staticCopy = paramType.sons[i].exactReplica
        staticCopy.flags.incl tfInferrableStatic
        result.rawAddSon staticCopy
      else:
        result.rawAddSon newTypeS(tyAnything, c)

    if paramType.lastSon.kind == tyUserTypeClass:
      result.kind = tyUserTypeClassInst
      result.rawAddSon paramType.lastSon
      return addImplicitGeneric(result)

    let x = instGenericContainer(c, paramType.sym.info, result,
                                  allowMetaTypes = true)
    result = newTypeWithSons(c, tyCompositeTypeClass, @[paramType, x])
    #result = newTypeS(tyCompositeTypeClass, c)
    #for i in 0..<x.len: result.rawAddSon(x.sons[i])
    result = addImplicitGeneric(result)

  of tyGenericInst:
    if paramType.lastSon.kind == tyUserTypeClass:
      var cp = copyType(paramType, getCurrOwner(c), false)
      cp.kind = tyUserTypeClassInst
      return addImplicitGeneric(cp)

    for i in 1 .. paramType.len-2:
      var lifted = liftingWalk(paramType.sons[i])
      if lifted != nil:
        paramType.sons[i] = lifted
        result = paramType
        result.lastSon.shouldHaveMeta

    let liftBody = liftingWalk(paramType.lastSon, true)
    if liftBody != nil:
      result = liftBody
      result.flags.incl tfHasMeta
      #result.shouldHaveMeta

  of tyGenericInvocation:
    for i in 1 ..< paramType.len:
      let lifted = liftingWalk(paramType.sons[i])
      if lifted != nil: paramType.sons[i] = lifted

    let body = paramType.base
    if body.kind == tyForward:
      # this may happen for proc type appearing in a type section
      # before one of its param types
      return

    if body.lastSon.kind == tyUserTypeClass:
      let expanded = instGenericContainer(c, info, paramType,
                                          allowMetaTypes = true)
      result = liftingWalk(expanded, true)

  of tyUserTypeClasses, tyBuiltInTypeClass, tyCompositeTypeClass,
     tyAnd, tyOr, tyNot:
    result = addImplicitGeneric(copyType(paramType, getCurrOwner(c), false))

  of tyGenericParam:
    markUsed(c.config, info, paramType.sym, c.graph.usageSym)
    onUse(info, paramType.sym)
    if tfWildcard in paramType.flags:
      paramType.flags.excl tfWildcard
      paramType.sym.kind = skType

  else: discard

  # result = liftingWalk(paramType)

proc semParamType(c: PContext, n: PNode, constraint: var PNode): PType =
  if n.kind == nkCurlyExpr:
    result = semTypeNode(c, n.sons[0], nil)
    constraint = semNodeKindConstraints(n, c.config)
  else:
    result = semTypeNode(c, n, nil)

proc newProcType(c: PContext; info: TLineInfo; prev: PType = nil): PType =
  result = newOrPrevType(tyProc, prev, c)
  result.callConv = lastOptionEntry(c).defaultCC
  result.n = newNodeI(nkFormalParams, info)
  rawAddSon(result, nil) # return type
  # result.n[0] used to be `nkType`, but now it's `nkEffectList` because
  # the effects are now stored in there too ... this is a bit hacky, but as
  # usual we desperately try to save memory:
  addSon(result.n, newNodeI(nkEffectList, info))

proc semProcTypeNode(c: PContext, n, genericParams: PNode,
                     prev: PType, kind: TSymKind; isType=false): PType =
  # for historical reasons (code grows) this is invoked for parameter
  # lists too and then 'isType' is false.
  checkMinSonsLen(n, 1, c.config)
  result = newProcType(c, n.info, prev)
  var check = initIntSet()
  var counter = 0

  for i in countup(1, n.len - 1):
    var a = n.sons[i]
    if a.kind != nkIdentDefs:
      # for some generic instantiations the passed ':env' parameter
      # for closures has already been produced (see bug #898). We simply
      # skip this parameter here. It'll then be re-generated in another LL
      # pass over this instantiation:
      if a.kind == nkSym and sfFromGeneric in a.sym.flags: continue
      illFormedAst(a, c.config)

    checkMinSonsLen(a, 3, c.config)
    var
      typ: PType = nil
      def: PNode = nil
      constraint: PNode = nil
      length = sonsLen(a)
      hasType = a.sons[length-2].kind != nkEmpty
      hasDefault = a.sons[length-1].kind != nkEmpty

    if hasType:
      typ = semParamType(c, a.sons[length-2], constraint)

    if hasDefault:
      def = a[^1]
      block determineType:
        if genericParams != nil and genericParams.len > 0:
          def = semGenericStmt(c, def)
          if hasUnresolvedArgs(c, def):
            def.typ = makeTypeFromExpr(c, def.copyTree)
            break determineType

        def = semExprWithType(c, def, {efDetermineType})
        if def.referencesAnotherParam(getCurrOwner(c)):
          def.flags.incl nfDefaultRefsParam

      if typ == nil:
        typ = def.typ
        if typ.kind == tyTypeDesc:
          # consider a proc such as:
          # proc takesType(T = int)
          # a naive analysis may conclude that the proc type is type[int]
          # which will prevent other types from matching - clearly a very
          # surprising behavior. We must instead fix the expected type of
          # the proc to be the unbound typedesc type:
          typ = newTypeWithSons(c, tyTypeDesc, @[newTypeS(tyNone, c)])

      else:
        # if def.typ != nil and def.typ.kind != tyNone:
        # example code that triggers it:
        # proc sort[T](cmp: proc(a, b: T): int = cmp)
        if not containsGenericType(typ):
          # check type compatibility between def.typ and typ:
          def = fitNode(c, typ, def, def.info)
        elif typ.kind == tyStatic:
          def = semConstExpr(c, def)
          def = fitNode(c, typ, def, def.info)

    if not hasType and not hasDefault:
      if isType: localError(c.config, a.info, "':' expected")
      if kind in {skTemplate, skMacro}:
        typ = newTypeS(tyExpr, c)
    elif skipTypes(typ, {tyGenericInst, tyAlias, tySink}).kind == tyVoid:
      continue

    for j in countup(0, length-3):
      var arg = newSymG(skParam, a.sons[j], c)
      if not hasType and not hasDefault and kind notin {skTemplate, skMacro}:
        let param = strTableGet(c.signatures, arg.name)
        if param != nil: typ = param.typ
        else:
          localError(c.config, a.info, "typeless parameters are obsolete")
          typ = errorType(c)
      let lifted = liftParamType(c, kind, genericParams, typ,
                                 arg.name.s, arg.info)
      let finalType = if lifted != nil: lifted else: typ.skipIntLit
      arg.typ = finalType
      arg.position = counter
      arg.constraint = constraint
      inc(counter)
      if def != nil and def.kind != nkEmpty:
        arg.ast = copyTree(def)
      if containsOrIncl(check, arg.name.id):
        localError(c.config, a.sons[j].info, "attempt to redefine: '" & arg.name.s & "'")
      addSon(result.n, newSymNode(arg))
      rawAddSon(result, finalType)
      addParamOrResult(c, arg, kind)
      styleCheckDef(c.config, a.sons[j].info, arg)
      onDef(a[j].info, arg)

  var r: PType
  if n.sons[0].kind != nkEmpty:
    r = semTypeNode(c, n.sons[0], nil)

  if r != nil:
    # turn explicit 'void' return type into 'nil' because the rest of the
    # compiler only checks for 'nil':
    if skipTypes(r, {tyGenericInst, tyAlias, tySink}).kind != tyVoid:
      # 'auto' as a return type does not imply a generic:
      if r.kind == tyAnything:
        # 'p(): auto' and 'p(): expr' are equivalent, but the rest of the
        # compiler is hardly aware of 'auto':
        r = newTypeS(tyExpr, c)
      elif r.kind != tyExpr:
        if r.sym == nil or sfAnon notin r.sym.flags:
          let lifted = liftParamType(c, kind, genericParams, r, "result",
                                     n.sons[0].info)
          if lifted != nil:
            r = lifted
            #if r.kind != tyGenericParam:
            #echo "came here for ", typeToString(r)
            r.flags.incl tfRetType
        r = skipIntLit(r)
        if kind == skIterator:
          # see tchainediterators
          # in cases like iterator foo(it: iterator): type(it)
          # we don't need to change the return type to iter[T]
          result.flags.incl tfIterator
          # XXX Would be nice if we could get rid of this
      result.sons[0] = r
      let oldFlags = result.flags
      propagateToOwner(result, r)
      if oldFlags != result.flags:
        # XXX This rather hacky way keeps 'tflatmap' compiling:
        if tfHasMeta notin oldFlags:
          result.flags.excl tfHasMeta
      result.n.typ = r

  if genericParams != nil and genericParams.len > 0:
    for n in genericParams:
      if {sfUsed, sfAnon} * n.sym.flags == {}:
        result.flags.incl tfUnresolved

      if tfWildcard in n.sym.typ.flags:
        n.sym.kind = skType
        n.sym.typ.flags.excl tfWildcard

proc semStmtListType(c: PContext, n: PNode, prev: PType): PType =
  checkMinSonsLen(n, 1, c.config)
  var length = sonsLen(n)
  for i in countup(0, length - 2):
    n.sons[i] = semStmt(c, n.sons[i], {})
  if length > 0:
    result = semTypeNode(c, n.sons[length - 1], prev)
    n.typ = result
    n.sons[length - 1].typ = result
  else:
    result = nil

proc semBlockType(c: PContext, n: PNode, prev: PType): PType =
  inc(c.p.nestedBlockCounter)
  checkSonsLen(n, 2, c.config)
  openScope(c)
  if n.sons[0].kind notin {nkEmpty, nkSym}:
    addDecl(c, newSymS(skLabel, n.sons[0], c))
  result = semStmtListType(c, n.sons[1], prev)
  n.sons[1].typ = result
  n.typ = result
  closeScope(c)
  dec(c.p.nestedBlockCounter)

proc semGenericParamInInvocation(c: PContext, n: PNode): PType =
  result = semTypeNode(c, n, nil)
  n.typ = makeTypeDesc(c, result)

proc semObjectTypeForInheritedGenericInst(c: PContext, n: PNode, t: PType) =
  var
    check = initIntSet()
    pos = 0
  let
    realBase = t.sons[0]
    base = skipTypesOrNil(realBase, skipPtrs)
  if base.isNil:
    localError(c.config, n.info, errIllegalRecursionInTypeX % "object")
  else:
    let concreteBase = skipGenericInvocation(base)
    if concreteBase.kind == tyObject and tfFinal notin concreteBase.flags:
      addInheritedFields(c, check, pos, concreteBase)
    else:
      if concreteBase.kind != tyError:
        localError(c.config, n.info, errInheritanceOnlyWithNonFinalObjects)
  var newf = newNodeI(nkRecList, n.info)
  semRecordNodeAux(c, t.n, check, pos, newf, t)

proc semGeneric(c: PContext, n: PNode, s: PSym, prev: PType): PType =
  if s.typ == nil:
    localError(c.config, n.info, "cannot instantiate the '$1' $2" %
                       [s.name.s, ($s.kind).substr(2).toLowerAscii])
    return newOrPrevType(tyError, prev, c)

  var t = s.typ
  if t.kind == tyCompositeTypeClass and t.base.kind == tyGenericBody:
    t = t.base

  result = newOrPrevType(tyGenericInvocation, prev, c)
  addSonSkipIntLit(result, t)

  template addToResult(typ) =
    if typ.isNil:
      internalAssert c.config, false
      rawAddSon(result, typ)
    else: addSonSkipIntLit(result, typ)

  if t.kind == tyForward:
    for i in countup(1, sonsLen(n)-1):
      var elem = semGenericParamInInvocation(c, n.sons[i])
      addToResult(elem)
    return
  elif t.kind != tyGenericBody:
    # we likely got code of the form TypeA[TypeB] where TypeA is
    # not generic.
    localError(c.config, n.info, errNoGenericParamsAllowedForX % s.name.s)
    return newOrPrevType(tyError, prev, c)
  else:
    var m = newCandidate(c, t)
    m.isNoCall = true
    matches(c, n, copyTree(n), m)

    if m.state != csMatch:
      let err = "cannot instantiate " & typeToString(t) & "\n" &
                "got: <" & describeArgs(c, n) & ">\n" &
                "but expected: <" & describeArgs(c, t.n, 0) & ">"
      localError(c.config, n.info, errGenerated, err)
      return newOrPrevType(tyError, prev, c)

    var isConcrete = true

    for i in 1 ..< m.call.len:
      var typ = m.call[i].typ
      if typ.kind == tyTypeDesc and typ.sons[0].kind == tyNone:
        isConcrete = false
        addToResult(typ)
      else:
        typ = typ.skipTypes({tyTypeDesc})
        if containsGenericType(typ): isConcrete = false
        addToResult(typ)

    if isConcrete:
      if s.ast == nil and s.typ.kind != tyCompositeTypeClass:
        # XXX: What kind of error is this? is it still relevant?
        localError(c.config, n.info, errCannotInstantiateX % s.name.s)
        result = newOrPrevType(tyError, prev, c)
      else:
        result = instGenericContainer(c, n.info, result,
                                      allowMetaTypes = false)

  # special check for generic object with
  # generic/partial specialized parent
  let tx = result.skipTypes(abstractPtrs, 50)
  if tx.isNil:
    localError(c.config, n.info, "invalid recursion in type '$1'" % typeToString(result[0]))
    return errorType(c)
  if tx != result and tx.kind == tyObject and tx.sons[0] != nil:
    semObjectTypeForInheritedGenericInst(c, n, tx)

proc maybeAliasType(c: PContext; typeExpr, prev: PType): PType

proc semTypeExpr(c: PContext, n: PNode; prev: PType): PType =
  var n = semExprWithType(c, n, {efDetermineType})
  if n.typ.kind == tyTypeDesc:
    result = n.typ.base
    # fix types constructed by macros/template:
    if prev != nil and prev.sym != nil:
      if result.sym.isNil:
        # Behold! you're witnessing enormous power yielded
        # by macros. Only macros can summon unnamed types
        # and cast spell upon AST. Here we need to give
        # it a name taken from left hand side's node
        result.sym = prev.sym
        result.sym.typ = result
      else:
        # Less powerful routine like template do not have
        # the ability to produce unnamed types. But still
        # it has wild power to push a type a bit too far.
        # So we need to hold it back using alias and prevent
        # unnecessary new type creation
        let alias = maybeAliasType(c, result, prev)
        if alias != nil: result = alias
  else:
    localError(c.config, n.info, "expected type, but got: " & n.renderTree)
    result = errorType(c)

proc freshType(res, prev: PType): PType {.inline.} =
  if prev.isNil:
    result = copyType(res, res.owner, keepId=false)
  else:
    result = res

template modifierTypeKindOfNode(n: PNode): TTypeKind =
  case n.kind
  of nkVarTy: tyVar
  of nkRefTy: tyRef
  of nkPtrTy: tyPtr
  of nkStaticTy: tyStatic
  of nkTypeOfExpr: tyTypeDesc
  else: tyNone

proc semTypeClass(c: PContext, n: PNode, prev: PType): PType =
  # if n.sonsLen == 0: return newConstraint(c, tyTypeClass)
  let
    pragmas = n[1]
    inherited = n[2]

  result = newOrPrevType(tyUserTypeClass, prev, c)
  var owner = getCurrOwner(c)
  var candidateTypeSlot = newTypeWithSons(owner, tyAlias, @[c.errorType])
  result.sons = @[candidateTypeSlot]
  result.n = n

  if inherited.kind != nkEmpty:
    for n in inherited.sons:
      let typ = semTypeNode(c, n, nil)
      result.sons.add(typ)

  openScope(c)
  for param in n[0]:
    var
      dummyName: PNode
      dummyType: PType

    let modifier = param.modifierTypeKindOfNode

    if modifier != tyNone:
      dummyName = param[0]
      dummyType = c.makeTypeWithModifier(modifier, candidateTypeSlot)
      if modifier == tyTypeDesc: dummyType.flags.incl tfConceptMatchedTypeSym
    else:
      dummyName = param
      dummyType = candidateTypeSlot

    # this can be true for 'nim check' on incomplete concepts,
    # see bug #8230
    if dummyName.kind == nkEmpty: continue

    internalAssert c.config, dummyName.kind == nkIdent
    var dummyParam = newSym(if modifier == tyTypeDesc: skType else: skVar,
                            dummyName.ident, owner, param.info)
    dummyParam.typ = dummyType
    incl dummyParam.flags, sfUsed
    addDecl(c, dummyParam)

  result.n[3] = semConceptBody(c, n[3])
  closeScope(c)

proc semProcTypeWithScope(c: PContext, n: PNode,
                        prev: PType, kind: TSymKind): PType =
  checkSonsLen(n, 2, c.config)
  openScope(c)
  result = semProcTypeNode(c, n.sons[0], nil, prev, kind, isType=true)
  # start with 'ccClosure', but of course pragmas can overwrite this:
  result.callConv = ccClosure
  # dummy symbol for `pragma`:
  var s = newSymS(kind, newIdentNode(getIdent(c.cache, "dummy"), n.info), c)
  s.typ = result
  if n.sons[1].kind != nkEmpty and n.sons[1].len > 0:
    pragma(c, s, n.sons[1], procTypePragmas)
    when useEffectSystem: setEffectsForProcType(c.graph, result, n.sons[1])
  closeScope(c)

proc maybeAliasType(c: PContext; typeExpr, prev: PType): PType =
  if typeExpr.kind in {tyObject, tyEnum, tyDistinct} and prev != nil:
    result = newTypeS(tyAlias, c)
    result.rawAddSon typeExpr
    result.sym = prev.sym
    assignType(prev, result)

proc fixupTypeOf(c: PContext, prev: PType, typExpr: PNode) =
  if prev != nil:
    let result = newTypeS(tyAlias, c)
    result.rawAddSon typExpr.typ
    result.sym = prev.sym
    assignType(prev, result)

proc symFromExpectedTypeNode(c: PContext, n: PNode): PSym =
  if n.kind == nkType:
    result = symFromType(c, n.typ, n.info)
  else:
    localError(c.config, n.info, errTypeExpected)
    result = errorSym(c, n)

proc semStaticType(c: PContext, childNode: PNode, prev: PType): PType =
  result = newOrPrevType(tyStatic, prev, c)
  var base = semTypeNode(c, childNode, nil).skipTypes({tyTypeDesc, tyAlias})
  result.rawAddSon(base)
  result.flags.incl tfHasStatic

proc semTypeof(c: PContext; n: PNode; prev: PType): PType =
  openScope(c)
  let t = semExprWithType(c, n, {efInTypeof})
  closeScope(c)
  fixupTypeOf(c, prev, t)
  result = t.typ

proc semTypeof2(c: PContext; n: PNode; prev: PType): PType =
  openScope(c)
  var m = BiggestInt 1 # typeOfIter
  if n.len == 3:
    let mode = semConstExpr(c, n[2])
    if mode.kind != nkIntLit:
      localError(c.config, n.info, "typeof: cannot evaluate 'mode' parameter at compile-time")
    else:
      m = mode.intVal
  let t = semExprWithType(c, n[1], if m == 1: {efInTypeof} else: {})
  closeScope(c)
  fixupTypeOf(c, prev, t)
  result = t.typ

proc semTypeNode(c: PContext, n: PNode, prev: PType): PType =
  result = nil
  inc c.inTypeContext

  if c.config.cmd == cmdIdeTools: suggestExpr(c, n)
  case n.kind
  of nkEmpty: discard
  of nkTypeOfExpr:
    # for ``type(countup(1,3))``, see ``tests/ttoseq``.
    checkSonsLen(n, 1, c.config)
    result = semTypeof(c, n.sons[0], prev)
    if result.kind == tyTypeDesc: result.flags.incl tfExplicit
  of nkPar:
    if sonsLen(n) == 1: result = semTypeNode(c, n.sons[0], prev)
    else:
      result = semAnonTuple(c, n, prev)
  of nkTupleConstr: result = semAnonTuple(c, n, prev)
  of nkCallKinds:
    let x = n[0]
    let ident = case x.kind
                of nkIdent: x.ident
                of nkSym: x.sym.name
                of nkClosedSymChoice, nkOpenSymChoice: x[0].sym.name
                else: nil
    if ident != nil and ident.s == "[]":
      let b = newNodeI(nkBracketExpr, n.info)
      for i in 1..<n.len: b.add(n[i])
      result = semTypeNode(c, b, prev)
    elif ident != nil and ident.id == ord(wDotDot):
      result = semRangeAux(c, n, prev)
    elif n[0].kind == nkNilLit and n.len == 2:
      result = semTypeNode(c, n.sons[1], prev)
      if result.skipTypes({tyGenericInst, tyAlias, tySink}).kind in NilableTypes+GenericTypes:
        if tfNotNil in result.flags:
          result = freshType(result, prev)
          result.flags.excl(tfNotNil)
      else:
        localError(c.config, n.info, errGenerated, "invalid type")
    elif n[0].kind notin nkIdentKinds:
      result = semTypeExpr(c, n, prev)
    else:
      let op = considerQuotedIdent(c, n.sons[0])
      if op.id in {ord(wAnd), ord(wOr)} or op.s == "|":
        checkSonsLen(n, 3, c.config)
        var
          t1 = semTypeNode(c, n.sons[1], nil)
          t2 = semTypeNode(c, n.sons[2], nil)
        if t1 == nil:
          localError(c.config, n.sons[1].info, errTypeExpected)
          result = newOrPrevType(tyError, prev, c)
        elif t2 == nil:
          localError(c.config, n.sons[2].info, errTypeExpected)
          result = newOrPrevType(tyError, prev, c)
        else:
          result = if op.id == ord(wAnd): makeAndType(c, t1, t2)
                   else: makeOrType(c, t1, t2)
      elif op.id == ord(wNot):
        case n.len
        of 3:
          result = semTypeNode(c, n.sons[1], prev)
          if result.skipTypes({tyGenericInst, tyAlias, tySink}).kind in NilableTypes+GenericTypes+{tyForward} and
              n.sons[2].kind == nkNilLit:
            result = freshType(result, prev)
            result.flags.incl(tfNotNil)
            if notnil notin c.features:
              localError(c.config, n.info, "enable the 'not nil' annotation with {.experimental: \"notnil\".}")
          else:
            localError(c.config, n.info, errGenerated, "invalid type")
        of 2:
          let negated = semTypeNode(c, n.sons[1], prev)
          result = makeNotType(c, negated)
        else:
          localError(c.config, n.info, errGenerated, "invalid type")
      elif op.id == ord(wPtr):
        result = semAnyRef(c, n, tyPtr, prev)
      elif op.id == ord(wRef):
        result = semAnyRef(c, n, tyRef, prev)
      elif op.id == ord(wType):
        checkSonsLen(n, 2, c.config)
        result = semTypeof(c, n[1], prev)
      elif op.s == "typeof" and n[0].kind == nkSym and n[0].sym.magic == mTypeof:
        result = semTypeOf2(c, n, prev)
      else:
        if c.inGenericContext > 0 and n.kind == nkCall:
          result = makeTypeFromExpr(c, n.copyTree)
        else:
          result = semTypeExpr(c, n, prev)
  of nkWhenStmt:
    var whenResult = semWhen(c, n, false)
    if whenResult.kind == nkStmtList: whenResult.kind = nkStmtListType
    result = semTypeNode(c, whenResult, prev)
  of nkBracketExpr:
    checkMinSonsLen(n, 2, c.config)
    var head = n.sons[0]
    var s = if head.kind notin nkCallKinds: semTypeIdent(c, head)
            else: symFromExpectedTypeNode(c, semExpr(c, head))
    case s.magic
    of mArray: result = semArray(c, n, prev)
    of mOpenArray: result = semContainer(c, n, tyOpenArray, "openarray", prev)
    of mUncheckedArray: result = semContainer(c, n, tyUncheckedArray, "UncheckedArray", prev)
    of mRange: result = semRange(c, n, prev)
    of mSet: result = semSet(c, n, prev)
    of mOrdinal: result = semOrdinal(c, n, prev)
    of mSeq:
      if c.config.selectedGc == gcDestructors:
        let s = c.graph.sysTypes[tySequence]
        assert s != nil
        assert prev == nil
        result = copyType(s, s.owner, keepId=false)
        # XXX figure out why this has children already...
        result.sons.setLen 0
        result.n = nil
        if c.config.selectedGc == gcDestructors:
          result.flags = {tfHasAsgn}
        else:
          result.flags = {}
        semContainerArg(c, n, "seq", result)
      else:
        result = semContainer(c, n, tySequence, "seq", prev)
        if c.config.selectedGc == gcDestructors:
          incl result.flags, tfHasAsgn
    of mOpt: result = semContainer(c, n, tyOpt, "opt", prev)
    of mVarargs: result = semVarargs(c, n, prev)
    of mTypeDesc, mTypeTy:
      result = makeTypeDesc(c, semTypeNode(c, n[1], nil))
      result.flags.incl tfExplicit
    of mStaticTy:
      result = semStaticType(c, n[1], prev)
    of mExpr:
      result = semTypeNode(c, n.sons[0], nil)
      if result != nil:
        result = copyType(result, getCurrOwner(c), false)
        for i in countup(1, n.len - 1):
          result.rawAddSon(semTypeNode(c, n.sons[i], nil))
    of mDistinct:
      result = newOrPrevType(tyDistinct, prev, c)
      addSonSkipIntLit(result, semTypeNode(c, n[1], nil))
    of mVar:
      result = newOrPrevType(tyVar, prev, c)
      var base = semTypeNode(c, n.sons[1], nil)
      if base.kind in {tyVar, tyLent}:
        localError(c.config, n.info, "type 'var var' is not allowed")
        base = base.sons[0]
      addSonSkipIntLit(result, base)
    of mRef: result = semAnyRef(c, n, tyRef, prev)
    of mPtr: result = semAnyRef(c, n, tyPtr, prev)
    of mTuple: result = semTuple(c, n, prev)
    else: result = semGeneric(c, n, s, prev)
  of nkDotExpr:
    let typeExpr = semExpr(c, n)
    if typeExpr.typ.isNil:
      localError(c.config, n.info, "object constructor needs an object type;" &
          " for named arguments use '=' instead of ':'")
      result = errorType(c)
    elif typeExpr.typ.kind == tyFromExpr:
      result = typeExpr.typ
    elif typeExpr.typ.kind != tyTypeDesc:
      localError(c.config, n.info, errTypeExpected)
      result = errorType(c)
    else:
      result = typeExpr.typ.base
      if result.isMetaType and
         result.kind != tyUserTypeClass:
           # the dot expression may refer to a concept type in
           # a different module. allow a normal alias then.
        let preprocessed = semGenericStmt(c, n)
        result = makeTypeFromExpr(c, preprocessed.copyTree)
      else:
        let alias = maybeAliasType(c, result, prev)
        if alias != nil: result = alias
  of nkIdent, nkAccQuoted:
    var s = semTypeIdent(c, n)
    if s.typ == nil:
      if s.kind != skError: localError(c.config, n.info, errTypeExpected)
      result = newOrPrevType(tyError, prev, c)
    elif s.kind == skParam and s.typ.kind == tyTypeDesc:
      internalAssert c.config, s.typ.base.kind != tyNone and prev == nil
      result = s.typ.base
    elif prev == nil:
      result = s.typ
    else:
      let alias = maybeAliasType(c, s.typ, prev)
      if alias != nil:
        result = alias
      else:
        assignType(prev, s.typ)
        # bugfix: keep the fresh id for aliases to integral types:
        if s.typ.kind notin {tyBool, tyChar, tyInt..tyInt64, tyFloat..tyFloat128,
                             tyUInt..tyUInt64}:
          prev.id = s.typ.id
        result = prev
  of nkSym:
    let s = getGenSym(c, n.sym)
    if s.typ != nil and (s.kind == skType or s.typ.kind == tyTypeDesc):
      var t =
        if s.kind == skType:
          s.typ
        else:
          internalAssert c.config, s.typ.base.kind != tyNone and prev == nil
          s.typ.base
      let alias = maybeAliasType(c, t, prev)
      if alias != nil:
        result = alias
      elif prev == nil:
        result = t
      else:
        assignType(prev, t)
        result = prev
      markUsed(c.config, n.info, n.sym, c.graph.usageSym)
      onUse(n.info, n.sym)
    else:
      if s.kind != skError: localError(c.config, n.info, errTypeExpected)
      result = newOrPrevType(tyError, prev, c)
  of nkObjectTy: result = semObjectNode(c, n, prev)
  of nkTupleTy: result = semTuple(c, n, prev)
  of nkTupleClassTy: result = newConstraint(c, tyTuple)
  of nkTypeClassTy: result = semTypeClass(c, n, prev)
  of nkRefTy: result = semAnyRef(c, n, tyRef, prev)
  of nkPtrTy: result = semAnyRef(c, n, tyPtr, prev)
  of nkVarTy: result = semVarType(c, n, prev)
  of nkDistinctTy: result = semDistinct(c, n, prev)
  of nkStaticTy: result = semStaticType(c, n[0], prev)
  of nkIteratorTy:
    if n.sonsLen == 0:
      result = newTypeS(tyBuiltInTypeClass, c)
      let child = newTypeS(tyProc, c)
      child.flags.incl tfIterator
      result.addSonSkipIntLit(child)
    else:
      result = semProcTypeWithScope(c, n, prev, skIterator)
      result.flags.incl(tfIterator)
      if n.lastSon.kind == nkPragma and hasPragma(n.lastSon, wInline):
        result.callConv = ccInline
      else:
        result.callConv = ccClosure
  of nkProcTy:
    if n.sonsLen == 0:
      result = newConstraint(c, tyProc)
    else:
      result = semProcTypeWithScope(c, n, prev, skProc)
  of nkEnumTy: result = semEnum(c, n, prev)
  of nkType: result = n.typ
  of nkStmtListType: result = semStmtListType(c, n, prev)
  of nkBlockType: result = semBlockType(c, n, prev)
  else:
    localError(c.config, n.info, errTypeExpected)
    result = newOrPrevType(tyError, prev, c)
  n.typ = result
  dec c.inTypeContext
  if c.inTypeContext == 0: instAllTypeBoundOp(c, n.info)

when false:
  proc semTypeNode(c: PContext, n: PNode, prev: PType): PType =
    result = semTypeNodeInner(c, n, prev)
    instAllTypeBoundOp(c, n.info)

proc setMagicType(conf: ConfigRef; m: PSym, kind: TTypeKind, size: int) =
  # source : https://en.wikipedia.org/wiki/Data_structure_alignment#x86
  m.typ.kind = kind
  m.typ.size = size
  # this usually works for most basic types
  # Assuming that since ARM, ARM64  don't support unaligned access
  # data is aligned to type size
  m.typ.align = size.int16

  # FIXME: proper support for clongdouble should be added.
  # long double size can be 8, 10, 12, 16 bytes depending on platform & compiler
  if conf.target.targetCPU == cpuI386 and size == 8:
    #on Linux/BSD i386, double are aligned to 4bytes (except with -malign-double)
    if kind in {tyFloat64, tyFloat} and
        conf.target.targetOS in {osLinux, osAndroid, osNetbsd, osFreebsd, osOpenbsd, osDragonfly}:
      m.typ.align = 4
    # on i386, all known compiler, 64bits ints are aligned to 4bytes (except with -malign-double)
    elif kind in {tyInt, tyUInt, tyInt64, tyUInt64}:
      m.typ.align = 4
  else:
    discard

proc processMagicType(c: PContext, m: PSym) =
  case m.magic
  of mInt: setMagicType(c.config, m, tyInt, c.config.target.intSize)
  of mInt8: setMagicType(c.config, m, tyInt8, 1)
  of mInt16: setMagicType(c.config, m, tyInt16, 2)
  of mInt32: setMagicType(c.config, m, tyInt32, 4)
  of mInt64: setMagicType(c.config, m, tyInt64, 8)
  of mUInt: setMagicType(c.config, m, tyUInt, c.config.target.intSize)
  of mUInt8: setMagicType(c.config, m, tyUInt8, 1)
  of mUInt16: setMagicType(c.config, m, tyUInt16, 2)
  of mUInt32: setMagicType(c.config, m, tyUInt32, 4)
  of mUInt64: setMagicType(c.config, m, tyUInt64, 8)
  of mFloat: setMagicType(c.config, m, tyFloat, c.config.target.floatSize)
  of mFloat32: setMagicType(c.config, m, tyFloat32, 4)
  of mFloat64: setMagicType(c.config, m, tyFloat64, 8)
  of mFloat128: setMagicType(c.config, m, tyFloat128, 16)
  of mBool: setMagicType(c.config, m, tyBool, 1)
  of mChar: setMagicType(c.config, m, tyChar, 1)
  of mString:
    setMagicType(c.config, m, tyString, c.config.target.ptrSize)
    rawAddSon(m.typ, getSysType(c.graph, m.info, tyChar))
    when false:
      if c.config.selectedGc == gcDestructors:
        incl m.typ.flags, tfHasAsgn
  of mCstring:
    setMagicType(c.config, m, tyCString, c.config.target.ptrSize)
    rawAddSon(m.typ, getSysType(c.graph, m.info, tyChar))
  of mPointer: setMagicType(c.config, m, tyPointer, c.config.target.ptrSize)
  of mEmptySet:
    setMagicType(c.config, m, tySet, 1)
    rawAddSon(m.typ, newTypeS(tyEmpty, c))
  of mIntSetBaseType: setMagicType(c.config, m, tyRange, c.config.target.intSize)
  of mNil: setMagicType(c.config, m, tyNil, c.config.target.ptrSize)
  of mExpr:
    if m.name.s == "auto":
      setMagicType(c.config, m, tyAnything, 0)
    else:
      setMagicType(c.config, m, tyExpr, 0)
  of mStmt:
    setMagicType(c.config, m, tyStmt, 0)
  of mTypeDesc, mType:
    setMagicType(c.config, m, tyTypeDesc, 0)
    rawAddSon(m.typ, newTypeS(tyNone, c))
  of mStatic:
    setMagicType(c.config, m, tyStatic, 0)
    rawAddSon(m.typ, newTypeS(tyNone, c))
  of mVoidType:
    setMagicType(c.config, m, tyVoid, 0)
  of mArray:
    setMagicType(c.config, m, tyArray, szUncomputedSize)
  of mOpenArray:
    setMagicType(c.config, m, tyOpenArray, szUncomputedSize)
  of mVarargs:
    setMagicType(c.config, m, tyVarargs, szUncomputedSize)
  of mRange:
    setMagicType(c.config, m, tyRange, szUncomputedSize)
    rawAddSon(m.typ, newTypeS(tyNone, c))
  of mSet:
    setMagicType(c.config, m, tySet, szUncomputedSize)
  of mUncheckedArray:
    setMagicType(c.config, m, tyUncheckedArray, szUncomputedSize)
  of mSeq:
    setMagicType(c.config, m, tySequence, szUncomputedSize)
    if c.config.selectedGc == gcDestructors:
      incl m.typ.flags, tfHasAsgn
    assert c.graph.sysTypes[tySequence] == nil
    c.graph.sysTypes[tySequence] = m.typ
  of mOpt:
    setMagicType(c.config, m, tyOpt, szUncomputedSize)
  of mOrdinal:
    setMagicType(c.config, m, tyOrdinal, szUncomputedSize)
    rawAddSon(m.typ, newTypeS(tyNone, c))
  of mPNimrodNode:
    incl m.typ.flags, tfTriggersCompileTime
  of mException: discard
  of mBuiltinType:
    case m.name.s
    of "lent": setMagicType(c.config, m, tyLent, c.config.target.ptrSize)
    of "sink": setMagicType(c.config, m, tySink, szUncomputedSize)
    else: localError(c.config, m.info, errTypeExpected)
  else: localError(c.config, m.info, errTypeExpected)

proc semGenericConstraints(c: PContext, x: PType): PType =
  result = newTypeWithSons(c, tyGenericParam, @[x])

proc semGenericParamList(c: PContext, n: PNode, father: PType = nil): PNode =
  result = copyNode(n)
  if n.kind != nkGenericParams:
    illFormedAst(n, c.config)
    return
  for i in countup(0, sonsLen(n)-1):
    var a = n.sons[i]
    if a.kind != nkIdentDefs: illFormedAst(n, c.config)
    let L = a.len
    var def = a[^1]
    let constraint = a[^2]
    var typ: PType

    if constraint.kind != nkEmpty:
      typ = semTypeNode(c, constraint, nil)
      if typ.kind != tyStatic or typ.len == 0:
        if typ.kind == tyTypeDesc:
          if typ.sons[0].kind == tyNone:
            typ = newTypeWithSons(c, tyTypeDesc, @[newTypeS(tyNone, c)])
        else:
          typ = semGenericConstraints(c, typ)

    if def.kind != nkEmpty:
      def = semConstExpr(c, def)
      if typ == nil:
        if def.typ.kind != tyTypeDesc:
          typ = newTypeWithSons(c, tyStatic, @[def.typ])
      else:
        # the following line fixes ``TV2*[T:SomeNumber=TR] = array[0..1, T]``
        # from manyloc/named_argument_bug/triengine:
        def.typ = def.typ.skipTypes({tyTypeDesc})
        if not containsGenericType(def.typ):
          def = fitNode(c, typ, def, def.info)

    if typ == nil:
      typ = newTypeS(tyGenericParam, c)
      if father == nil: typ.flags.incl tfWildcard

    typ.flags.incl tfGenericTypeParam

    for j in countup(0, L-3):
      let finalType = if j == 0: typ
                      else: copyType(typ, typ.owner, false)
                      # it's important the we create an unique
                      # type for each generic param. the index
                      # of the parameter will be stored in the
                      # attached symbol.
      var paramName = a.sons[j]
      var covarianceFlag = tfUnresolved

      if paramName.safeLen == 2:
        if not nimEnableCovariance or paramName[0].ident.s == "in":
          if father == nil or sfImportc notin father.sym.flags:
            localError(c.config, paramName.info, errInOutFlagNotExtern % $paramName[0])
        covarianceFlag = if paramName[0].ident.s == "in": tfContravariant
                         else: tfCovariant
        if father != nil: father.flags.incl tfCovariant
        paramName = paramName[1]

      var s = if finalType.kind == tyStatic or tfWildcard in typ.flags:
          newSymG(skGenericParam, paramName, c).linkTo(finalType)
        else:
          newSymG(skType, paramName, c).linkTo(finalType)

      if covarianceFlag != tfUnresolved: s.typ.flags.incl(covarianceFlag)
      if def.kind != nkEmpty: s.ast = def
      if father != nil: addSonSkipIntLit(father, s.typ)
      s.position = result.len
      addSon(result, newSymNode(s))
      if sfGenSym notin s.flags: addDecl(c, s)