summary refs log tree commit diff stats
path: root/tests/coroutines
ModeNameSize
-rw-r--r--texceptions.nim633log stats plain blame
-rw-r--r--texceptions.nim.cfg17log stats plain blame
-rw-r--r--tgc.nim350log stats plain blame
-rw-r--r--tgc.nim.cfg17log stats plain blame
-rw-r--r--titerators.nim667log stats plain blame
-rw-r--r--titerators.nim.cfg17log stats plain blame
-rw-r--r--twait.nim315log stats plain blame
-rw-r--r--twait.nim.cfg17log stats plain blame
n177' href='#n177'>177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
#
#
#            Nim's Runtime Library
#        (c) Copyright 2011 Alexander Mitchell-Robinson
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

## Although this module has `seq` in its name, it implements operations
## not only for the `seq`:idx: type, but for three built-in container types
## under the `openArray` umbrella:
## * sequences
## * strings
## * array
##
## The `system` module defines several common functions, such as:
## * `newSeq[T]` for creating new sequences of type `T`
## * `@` for converting arrays and strings to sequences
## * `add` for adding new elements to strings and sequences
## * `&` for string and seq concatenation
## * `in` (alias for `contains`) and `notin` for checking if an item is
##   in a container
##
## This module builds upon that, providing additional functionality in form of
## procs, iterators and templates inspired by functional programming
## languages.
##
## For functional style programming you have different options at your disposal:
## * the `sugar.collect macro<sugar.html#collect.m%2Cuntyped%2Cuntyped>`_
## * pass an `anonymous proc<manual.html#procedures-anonymous-procs>`_
## * import the `sugar module<sugar.html>`_  and use
##   the `=> macro<sugar.html#%3D>.m,untyped,untyped>`_
## * use `...It templates<#18>`_
##   (`mapIt<#mapIt.t,typed,untyped>`_,
##   `filterIt<#filterIt.t,untyped,untyped>`_, etc.)
##
## Chaining of functions is possible thanks to the
## `method call syntax<manual.html#procedures-method-call-syntax>`_.

runnableExamples:
  import std/sugar

  # Creating a sequence from 1 to 10, multiplying each member by 2,
  # keeping only the members which are not divisible by 6.
  let
    foo = toSeq(1..10).map(x => x * 2).filter(x => x mod 6 != 0)
    bar = toSeq(1..10).mapIt(it * 2).filterIt(it mod 6 != 0)
    baz = collect:
      for i in 1..10:
        let j = 2 * i
        if j mod 6 != 0:
          j

  doAssert foo == bar
  doAssert foo == baz
  doAssert foo == @[2, 4, 8, 10, 14, 16, 20]

  doAssert foo.any(x => x > 17)
  doAssert not bar.allIt(it < 20)
  doAssert foo.foldl(a + b) == 74 # sum of all members


runnableExamples:
  from std/strutils import join

  let
    vowels = @"aeiou"
    foo = "sequtils is an awesome module"

  doAssert (vowels is seq[char]) and (vowels == @['a', 'e', 'i', 'o', 'u'])
  doAssert foo.filterIt(it notin vowels).join == "sqtls s n wsm mdl"

## See also
## ========
## * `strutils module<strutils.html>`_ for common string functions
## * `sugar module<sugar.html>`_ for syntactic sugar macros
## * `algorithm module<algorithm.html>`_ for common generic algorithms
## * `json module<json.html>`_ for a structure which allows
##   heterogeneous members


import std/private/since

import macros

when defined(nimPreviewSlimSystem):
  import std/assertions


when defined(nimHasEffectsOf):
  {.experimental: "strictEffects".}
else:
  {.pragma: effectsOf.}

macro evalOnceAs(expAlias, exp: untyped,
                 letAssigneable: static[bool]): untyped =
  ## Injects `expAlias` in caller scope, to avoid bugs involving multiple
  ## substitution in macro arguments such as
  ## https://github.com/nim-lang/Nim/issues/7187.
  ## `evalOnceAs(myAlias, myExp)` will behave as `let myAlias = myExp`
  ## except when `letAssigneable` is false (e.g. to handle openArray) where
  ## it just forwards `exp` unchanged.
  expectKind(expAlias, nnkIdent)
  var val = exp

  result = newStmtList()
  # If `exp` is not a symbol we evaluate it once here and then use the temporary
  # symbol as alias
  if exp.kind != nnkSym and letAssigneable:
    val = genSym()
    result.add(newLetStmt(val, exp))

  result.add(
    newProc(name = genSym(nskTemplate, $expAlias), params = [getType(untyped)],
      body = val, procType = nnkTemplateDef))

func concat*[T](seqs: varargs[seq[T]]): seq[T] =
  ## Takes several sequences' items and returns them inside a new sequence.
  ## All sequences must be of the same type.
  ##
  ## **See also:**
  ## * `distribute func<#distribute,seq[T],Positive>`_ for a reverse
  ##   operation
  ##
  runnableExamples:
    let
      s1 = @[1, 2, 3]
      s2 = @[4, 5]
      s3 = @[6, 7]
      total = concat(s1, s2, s3)
    assert total == @[1, 2, 3, 4, 5, 6, 7]

  var L = 0
  for seqitm in items(seqs): inc(L, len(seqitm))
  newSeq(result, L)
  var i = 0
  for s in items(seqs):
    for itm in items(s):
      result[i] = itm
      inc(i)

func count*[T](s: openArray[T], x: T): int =
  ## Returns the number of occurrences of the item `x` in the container `s`.
  ##
  runnableExamples:
    let
      a = @[1, 2, 2, 3, 2, 4, 2]
      b = "abracadabra"
    assert count(a, 2) == 4
    assert count(a, 99) == 0
    assert count(b, 'r') == 2

  for itm in items(s):
    if itm == x:
      inc result

func cycle*[T](s: openArray[T], n: Natural): seq[T] =
  ## Returns a new sequence with the items of the container `s` repeated
  ## `n` times.
  ## `n` must be a non-negative number (zero or more).
  ##
  runnableExamples:
    let
      s = @[1, 2, 3]
      total = s.cycle(3)
    assert total == @[1, 2, 3, 1, 2, 3, 1, 2, 3]

  result = newSeq[T](n * s.len)
  var o = 0
  for x in 0 ..< n:
    for e in s:
      result[o] = e
      inc o

proc repeat*[T](x: T, n: Natural): seq[T] =
  ## Returns a new sequence with the item `x` repeated `n` times.
  ## `n` must be a non-negative number (zero or more).
  ##
  runnableExamples:
    let
      total = repeat(5, 3)
    assert total == @[5, 5, 5]

  result = newSeq[T](n)
  for i in 0 ..< n:
    result[i] = x

func deduplicate*[T](s: openArray[T], isSorted: bool = false): seq[T] =
  ## Returns a new sequence without duplicates.
  ##
  ## Setting the optional argument `isSorted` to true (default: false)
  ## uses a faster algorithm for deduplication.
  ##
  runnableExamples:
    let
      dup1 = @[1, 1, 3, 4, 2, 2, 8, 1, 4]
      dup2 = @["a", "a", "c", "d", "d"]
      unique1 = deduplicate(dup1)
      unique2 = deduplicate(dup2, isSorted = true)
    assert unique1 == @[1, 3, 4, 2, 8]
    assert unique2 == @["a", "c", "d"]

  result = @[]
  if s.len > 0:
    if isSorted:
      var prev = s[0]
      result.add(prev)
      for i in 1..s.high:
        if s[i] != prev:
          prev = s[i]
          result.add(prev)
    else:
      for itm in items(s):
        if not result.contains(itm): result.add(itm)

func minIndex*[T](s: openArray[T]): int {.since: (1, 1).} =
  ## Returns the index of the minimum value of `s`.
  ## `T` needs to have a `<` operator.
  runnableExamples:
    let
      a = @[1, 2, 3, 4]
      b = @[6, 5, 4, 3]
      c = [2, -7, 8, -5]
      d = "ziggy"
    assert minIndex(a) == 0
    assert minIndex(b) == 3
    assert minIndex(c) == 1
    assert minIndex(d) == 2

  for i in 1..high(s):
    if s[i] < s[result]: result = i

func maxIndex*[T](s: openArray[T]): int {.since: (1, 1).} =
  ## Returns the index of the maximum value of `s`.
  ## `T` needs to have a `<` operator.
  runnableExamples:
    let
      a = @[1, 2, 3, 4]
      b = @[6, 5, 4, 3]
      c = [2, -7, 8, -5]
      d = "ziggy"
    assert maxIndex(a) == 3
    assert maxIndex(b) == 0
    assert maxIndex(c) == 2
    assert maxIndex(d) == 0

  for i in 1..high(s):
    if s[i] > s[result]: result = i


template zipImpl(s1, s2, retType: untyped): untyped =
  proc zip*[S, T](s1: openArray[S], s2: openArray[T]): retType =
    ## Returns a new sequence with a combination of the two input containers.
    ##
    ## The input containers can be of different types.
    ## If one container is shorter, the remaining items in the longer container
    ## are discarded.
    ##
    ## **Note**: For Nim 1.0.x and older version, `zip` returned a seq of
    ## named tuples with fields `a` and `b`. For Nim versions 1.1.x and newer,
    ## `zip` returns a seq of unnamed tuples.
    runnableExamples:
      let
        short = @[1, 2, 3]
        long = @[6, 5, 4, 3, 2, 1]
        words = @["one", "two", "three"]
        letters = "abcd"
        zip1 = zip(short, long)
        zip2 = zip(short, words)
      assert zip1 == @[(1, 6), (2, 5), (3, 4)]
      assert zip2 == @[(1, "one"), (2, "two"), (3, "three")]
      assert zip1[2][0] == 3
      assert zip2[1][1] == "two"
      when (NimMajor, NimMinor) <= (1, 0):
        let
          zip3 = zip(long, letters)
        assert zip3 == @[(a: 6, b: 'a'), (5, 'b'), (4, 'c'), (3, 'd')]
        assert zip3[0].b == 'a'
      else:
        let
          zip3: seq[tuple[num: int, letter: char]] = zip(long, letters)
        assert zip3 == @[(6, 'a'), (5, 'b'), (4, 'c'), (3, 'd')]
        assert zip3[0].letter == 'a'

    var m = min(s1.len, s2.len)
    newSeq(result, m)
    for i in 0 ..< m:
      result[i] = (s1[i], s2[i])

when (NimMajor, NimMinor) <= (1, 0):
  zipImpl(s1, s2, seq[tuple[a: S, b: T]])
else:
  zipImpl(s1, s2, seq[(S, T)])

proc unzip*[S, T](s: openArray[(S, T)]): (seq[S], seq[T]) {.since: (1, 1).} =
  ## Returns a tuple of two sequences split out from a sequence of 2-field tuples.
  runnableExamples:
    let
      zipped = @[(1, 'a'), (2, 'b'), (3, 'c')]
      unzipped1 = @[1, 2, 3]
      unzipped2 = @['a', 'b', 'c']
    assert zipped.unzip() == (unzipped1, unzipped2)
    assert zip(unzipped1, unzipped2).unzip() == (unzipped1, unzipped2)
  result[0] = newSeq[S](s.len)
  result[1] = newSeq[T](s.len)
  for i in 0..<s.len:
    result[0][i] = s[i][0]
    result[1][i] = s[i][1]

func distribute*[T](s: seq[T], num: Positive, spread = true): seq[seq[T]] =
  ## Splits and distributes a sequence `s` into `num` sub-sequences.
  ##
  ## Returns a sequence of `num` sequences. For *some* input values this is the
  ## inverse of the `concat <#concat,varargs[seq[T]]>`_ func.
  ## The input sequence `s` can be empty, which will produce
  ## `num` empty sequences.
  ##
  ## If `spread` is false and the length of `s` is not a multiple of `num`, the
  ## func will max out the first sub-sequence with `1 + len(s) div num`
  ## entries, leaving the remainder of elements to the last sequence.
  ##
  ## On the other hand, if `spread` is true, the func will distribute evenly
  ## the remainder of the division across all sequences, which makes the result
  ## more suited to multithreading where you are passing equal sized work units
  ## to a thread pool and want to maximize core usage.
  ##
  runnableExamples:
    let numbers = @[1, 2, 3, 4, 5, 6, 7]
    assert numbers.distribute(3) == @[@[1, 2, 3], @[4, 5], @[6, 7]]
    assert numbers.distribute(3, false) == @[@[1, 2, 3], @[4, 5, 6], @[7]]
    assert numbers.distribute(6)[0] == @[1, 2]
    assert numbers.distribute(6)[1] == @[3]

  if num < 2:
    result = @[s]
    return

  # Create the result and calculate the stride size and the remainder if any.
  result = newSeq[seq[T]](num)
  var
    stride = s.len div num
    first = 0
    last = 0
    extra = s.len mod num

  if extra == 0 or spread == false:
    # Use an algorithm which overcounts the stride and minimizes reading limits.
    if extra > 0: inc(stride)
    for i in 0 ..< num:
      result[i] = newSeq[T]()
      for g in first ..< min(s.len, first + stride):
        result[i].add(s[g])
      first += stride
  else:
    # Use an undercounting algorithm which *adds* the remainder each iteration.
    for i in 0 ..< num:
      last = first + stride
      if extra > 0:
        extra -= 1
        inc(last)
      result[i] = newSeq[T]()
      for g in first ..< last:
        result[i].add(s[g])
      first = last

proc map*[T, S](s: openArray[T], op: proc (x: T): S {.closure.}):
                                                            seq[S] {.inline, effectsOf: op.} =
  ## Returns a new sequence with the results of the `op` proc applied to every
  ## item in the container `s`.
  ##
  ## Since the input is not modified, you can use it to
  ## transform the type of the elements in the input container.
  ##
  ## Instead of using `map` and `filter`, consider using the `collect` macro
  ## from the `sugar` module.
  ##
  ## **See also:**
  ## * `sugar.collect macro<sugar.html#collect.m%2Cuntyped%2Cuntyped>`_
  ## * `mapIt template<#mapIt.t,typed,untyped>`_
  ## * `apply proc<#apply,openArray[T],proc(T)_2>`_ for the in-place version
  ##
  runnableExamples:
    let
      a = @[1, 2, 3, 4]
      b = map(a, proc(x: int): string = $x)
    assert b == @["1", "2", "3", "4"]

  newSeq(result, s.len)
  for i in 0 ..< s.len:
    result[i] = op(s[i])

proc apply*[T](s: var openArray[T], op: proc (x: var T) {.closure.})
                                                              {.inline, effectsOf: op.} =
  ## Applies `op` to every item in `s`, modifying it directly.
  ##
  ## Note that the container `s` must be declared as a `var`,
  ## since `s` is modified in-place.
  ## The parameter function takes a `var T` type parameter.
  ##
  ## **See also:**
  ## * `applyIt template<#applyIt.t,untyped,untyped>`_
  ## * `map proc<#map,openArray[T],proc(T)>`_
  ##
  runnableExamples:
    var a = @["1", "2", "3", "4"]
    apply(a, proc(x: var string) = x &= "42")
    assert a == @["142", "242", "342", "442"]

  for i in 0 ..< s.len: op(s[i])

proc apply*[T](s: var openArray[T], op: proc (x: T): T {.closure.})
                                                              {.inline, effectsOf: op.} =
  ## Applies `op` to every item in `s` modifying it directly.
  ##
  ## Note that the container `s` must be declared as a `var`
  ## and it is required for your input and output types to
  ## be the same, since `s` is modified in-place.
  ## The parameter function takes and returns a `T` type variable.
  ##
  ## **See also:**
  ## * `applyIt template<#applyIt.t,untyped,untyped>`_
  ## * `map proc<#map,openArray[T],proc(T)>`_
  ##
  runnableExamples:
    var a = @["1", "2", "3", "4"]
    apply(a, proc(x: string): string = x & "42")
    assert a == @["142", "242", "342", "442"]

  for i in 0 ..< s.len: s[i] = op(s[i])

proc apply*[T](s: openArray[T], op: proc (x: T) {.closure.}) {.inline, since: (1, 3), effectsOf: op.} =
  ## Same as `apply` but for a proc that does not return anything
  ## and does not mutate `s` directly.
  runnableExamples:
    var message: string
    apply([0, 1, 2, 3, 4], proc(item: int) = message.addInt item)
    assert message == "01234"
  for i in 0 ..< s.len: op(s[i])

iterator filter*[T](s: openArray[T], pred: proc(x: T): bool {.closure.}): T {.effectsOf: pred.} =
  ## Iterates through a container `s` and yields every item that fulfills the
  ## predicate `pred` (a function that returns a `bool`).
  ##
  ## Instead of using `map` and `filter`, consider using the `collect` macro
  ## from the `sugar` module.
  ##
  ## **See also:**
  ## * `sugar.collect macro<sugar.html#collect.m%2Cuntyped%2Cuntyped>`_
  ## * `filter proc<#filter,openArray[T],proc(T)>`_
  ## * `filterIt template<#filterIt.t,untyped,untyped>`_
  ##
  runnableExamples:
    let numbers = @[1, 4, 5, 8, 9, 7, 4]
    var evens = newSeq[int]()
    for n in filter(numbers, proc (x: int): bool = x mod 2 == 0):
      evens.add(n)
    assert evens == @[4, 8, 4]

  for i in 0 ..< s.len:
    if pred(s[i]):
      yield s[i]

proc filter*[T](s: openArray[T], pred: proc(x: T): bool {.closure.}): seq[T]
                                                                  {.inline, effectsOf: pred.} =
  ## Returns a new sequence with all the items of `s` that fulfill the
  ## predicate `pred` (a function that returns a `bool`).
  ##
  ## Instead of using `map` and `filter`, consider using the `collect` macro
  ## from the `sugar` module.
  ##
  ## **See also:**
  ## * `sugar.collect macro<sugar.html#collect.m%2Cuntyped%2Cuntyped>`_
  ## * `filterIt template<#filterIt.t,untyped,untyped>`_
  ## * `filter iterator<#filter.i,openArray[T],proc(T)>`_
  ## * `keepIf proc<#keepIf,seq[T],proc(T)>`_ for the in-place version
  ##
  runnableExamples:
    let
      colors = @["red", "yellow", "black"]
      f1 = filter(colors, proc(x: string): bool = x.len < 6)
      f2 = filter(colors, proc(x: string): bool = x.contains('y'))
    assert f1 == @["red", "black"]
    assert f2 == @["yellow"]

  result = newSeq[T]()
  for i in 0 ..< s.len:
    if pred(s[i]):
      result.add(s[i])

proc keepIf*[T](s: var seq[T], pred: proc(x: T): bool {.closure.})
                                                                {.inline, effectsOf: pred.} =
  ## Keeps the items in the passed sequence `s` if they fulfill the
  ## predicate `pred` (a function that returns a `bool`).
  ##
  ## Note that `s` must be declared as a `var`.
  ##
  ## Similar to the `filter proc<#filter,openArray[T],proc(T)>`_,
  ## but modifies the sequence directly.
  ##
  ## **See also:**
  ## * `keepItIf template<#keepItIf.t,seq,untyped>`_
  ## * `filter proc<#filter,openArray[T],proc(T)>`_
  ##
  runnableExamples:
    var floats = @[13.0, 12.5, 5.8, 2.0, 6.1, 9.9, 10.1]
    keepIf(floats, proc(x: float): bool = x > 10)
    assert floats == @[13.0, 12.5, 10.1]

  var pos = 0
  for i in 0 ..< len(s):
    if pred(s[i]):
      if pos != i:
        when defined(gcDestructors):
          s[pos] = move(s[i])
        else:
          shallowCopy(s[pos], s[i])
      inc(pos)
  setLen(s, pos)

func delete*[T](s: var seq[T]; slice: Slice[int]) =
  ## Deletes the items `s[slice]`, raising `IndexDefect` if the slice contains
  ## elements out of range.
  ##
  ## This operation moves all elements after `s[slice]` in linear time.
  runnableExamples:
    var a = @[10, 11, 12, 13, 14]
    doAssertRaises(IndexDefect): a.delete(4..5)
    assert a == @[10, 11, 12, 13, 14]
    a.delete(4..4)
    assert a == @[10, 11, 12, 13]
    a.delete(1..2)
    assert a == @[10, 13]
    a.delete(1..<1) # empty slice
    assert a == @[10, 13]
  when compileOption("boundChecks"):
    if not (slice.a < s.len and slice.a >= 0 and slice.b < s.len):
      raise newException(IndexDefect, $(slice: slice, len: s.len))
  if slice.b >= slice.a:
    template defaultImpl =
      var i = slice.a
      var j = slice.b + 1
      var newLen = s.len - j + i
      while i < newLen:
        when defined(gcDestructors):
          s[i] = move(s[j])
        else:
          s[i].shallowCopy(s[j])
        inc(i)
        inc(j)
      setLen(s, newLen)
    when nimvm: defaultImpl()
    else:
      when defined(js):
        let n = slice.b - slice.a + 1
        let first = slice.a
        {.emit: "`s`.splice(`first`, `n`);".}
      else:
        defaultImpl()

func delete*[T](s: var seq[T]; first, last: Natural) {.deprecated: "use `delete(s, first..last)`".} =
  ## Deletes the items of a sequence `s` at positions `first..last`
  ## (including both ends of the range).
  ## This modifies `s` itself, it does not return a copy.
  runnableExamples("--warning:deprecated:off"):
    let outcome = @[1, 1, 1, 1, 1, 1, 1, 1]
    var dest = @[1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1]
    dest.delete(3, 8)
    assert outcome == dest
  doAssert first <= last
  if first >= s.len:
    return
  var i = first
  var j = min(len(s), last + 1)
  var newLen = len(s) - j + i
  while i < newLen:
    when defined(gcDestructors):
      s[i] = move(s[j])
    else:
      s[i].shallowCopy(s[j])
    inc(i)
    inc(j)
  setLen(s, newLen)

func insert*[T](dest: var seq[T], src: openArray[T], pos = 0) =
  ## Inserts items from `src` into `dest` at position `pos`. This modifies
  ## `dest` itself, it does not return a copy.
  ##
  ## Note that the elements of `src` and `dest` must be of the same type.
  ##
  runnableExamples:
    var dest = @[1, 1, 1, 1, 1, 1, 1, 1]
    let
      src = @[2, 2, 2, 2, 2, 2]
      outcome = @[1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1]
    dest.insert(src, 3)
    assert dest == outcome

  var j = len(dest) - 1
  var i = j + len(src)
  if i == j: return
  dest.setLen(i + 1)

  # Move items after `pos` to the end of the sequence.
  while j >= pos:
    when defined(gcDestructors):
      dest[i] = move(dest[j])
    else:
      dest[i].shallowCopy(dest[j])
    dec(i)
    dec(j)
  # Insert items from `dest` into `dest` at `pos`
  inc(j)
  for item in src:
    dest[j] = item
    inc(j)


template filterIt*(s, pred: untyped): untyped =
  ## Returns a new sequence with all the items of `s` that fulfill the
  ## predicate `pred`.
  ##
  ## Unlike the `filter proc<#filter,openArray[T],proc(T)>`_ and
  ## `filter iterator<#filter.i,openArray[T],proc(T)>`_,
  ## the predicate needs to be an expression using the `it` variable
  ## for testing, like: `filterIt("abcxyz", it == 'x')`.
  ##
  ## Instead of using `mapIt` and `filterIt`, consider using the `collect` macro
  ## from the `sugar` module.
  ##
  ## **See also:**
  ## * `sugar.collect macro<sugar.html#collect.m%2Cuntyped%2Cuntyped>`_
  ## * `filter proc<#filter,openArray[T],proc(T)>`_
  ## * `filter iterator<#filter.i,openArray[T],proc(T)>`_
  ##
  runnableExamples:
    let
      temperatures = @[-272.15, -2.0, 24.5, 44.31, 99.9, -113.44]
      acceptable = temperatures.filterIt(it < 50 and it > -10)
      notAcceptable = temperatures.filterIt(it > 50 or it < -10)
    assert acceptable == @[-2.0, 24.5, 44.31]
    assert notAcceptable == @[-272.15, 99.9, -113.44]

  var result = newSeq[typeof(s[0])]()
  for it {.inject.} in items(s):
    if pred: result.add(it)
  result

template keepItIf*(varSeq: seq, pred: untyped) =
  ## Keeps the items in the passed sequence (must be declared as a `var`)
  ## if they fulfill the predicate.
  ##
  ## Unlike the `keepIf proc<#keepIf,seq[T],proc(T)>`_,
  ## the predicate needs to be an expression using
  ## the `it` variable for testing, like: `keepItIf("abcxyz", it == 'x')`.
  ##
  ## **See also:**
  ## * `keepIf proc<#keepIf,seq[T],proc(T)>`_
  ## * `filterIt template<#filterIt.t,untyped,untyped>`_
  ##
  runnableExamples:
    var candidates = @["foo", "bar", "baz", "foobar"]
    candidates.keepItIf(it.len == 3 and it[0] == 'b')
    assert candidates == @["bar", "baz"]

  var pos = 0
  for i in 0 ..< len(varSeq):
    let it {.inject.} = varSeq[i]
    if pred:
      if pos != i:
        when defined(gcDestructors):
          varSeq[pos] = move(varSeq[i])
        else:
          shallowCopy(varSeq[pos], varSeq[i])
      inc(pos)
  setLen(varSeq, pos)

since (1, 1):
  template countIt*(s, pred: untyped): int =
    ## Returns a count of all the items that fulfill the predicate.
    ##
    ## The predicate needs to be an expression using
    ## the `it` variable for testing, like: `countIt(@[1, 2, 3], it > 2)`.
    ##
    runnableExamples:
      let numbers = @[-3, -2, -1, 0, 1, 2, 3, 4, 5, 6]
      iterator iota(n: int): int =
        for i in 0..<n: yield i
      assert numbers.countIt(it < 0) == 3
      assert countIt(iota(10), it < 2) == 2

    var result = 0
    for it {.inject.} in s:
      if pred: result += 1
    result

proc all*[T](s: openArray[T], pred: proc(x: T): bool {.closure.}): bool {.effectsOf: pred.} =
  ## Iterates through a container and checks if every item fulfills the
  ## predicate.
  ##
  ## **See also:**
  ## * `allIt template<#allIt.t,untyped,untyped>`_
  ## * `any proc<#any,openArray[T],proc(T)>`_
  ##
  runnableExamples:
    let numbers = @[1, 4, 5, 8, 9, 7, 4]
    assert all(numbers, proc (x: int): bool = x < 10) == true
    assert all(numbers, proc (x: int): bool = x < 9) == false

  for i in s:
    if not pred(i):
      return false
  true

template allIt*(s, pred: untyped): bool =
  ## Iterates through a container and checks if every item fulfills the
  ## predicate.
  ##
  ## Unlike the `all proc<#all,openArray[T],proc(T)>`_,
  ## the predicate needs to be an expression using
  ## the `it` variable for testing, like: `allIt("abba", it == 'a')`.
  ##
  ## **See also:**
  ## * `all proc<#all,openArray[T],proc(T)>`_
  ## * `anyIt template<#anyIt.t,untyped,untyped>`_
  ##
  runnableExamples:
    let numbers = @[1, 4, 5, 8, 9, 7, 4]
    assert numbers.allIt(it < 10) == true
    assert numbers.allIt(it < 9) == false

  var result = true
  for it {.inject.} in items(s):
    if not pred:
      result = false
      break
  result

proc any*[T](s: openArray[T], pred: proc(x: T): bool {.closure.}): bool {.effectsOf: pred.} =
  ## Iterates through a container and checks if at least one item
  ## fulfills the predicate.
  ##
  ## **See also:**
  ## * `anyIt template<#anyIt.t,untyped,untyped>`_
  ## * `all proc<#all,openArray[T],proc(T)>`_
  ##
  runnableExamples:
    let numbers = @[1, 4, 5, 8, 9, 7, 4]
    assert any(numbers, proc (x: int): bool = x > 8) == true
    assert any(numbers, proc (x: int): bool = x > 9) == false

  for i in s:
    if pred(i):
      return true
  false

template anyIt*(s, pred: untyped): bool =
  ## Iterates through a container and checks if at least one item
  ## fulfills the predicate.
  ##
  ## Unlike the `any proc<#any,openArray[T],proc(T)>`_,
  ## the predicate needs to be an expression using
  ## the `it` variable for testing, like: `anyIt("abba", it == 'a')`.
  ##
  ## **See also:**
  ## * `any proc<#any,openArray[T],proc(T)>`_
  ## * `allIt template<#allIt.t,untyped,untyped>`_
  ##
  runnableExamples:
    let numbers = @[1, 4, 5, 8, 9, 7, 4]
    assert numbers.anyIt(it > 8) == true
    assert numbers.anyIt(it > 9) == false

  var result = false
  for it {.inject.} in items(s):
    if pred:
      result = true
      break
  result

template toSeq1(s: not iterator): untyped =
  # overload for typed but not iterator
  type OutType = typeof(items(s))
  when compiles(s.len):
    block:
      evalOnceAs(s2, s, compiles((let _ = s)))
      var i = 0
      var result = newSeq[OutType](s2.len)
      for it in s2:
        result[i] = it
        i += 1
      result
  else:
    var result: seq[OutType]# = @[]
    for it in s:
      result.add(it)
    result

template toSeq2(iter: iterator): untyped =
  # overload for iterator
  evalOnceAs(iter2, iter(), false)
  when compiles(iter2.len):
    var i = 0
    var result = newSeq[typeof(iter2)](iter2.len)
    for x in iter2:
      result[i] = x
      inc i
    result
  else:
    type OutType = typeof(iter2())
    var result: seq[OutType]# = @[]
    when compiles(iter2()):
      evalOnceAs(iter4, iter, false)
      let iter3 = iter4()
      for x in iter3():
        result.add(x)
    else:
      for x in iter2():
        result.add(x)
    result

template toSeq*(iter: untyped): untyped =
  ## Transforms any iterable (anything that can be iterated over, e.g. with
  ## a for-loop) into a sequence.
  ##
  runnableExamples:
    let
      myRange = 1..5
      mySet: set[int8] = {5'i8, 3, 1}
    assert typeof(myRange) is HSlice[system.int, system.int]
    assert typeof(mySet) is set[int8]

    let
      mySeq1 = toSeq(myRange)
      mySeq2 = toSeq(mySet)
    assert mySeq1 == @[1, 2, 3, 4, 5]
    assert mySeq2 == @[1'i8, 3, 5]

  when compiles(toSeq1(iter)):
    toSeq1(iter)
  elif compiles(toSeq2(iter)):
    toSeq2(iter)
  else:
    # overload for untyped, e.g.: `toSeq(myInlineIterator(3))`
    when compiles(iter.len):
      block:
        evalOnceAs(iter2, iter, true)
        var result = newSeq[typeof(iter)](iter2.len)
        var i = 0
        for x in iter2:
          result[i] = x
          inc i
        result
    else:
      var result: seq[typeof(iter)]# = @[]
      for x in iter:
        result.add(x)
      result

template foldl*(sequence, operation: untyped): untyped =
  ## Template to fold a sequence from left to right, returning the accumulation.
  ##
  ## The sequence is required to have at least a single element. Debug versions
  ## of your program will assert in this situation but release versions will
  ## happily go ahead. If the sequence has a single element it will be returned
  ## without applying `operation`.
  ##
  ## The `operation` parameter should be an expression which uses the
  ## variables `a` and `b` for each step of the fold. Since this is a left
  ## fold, for non associative binary operations like subtraction think that
  ## the sequence of numbers 1, 2 and 3 will be parenthesized as (((1) - 2) -
  ## 3).
  ##
  ## **See also:**
  ## * `foldl template<#foldl.t,,,>`_ with a starting parameter
  ## * `foldr template<#foldr.t,untyped,untyped>`_
  ##
  runnableExamples:
    let
      numbers = @[5, 9, 11]
      addition = foldl(numbers, a + b)
      subtraction = foldl(numbers, a - b)
      multiplication = foldl(numbers, a * b)
      words = @["nim", "is", "cool"]
      concatenation = foldl(words, a & b)
      procs = @["proc", "Is", "Also", "Fine"]


    func foo(acc, cur: string): string =
      result = acc & cur

    assert addition == 25, "Addition is (((5)+9)+11)"
    assert subtraction == -15, "Subtraction is (((5)-9)-11)"
    assert multiplication == 495, "Multiplication is (((5)*9)*11)"
    assert concatenation == "nimiscool"
    assert foldl(procs, foo(a, b)) == "procIsAlsoFine"

  let s = sequence
  assert s.len > 0, "Can't fold empty sequences"
  var result: typeof(s[0])
  result = s[0]
  for i in 1..<s.len:
    let
      a {.inject.} = result
      b {.inject.} = s[i]
    result = operation
  result

template foldl*(sequence, operation, first): untyped =
  ## Template to fold a sequence from left to right, returning the accumulation.
  ##
  ## This version of `foldl` gets a **starting parameter**. This makes it possible
  ## to accumulate the sequence into a different type than the sequence elements.
  ##
  ## The `operation` parameter should be an expression which uses the variables
  ## `a` and `b` for each step of the fold. The `first` parameter is the
  ## start value (the first `a`) and therefore defines the type of the result.
  ##
  ## **See also:**
  ## * `foldr template<#foldr.t,untyped,untyped>`_
  ##
  runnableExamples:
    let
      numbers = @[0, 8, 1, 5]
      digits = foldl(numbers, a & (chr(b + ord('0'))), "")
    assert digits == "0815"

  var result: typeof(first) = first
  for x in items(sequence):
    let
      a {.inject.} = result
      b {.inject.} = x
    result = operation
  result

template foldr*(sequence, operation: untyped): untyped =
  ## Template to fold a sequence from right to left, returning the accumulation.
  ##
  ## The sequence is required to have at least a single element. Debug versions
  ## of your program will assert in this situation but release versions will
  ## happily go ahead. If the sequence has a single element it will be returned
  ## without applying `operation`.
  ##
  ## The `operation` parameter should be an expression which uses the
  ## variables `a` and `b` for each step of the fold. Since this is a right
  ## fold, for non associative binary operations like subtraction think that
  ## the sequence of numbers 1, 2 and 3 will be parenthesized as (1 - (2 -
  ## (3))).
  ##
  ## **See also:**
  ## * `foldl template<#foldl.t,untyped,untyped>`_
  ## * `foldl template<#foldl.t,,,>`_ with a starting parameter
  ##
  runnableExamples:
    let
      numbers = @[5, 9, 11]
      addition = foldr(numbers, a + b)
      subtraction = foldr(numbers, a - b)
      multiplication = foldr(numbers, a * b)
      words = @["nim", "is", "cool"]
      concatenation = foldr(words, a & b)
    assert addition == 25, "Addition is (5+(9+(11)))"
    assert subtraction == 7, "Subtraction is (5-(9-(11)))"
    assert multiplication == 495, "Multiplication is (5*(9*(11)))"
    assert concatenation == "nimiscool"

  let s = sequence # xxx inefficient, use {.evalonce.} pending #13750
  let n = s.len
  assert n > 0, "Can't fold empty sequences"
  var result = s[n - 1]
  for i in countdown(n - 2, 0):
    let
      a {.inject.} = s[i]
      b {.inject.} = result
    result = operation
  result

template mapIt*(s: typed, op: untyped): untyped =
  ## Returns a new sequence with the results of the `op` proc applied to every
  ## item in the container `s`.
  ##
  ## Since the input is not modified you can use it to
  ## transform the type of the elements in the input container.
  ##
  ## The template injects the `it` variable which you can use directly in an
  ## expression.
  ##
  ## Instead of using `mapIt` and `filterIt`, consider using the `collect` macro
  ## from the `sugar` module.
  ##
  ## **See also:**
  ## * `sugar.collect macro<sugar.html#collect.m%2Cuntyped%2Cuntyped>`_
  ## * `map proc<#map,openArray[T],proc(T)>`_
  ## * `applyIt template<#applyIt.t,untyped,untyped>`_ for the in-place version
  ##
  runnableExamples:
    let
      nums = @[1, 2, 3, 4]
      strings = nums.mapIt($(4 * it))
    assert strings == @["4", "8", "12", "16"]

  type OutType = typeof((
    block:
      var it{.inject.}: typeof(items(s), typeOfIter);
      op), typeOfProc)
  when OutType is not (proc):
    # Here, we avoid to create closures in loops.
    # This avoids https://github.com/nim-lang/Nim/issues/12625
    when compiles(s.len):
      block: # using a block avoids https://github.com/nim-lang/Nim/issues/8580

        # BUG: `evalOnceAs(s2, s, false)` would lead to C compile errors
        # (`error: use of undeclared identifier`) instead of Nim compile errors
        evalOnceAs(s2, s, compiles((let _ = s)))

        var i = 0
        var result = newSeq[OutType](s2.len)
        for it {.inject.} in s2:
          result[i] = op
          i += 1
        result
    else:
      var result: seq[OutType]# = @[]
      # use `items` to avoid https://github.com/nim-lang/Nim/issues/12639
      for it {.inject.} in items(s):
        result.add(op)
      result
  else:
    # `op` is going to create closures in loops, let's fallback to `map`.
    # NOTE: Without this fallback, developers have to define a helper function and
    # call `map`:
    #   [1, 2].map((it) => ((x: int) => it + x))
    # With this fallback, above code can be simplified to:
    #   [1, 2].mapIt((x: int) => it + x)
    # In this case, `mapIt` is just syntax sugar for `map`.
    type InType = typeof(items(s), typeOfIter)
    # Use a help proc `f` to create closures for each element in `s`
    let f = proc (x: InType): OutType =
              let it {.inject.} = x
              op
    map(s, f)

template applyIt*(varSeq, op: untyped) =
  ## Convenience template around the mutable `apply` proc to reduce typing.
  ##
  ## The template injects the `it` variable which you can use directly in an
  ## expression. The expression has to return the same type as the elements
  ## of the sequence you are mutating.
  ##
  ## **See also:**
  ## * `apply proc<#apply,openArray[T],proc(T)_2>`_
  ## * `mapIt template<#mapIt.t,typed,untyped>`_
  ##
  runnableExamples:
    var nums = @[1, 2, 3, 4]
    nums.applyIt(it * 3)
    assert nums[0] + nums[3] == 15

  for i in low(varSeq) .. high(varSeq):
    let it {.inject.} = varSeq[i]
    varSeq[i] = op


template newSeqWith*(len: int, init: untyped): untyped =
  ## Creates a new `seq` of length `len`, calling `init` to initialize
  ## each value of the seq.
  ##
  ## Useful for creating "2D" seqs - seqs containing other seqs
  ## or to populate fields of the created seq.
  runnableExamples:
    ## Creates a seq containing 5 bool seqs, each of length of 3.
    var seq2D = newSeqWith(5, newSeq[bool](3))
    assert seq2D.len == 5
    assert seq2D[0].len == 3
    assert seq2D[4][2] == false

    ## Creates a seq with random numbers
    import std/random
    var seqRand = newSeqWith(20, rand(1.0))
    assert seqRand[0] != seqRand[1]

  var result = newSeq[typeof(init)](len)
  for i in 0 ..< len:
    result[i] = init
  move(result) # refs bug #7295

func mapLitsImpl(constructor: NimNode; op: NimNode; nested: bool;
                 filter = nnkLiterals): NimNode =
  if constructor.kind in filter:
    result = newNimNode(nnkCall, lineInfoFrom = constructor)
    result.add op
    result.add constructor
  else:
    result = copyNimNode(constructor)
    for v in constructor:
      if nested or v.kind in filter:
        result.add mapLitsImpl(v, op, nested, filter)
      else:
        result.add v

macro mapLiterals*(constructor, op: untyped;
                   nested = true): untyped =
  ## Applies `op` to each of the **atomic** literals like `3`
  ## or `"abc"` in the specified `constructor` AST. This can
  ## be used to map every array element to some target type:
  runnableExamples:
    let x = mapLiterals([0.1, 1.2, 2.3, 3.4], int)
    doAssert x is array[4, int]
    doAssert x == [int(0.1), int(1.2), int(2.3), int(3.4)]
  ## If `nested` is true (which is the default), the literals are replaced
  ## everywhere in the `constructor` AST, otherwise only the first level
  ## is considered:
  runnableExamples:
    let a = mapLiterals((1.2, (2.3, 3.4), 4.8), int)
    let b = mapLiterals((1.2, (2.3, 3.4), 4.8), int, nested=false)
    assert a == (1, (2, 3), 4)
    assert b == (1, (2.3, 3.4), 4)

    let c = mapLiterals((1, (2, 3), 4, (5, 6)), `$`)
    let d = mapLiterals((1, (2, 3), 4, (5, 6)), `$`, nested=false)
    assert c == ("1", ("2", "3"), "4", ("5", "6"))
    assert d == ("1", (2, 3), "4", (5, 6))
  ## There are no constraints for the `constructor` AST, it
  ## works for nested tuples of arrays of sets etc.
  result = mapLitsImpl(constructor, op, nested.boolVal)

iterator items*[T](xs: iterator: T): T =
  ## Iterates over each element yielded by a closure iterator. This may
  ## not seem particularly useful on its own, but this allows closure
  ## iterators to be used by the mapIt, filterIt, allIt, anyIt, etc.
  ## templates.
  for x in xs():
    yield x