summary refs log tree commit diff stats
path: root/tests/cpp/tasync_cpp.nim
blob: a68be6cd5c1007ba419573c5332df4d54ca211f8 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
discard """
  targets: "cpp"
  output: "hello"
  cmd: "nim cpp --nilseqs:on --nimblePath:tests/deps $file"
"""

# bug #3299

import jester
import asyncdispatch, asyncnet

# bug #5081
#import nre

echo "hello"
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
#
#
#           The Nim Compiler
#        (c) Copyright 2013 Andreas Rumpf
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

## This module implements semantic checking for calls.
# included from sem.nim

proc sameMethodDispatcher(a, b: PSym): bool =
  result = false
  if a.kind == skMethod and b.kind == skMethod:
    var aa = lastSon(a.ast)
    var bb = lastSon(b.ast)
    if aa.kind == nkSym and bb.kind == nkSym:
      if aa.sym == bb.sym:
        result = true
    else:
      discard
      # generics have no dispatcher yet, so we need to compare the method
      # names; however, the names are equal anyway because otherwise we
      # wouldn't even consider them to be overloaded. But even this does
      # not work reliably! See tmultim6 for an example:
      # method collide[T](a: TThing, b: TUnit[T]) is instantiated and not
      # method collide[T](a: TUnit[T], b: TThing)! This means we need to
      # *instantiate* every candidate! However, we don't keep more than 2-3
      # candidated around so we cannot implement that for now. So in order
      # to avoid subtle problems, the call remains ambiguous and needs to
      # be disambiguated by the programmer; this way the right generic is
      # instantiated.

proc determineType(c: PContext, s: PSym)

proc initCandidateSymbols(c: PContext, headSymbol: PNode,
                       initialBinding: PNode,
                       filter: TSymKinds,
                       best, alt: var TCandidate,
                       o: var TOverloadIter): seq[tuple[s: PSym, scope: int]] =
  result = @[]
  var symx = initOverloadIter(o, c, headSymbol)
  while symx != nil:
    if symx.kind in filter:
      result.add((symx, o.lastOverloadScope))
      symx = nextOverloadIter(o, c, headSymbol)
  if result.len > 0:
    initCandidate(c, best, result[0].s, initialBinding, result[0].scope)
    initCandidate(c, alt, result[0].s, initialBinding, result[0].scope)
    best.state = csNoMatch

proc pickBestCandidate(c: PContext, headSymbol: PNode,
                       n, orig: PNode,
                       initialBinding: PNode,
                       filter: TSymKinds,
                       best, alt: var TCandidate,
                       errors: var CandidateErrors) =
  var o: TOverloadIter
  var sym = initOverloadIter(o, c, headSymbol)
  var scope = o.lastOverloadScope
  # Thanks to the lazy semchecking for operands, we need to check whether
  # 'initCandidate' modifies the symbol table (via semExpr).
  # This can occur in cases like 'init(a, 1, (var b = new(Type2); b))'
  let counterInitial = c.currentScope.symbols.counter
  var syms: seq[tuple[s: PSym, scope: int]]
  var nextSymIndex = 0
  while sym != nil:
    if sym.kind in filter:
      # Initialise 'best' and 'alt' with the first available symbol
      initCandidate(c, best, sym, initialBinding, scope)
      initCandidate(c, alt, sym, initialBinding, scope)
      best.state = csNoMatch
      break
    else:
      sym = nextOverloadIter(o, c, headSymbol)
      scope = o.lastOverloadScope
  var z: TCandidate
  while sym != nil:
    if sym.kind notin filter:
      sym = nextOverloadIter(o, c, headSymbol)
      scope = o.lastOverloadScope
      continue
    determineType(c, sym)
    initCandidate(c, z, sym, initialBinding, scope)
    if c.currentScope.symbols.counter == counterInitial or syms != nil:
      matches(c, n, orig, z)
      if errors != nil:
        errors.safeAdd((sym, int z.mutabilityProblem))
        if z.errors != nil:
          for err in z.errors:
            errors.add(err)
      if z.state == csMatch:
        # little hack so that iterators are preferred over everything else:
        if sym.kind == skIterator: inc(z.exactMatches, 200)
        case best.state
        of csEmpty, csNoMatch: best = z
        of csMatch:
          var cmp = cmpCandidates(best, z)
          if cmp < 0: best = z   # x is better than the best so far
          elif cmp == 0: alt = z # x is as good as the best so far
    else:
      # Symbol table has been modified. Restart and pre-calculate all syms
      # before any further candidate init and compare. SLOW, but rare case.
      syms = initCandidateSymbols(c, headSymbol, initialBinding, filter, best, alt, o)
    if syms == nil:
      sym = nextOverloadIter(o, c, headSymbol)
      scope = o.lastOverloadScope
    elif nextSymIndex < syms.len:
      # rare case: retrieve the next pre-calculated symbol
      sym = syms[nextSymIndex].s
      scope = syms[nextSymIndex].scope
      nextSymIndex += 1
    else:
      break

proc notFoundError*(c: PContext, n: PNode, errors: CandidateErrors) =
  # Gives a detailed error message; this is separated from semOverloadedCall,
  # as semOverlodedCall is already pretty slow (and we need this information
  # only in case of an error).
  if c.compilesContextId > 0 and optReportConceptFailures notin gGlobalOptions:
    # fail fast:
    globalError(n.info, errTypeMismatch, "")
  if errors.isNil or errors.len == 0:
    localError(n.info, errExprXCannotBeCalled, n[0].renderTree)
    return

  # to avoid confusing errors like:
  #   got (SslPtr, SocketHandle)
  #   but expected one of:
  #   openssl.SSL_set_fd(ssl: SslPtr, fd: SocketHandle): cint
  # we do a pre-analysis. If all types produce the same string, we will add
  # module information.
  let proto = describeArgs(c, n, 1, preferName)

  var prefer = preferName
  for err, mut in items(errors):
    var errProto = ""
    let n = err.typ.n
    for i in countup(1, n.len - 1):
      var p = n.sons[i]
      if p.kind == nkSym:
        add(errProto, typeToString(p.sym.typ, preferName))
        if i != n.len-1: add(errProto, ", ")
      # else: ignore internal error as we're already in error handling mode
    if errProto == proto:
      prefer = preferModuleInfo
      break

  # now use the information stored in 'prefer' to produce a nice error message:
  var result = msgKindToString(errTypeMismatch)
  add(result, describeArgs(c, n, 1, prefer))
  add(result, ')')
  var candidates = ""
  for err, mut in items(errors):
    if err.kind in routineKinds and err.ast != nil:
      add(candidates, renderTree(err.ast,
            {renderNoBody, renderNoComments,renderNoPragmas}))
    else:
      add(candidates, err.getProcHeader(prefer))
    add(candidates, "\n")
    if mut != 0 and mut < n.len:
      add(candidates, "for a 'var' type a variable needs to be passed, but '" & renderTree(n[mut]) & "' is immutable\n")
  if candidates != "":
    add(result, "\n" & msgKindToString(errButExpected) & "\n" & candidates)
  if c.compilesContextId > 0 and optReportConceptFailures in gGlobalOptions:
    globalError(n.info, errGenerated, result)
  else:
    localError(n.info, errGenerated, result)

proc bracketNotFoundError(c: PContext; n: PNode) =
  var errors: CandidateErrors = @[]
  var o: TOverloadIter
  let headSymbol = n[0]
  var symx = initOverloadIter(o, c, headSymbol)
  while symx != nil:
    if symx.kind in routineKinds:
      errors.add((symx, 0))
    symx = nextOverloadIter(o, c, headSymbol)
  if errors.len == 0:
    localError(n.info, "could not resolve: " & $n)
  else:
    notFoundError(c, n, errors)

proc resolveOverloads(c: PContext, n, orig: PNode,
                      filter: TSymKinds;
                      errors: var CandidateErrors): TCandidate =
  var initialBinding: PNode
  var alt: TCandidate
  var f = n.sons[0]
  if f.kind == nkBracketExpr:
    # fill in the bindings:
    initialBinding = f
    f = f.sons[0]
  else:
    initialBinding = nil

  template pickBest(headSymbol) =
    pickBestCandidate(c, headSymbol, n, orig, initialBinding,
                      filter, result, alt, errors)
  pickBest(f)

  let overloadsState = result.state
  if overloadsState != csMatch:
    if c.p != nil and c.p.selfSym != nil:
      # we need to enforce semchecking of selfSym again because it
      # might need auto-deref:
      var hiddenArg = newSymNode(c.p.selfSym)
      hiddenArg.typ = nil
      n.sons.insert(hiddenArg, 1)
      orig.sons.insert(hiddenArg, 1)

      pickBest(f)

      if result.state != csMatch:
        n.sons.delete(1)
        orig.sons.delete(1)
        excl n.flags, nfExprCall
      else: return

    if nfDotField in n.flags:
      internalAssert f.kind == nkIdent and n.sonsLen >= 2
      let calleeName = newStrNode(nkStrLit, f.ident.s).withInfo(n.info)

      # leave the op head symbol empty,
      # we are going to try multiple variants
      n.sons[0..1] = [nil, n[1], calleeName]
      orig.sons[0..1] = [nil, orig[1], calleeName]

      template tryOp(x) =
        let op = newIdentNode(getIdent(x), n.info)
        n.sons[0] = op
        orig.sons[0] = op
        pickBest(op)

      if nfExplicitCall in n.flags:
        tryOp ".()"

      if result.state in {csEmpty, csNoMatch}:
        tryOp "."

    elif nfDotSetter in n.flags:
      internalAssert f.kind == nkIdent and n.sonsLen == 3
      let calleeName = newStrNode(nkStrLit,
        f.ident.s[0..f.ident.s.len-2]).withInfo(n.info)
      let callOp = newIdentNode(getIdent".=", n.info)
      n.sons[0..1] = [callOp, n[1], calleeName]
      orig.sons[0..1] = [callOp, orig[1], calleeName]
      pickBest(callOp)

    if overloadsState == csEmpty and result.state == csEmpty:
      if nfDotField in n.flags and nfExplicitCall notin n.flags:
        localError(n.info, errUndeclaredField, considerQuotedIdent(f).s)
      else:
        localError(n.info, errUndeclaredRoutine, considerQuotedIdent(f).s)
      return
    elif result.state != csMatch:
      if nfExprCall in n.flags:
        localError(n.info, errExprXCannotBeCalled,
                   renderTree(n, {renderNoComments}))
      else:
        if {nfDotField, nfDotSetter} * n.flags != {}:
          # clean up the inserted ops
          n.sons.delete(2)
          n.sons[0] = f

        errors = @[]
        pickBest(f)
        #notFoundError(c, n, errors)

      return
  if alt.state == csMatch and cmpCandidates(result, alt) == 0 and
      not sameMethodDispatcher(result.calleeSym, alt.calleeSym):
    internalAssert result.state == csMatch
    #writeMatches(result)
    #writeMatches(alt)
    if c.compilesContextId > 0:
      # quick error message for performance of 'compiles' built-in:
      globalError(n.info, errGenerated, "ambiguous call")
    elif gErrorCounter == 0:
      # don't cascade errors
      var args = "("
      for i in countup(1, sonsLen(n) - 1):
        if i > 1: add(args, ", ")
        add(args, typeToString(n.sons[i].typ))
      add(args, ")")

      localError(n.info, errGenerated, msgKindToString(errAmbiguousCallXYZ) % [
        getProcHeader(result.calleeSym), getProcHeader(alt.calleeSym),
        args])


proc instGenericConvertersArg*(c: PContext, a: PNode, x: TCandidate) =
  if a.kind == nkHiddenCallConv and a.sons[0].kind == nkSym:
    let s = a.sons[0].sym
    if s.ast != nil and s.ast[genericParamsPos].kind != nkEmpty:
      let finalCallee = generateInstance(c, s, x.bindings, a.info)
      a.sons[0].sym = finalCallee
      a.sons[0].typ = finalCallee.typ
      #a.typ = finalCallee.typ.sons[0]

proc instGenericConvertersSons*(c: PContext, n: PNode, x: TCandidate) =
  assert n.kind in nkCallKinds
  if x.genericConverter:
    for i in 1 .. <n.len:
      instGenericConvertersArg(c, n.sons[i], x)

proc indexTypesMatch(c: PContext, f, a: PType, arg: PNode): PNode =
  var m: TCandidate
  initCandidate(c, m, f)
  result = paramTypesMatch(m, f, a, arg, nil)
  if m.genericConverter and result != nil:
    instGenericConvertersArg(c, result, m)

proc inferWithMetatype(c: PContext, formal: PType,
                       arg: PNode, coerceDistincts = false): PNode =
  var m: TCandidate
  initCandidate(c, m, formal)
  m.coerceDistincts = coerceDistincts
  result = paramTypesMatch(m, formal, arg.typ, arg, nil)
  if m.genericConverter and result != nil:
    instGenericConvertersArg(c, result, m)
  if result != nil:
    # This almost exactly replicates the steps taken by the compiler during
    # param matching. It performs an embarrassing amount of back-and-forth
    # type jugling, but it's the price to pay for consistency and correctness
    result.typ = generateTypeInstance(c, m.bindings, arg.info,
                                      formal.skipTypes({tyCompositeTypeClass}))
  else:
    typeMismatch(arg, formal, arg.typ)
    # error correction:
    result = copyTree(arg)
    result.typ = formal

proc semResolvedCall(c: PContext, n: PNode, x: TCandidate): PNode =
  assert x.state == csMatch
  var finalCallee = x.calleeSym
  markUsed(n.sons[0].info, finalCallee, c.graph.usageSym)
  styleCheckUse(n.sons[0].info, finalCallee)
  assert finalCallee.ast != nil
  if x.hasFauxMatch:
    result = x.call
    result.sons[0] = newSymNode(finalCallee, result.sons[0].info)
    if containsGenericType(result.typ) or x.fauxMatch == tyUnknown:
      result.typ = newTypeS(x.fauxMatch, c)
    return
  let gp = finalCallee.ast.sons[genericParamsPos]
  if gp.kind != nkEmpty:
    if x.calleeSym.kind notin {skMacro, skTemplate}:
      if x.calleeSym.magic in {mArrGet, mArrPut}:
        finalCallee = x.calleeSym
      else:
        finalCallee = generateInstance(c, x.calleeSym, x.bindings, n.info)
    else:
      # For macros and templates, the resolved generic params
      # are added as normal params.
      for s in instantiateGenericParamList(c, gp, x.bindings):
        case s.kind
        of skConst:
          x.call.add s.ast
        of skType:
          x.call.add newSymNode(s, n.info)
        else:
          internalAssert false

  result = x.call
  instGenericConvertersSons(c, result, x)
  result.sons[0] = newSymNode(finalCallee, result.sons[0].info)
  result.typ = finalCallee.typ.sons[0]

proc canDeref(n: PNode): bool {.inline.} =
  result = n.len >= 2 and (let t = n[1].typ;
    t != nil and t.skipTypes({tyGenericInst, tyAlias}).kind in {tyPtr, tyRef})

proc tryDeref(n: PNode): PNode =
  result = newNodeI(nkHiddenDeref, n.info)
  result.typ = n.typ.skipTypes(abstractInst).sons[0]
  result.addSon(n)

proc semOverloadedCall(c: PContext, n, nOrig: PNode,
                       filter: TSymKinds): PNode =
  var errors: CandidateErrors

  var r = resolveOverloads(c, n, nOrig, filter, errors)
  if r.state == csMatch: result = semResolvedCall(c, n, r)
  elif experimentalMode(c) and canDeref(n):
    # try to deref the first argument and then try overloading resolution again:
    n.sons[1] = n.sons[1].tryDeref
    var r = resolveOverloads(c, n, nOrig, filter, errors)
    if r.state == csMatch: result = semResolvedCall(c, n, r)
    else:
      # get rid of the deref again for a better error message:
      n.sons[1] = n.sons[1].sons[0]
      notFoundError(c, n, errors)
  else:
    notFoundError(c, n, errors)
  # else: result = errorNode(c, n)

proc explicitGenericInstError(n: PNode): PNode =
  localError(n.info, errCannotInstantiateX, renderTree(n))
  result = n

proc explicitGenericSym(c: PContext, n: PNode, s: PSym): PNode =
  var m: TCandidate
  # binding has to stay 'nil' for this to work!
  initCandidate(c, m, s, nil)

  for i in 1..sonsLen(n)-1:
    let formal = s.ast.sons[genericParamsPos].sons[i-1].typ
    let arg = n[i].typ
    let tm = typeRel(m, formal, arg, true)
    if tm in {isNone, isConvertible}: return nil
  var newInst = generateInstance(c, s, m.bindings, n.info)
  markUsed(n.info, s, c.graph.usageSym)
  styleCheckUse(n.info, s)
  result = newSymNode(newInst, n.info)

proc explicitGenericInstantiation(c: PContext, n: PNode, s: PSym): PNode =
  assert n.kind == nkBracketExpr
  for i in 1..sonsLen(n)-1:
    n.sons[i].typ = semTypeNode(c, n.sons[i], nil)
  var s = s
  var a = n.sons[0]
  if a.kind == nkSym:
    # common case; check the only candidate has the right
    # number of generic type parameters:
    if safeLen(s.ast.sons[genericParamsPos]) != n.len-1:
      let expected = safeLen(s.ast.sons[genericParamsPos])
      localError(n.info, errGenerated, "cannot instantiate: " & renderTree(n) &
         "; got " & $(n.len-1) & " type(s) but expected " & $expected)
      return n
    result = explicitGenericSym(c, n, s)
    if result == nil: result = explicitGenericInstError(n)
  elif a.kind in {nkClosedSymChoice, nkOpenSymChoice}:
    # choose the generic proc with the proper number of type parameters.
    # XXX I think this could be improved by reusing sigmatch.paramTypesMatch.
    # It's good enough for now.
    result = newNodeI(a.kind, n.info)
    for i in countup(0, len(a)-1):
      var candidate = a.sons[i].sym
      if candidate.kind in {skProc, skMethod, skConverter,
                            skIterator}:
        # it suffices that the candidate has the proper number of generic
        # type parameters:
        if safeLen(candidate.ast.sons[genericParamsPos]) == n.len-1:
          let x = explicitGenericSym(c, n, candidate)
          if x != nil: result.add(x)
    # get rid of nkClosedSymChoice if not ambiguous:
    if result.len == 1 and a.kind == nkClosedSymChoice:
      result = result[0]
    elif result.len == 0: result = explicitGenericInstError(n)
  else:
    result = explicitGenericInstError(n)

proc searchForBorrowProc(c: PContext, startScope: PScope, fn: PSym): PSym =
  # Searchs for the fn in the symbol table. If the parameter lists are suitable
  # for borrowing the sym in the symbol table is returned, else nil.
  # New approach: generate fn(x, y, z) where x, y, z have the proper types
  # and use the overloading resolution mechanism:
  var call = newNodeI(nkCall, fn.info)
  var hasDistinct = false
  call.add(newIdentNode(fn.name, fn.info))
  for i in 1.. <fn.typ.n.len:
    let param = fn.typ.n.sons[i]
    let t = skipTypes(param.typ, abstractVar-{tyTypeDesc, tyDistinct})
    if t.kind == tyDistinct or param.typ.kind == tyDistinct: hasDistinct = true
    var x: PType
    if param.typ.kind == tyVar:
      x = newTypeS(tyVar, c)
      x.addSonSkipIntLit t.baseOfDistinct
    else:
      x = t.baseOfDistinct
    call.add(newNodeIT(nkEmpty, fn.info, x))
  if hasDistinct:
    var resolved = semOverloadedCall(c, call, call, {fn.kind})
    if resolved != nil:
      result = resolved.sons[0].sym
      if not compareTypes(result.typ.sons[0], fn.typ.sons[0], dcEqIgnoreDistinct):
        result = nil
      elif result.magic in {mArrPut, mArrGet}:
        # cannot borrow these magics for now
        result = nil