1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
|
discard """
output: '''Match failed: spam
Match failed: ham'''
joinable: false
"""
# bug #6220
import nre
import options
import strutils except isAlpha, isLower, isUpper, isSpace
from unicode import isAlpha, isLower, isUpper, isTitle, isWhiteSpace
import os
const debugLex = false
template debug(enable: bool, text: string): typed =
when enable:
echo(text)
type
Parser[N, T] = proc(text: T, start: int, nodes: var seq[Node[N]]): int {.closure.}
RuleObj[N, T] = object
parser: Parser[N, T]
kind: N
Rule[N, T] = ref RuleObj[N, T]
NodeKind = enum
terminal,
nonterminal
Node*[N] = object of RootObj
# Uncomment the following lines and the compiler crashes
# case nodeKind: NodeKind
# of nonterminal:
# kids: Node[N]
# of terminal:
# discard
start*: int
length*: int
kind*: N
NonTerminal[N] = object of Node
children: seq[Node[N]]
proc newRule[N, T](parser: Parser, kind: N): Rule[N, T] =
new(result)
result.parser = parser
result.kind = kind
proc newRule[N, T](kind: N): Rule[N, T] =
new(result)
result.kind = kind
proc initNode[N](start: int, length: int, kind: N): Node[N] =
result.start = start
result.length = length
result.kind = kind
proc initNode[N](start: int, length: int, children: seq[Node[N]], kind: N): NonTerminal[N] =
result.start = start
result.length = length
result.kind = kind
result.children = children
proc substr[T](text: T, first, last: int): T =
text[first .. last]
proc continuesWith[N](text: seq[Node[N]], subtext: seq[N], start: Natural): bool =
let length = len(text)
var pos = 0
while pos < len(subtext):
let textpos = start + pos
if textpos == len(text):
return false
if text[textpos].kind != subtext[pos].kind:
return false
pos+=1
return true
proc render*[N, T](text: T, nodes: seq[Node[N]]): string =
## Uses a sequence of Nodes to render a given text string
result = ""
for node in nodes:
result.add("<" & node.value(text) & ">")
proc render*[N, T](rule: Rule[N, T], text: string): string =
## Uses a rule to render a given text string
render(text, rule.parse(text))
proc render*[N, T](text: T, nodes: seq[Node[N]], source: string): string =
result = ""
for node in nodes:
result.add("[" & node.value(text, source) & "]")
proc render*[N, T, X](rule: Rule[N, T], text: seq[Node[X]], source: string): string =
## Uses a rule to render a given series of nodes, providing the source string
text.render(rule.parse(text, source = source), source)
proc annotate*[N, T](node: Node[N], text: T): string =
result = "<" & node.value(text) & ":" & $node.kind & ">"
proc annotate*[N, T](nodes: seq[Node[N]], text: T): string =
result = ""
for node in nodes:
result.add(node.annotate(text))
proc annotate*[N, T](rule: Rule[N, T], text: T): string =
annotate(rule.parse(text), text)
proc value*[N, T](node: Node[N], text: T): string =
result = $text.substr(node.start, node.start + node.length - 1)
proc value*[N, X](node: Node[N], text: seq[Node[X]], source: string): string =
result = ""
for n in node.start ..< node.start + node.length:
result &= text[n].annotate(source)
proc parse*[N, T](rule: Rule[N, T], text: T, start = 0, source: string = ""): seq[Node[N]] =
result = newSeq[Node[N]]()
debug(debugLex, "Parsing: " & $text)
let length = rule.parser(text, start, result)
when T is string:
if length == -1:
echo("Match failed: " & $text)
result = @[]
elif length == len(text):
debug(debugLex, "Matched: " & $text & " => " & $len(result) & " tokens: " & text.render(result))
else:
echo("Matched first " & $length & " symbols: " & $text & " => " & $len(result) & " tokens: " & text.render(result))
else:
if length == -1:
echo("Match failed: " & $text)
result = @[]
elif length == len(text):
debug(debugLex, "Matched: " & $text & " => " & $len(result) & " tokens: " & text.render(result, source))
else:
echo("Matched first " & $length & " symbols: " & $text & " => " & $len(result) & " tokens: " & text.render(result, source))
proc literal*[N, T, P](pattern: P, kind: N): Rule[N, T] =
let parser = proc (text: T, start: int, nodes: var seq[Node[N]]): int =
if start == len(text):
return -1
assert(len(text)>start, "Attempting to match at $#, string length is $# " % [$start, $len(text)])
when P is string or P is seq[N]:
debug(debugLex, "Literal[" & $kind & "]: testing " & $pattern & " at " & $start & ": " & $text[start..start+len(pattern)-1])
if text.continuesWith(pattern, start):
let node = initNode(start, len(pattern), kind)
nodes.add(node)
debug(debugLex, "Literal: matched <" & $text[start ..< start+node.length] & ":" & $node.length & ">" )
return node.length
elif P is char:
debug(debugLex, "Literal[" & $kind & "]: testing " & $pattern & " at " & $start & ": " & $text[start])
if text[start] == pattern:
let node = initNode(start, 1, kind)
nodes.add(node)
return 1
else:
debug(debugLex, "Literal[" & $kind & "]: testing " & $pattern & " at " & $start & ": " & $text[start])
if text[start].kind == pattern:
let node = initNode(start, 1, kind)
nodes.add(node)
return 1
return -1
result = newRule[N, T](parser, kind)
proc token[N, T](pattern: T, kind: N): Rule[N, T] =
when T is not string:
{.fatal: "Token is only supported for strings".}
let parser = proc (text: T, start: int, nodes: var seq[Node[N]]): int =
debug(debugLex, "Token[" & $kind & "]: testing " & pattern & " at " & $start)
if start == len(text):
return -1
assert(len(text)>start, "Attempting to match at $#, string length is $# " % [$start, $len(text)])
let m = text.match(re(pattern), start)
if m.isSome:
let node = initNode(start, len(m.get.match), kind)
nodes.add(node)
result = node.length
debug(debugLex, "Token: matched <" & text[start ..< start+node.length] & ":" & $node.length & ">" )
else:
result = -1
result = newRule[N, T](parser, kind)
proc chartest[N, T, S](testfunc: proc(s: S): bool, kind: N): Rule[N, T] =
let parser = proc (text: T, start: int, nodes: var seq[Node[N]]): int =
if start == len(text):
return -1
assert(len(text)>start, "Attempting to match at $#, string length is $# " % [$start, $len(text)])
if testfunc(text[start]):
nodes.add(initNode(start, 1, kind))
result = 1
else:
result = -1
result = newRule[N, T](parser, kind)
proc any*[N, T, S](symbols: T, kind: N): Rule[N, T] =
let test = proc(s: S): bool =
when S is string:
debug(debugLex, "Any[" & $kind & "]: testing for " & symbols.replace("\n", "\\n").replace("\r", "\\r"))
else:
debug(debugLex, "Any[" & $kind & "]: testing for " & $symbols)
result = s in symbols
result = chartest[N, T, S](test, kind)
proc ignore*[N, T](rule: Rule[N, T]): Rule[N, T] =
let parser = proc (text: T, start: int, nodes: var seq[Node[N]]): int =
var mynodes = newSeq[Node[N]]()
result = rule.parser(text, start, mynodes)
result = newRule[N, T](parser, rule.kind)
proc combine*[N, T](rule: Rule[N, T], kind: N): Rule[N, T] =
let parser = proc (text: T, start: int, nodes: var seq[Node[N]]): int =
var mynodes = newSeq[Node[N]]()
result = rule.parser(text, start, mynodes)
nodes.add(initNode(start, result, kind))
result = newRule[N, T](parser, kind)
proc build*[N, T](rule: Rule[N, T], kind: N): Rule[N, T] =
let parser = proc (text: T, start: int, nodes: var seq[Node[N]]): int =
var mynodes = newSeq[Node[N]]()
result = rule.parser(text, start, mynodes)
let nonTerminal = initNode(start, result, mynodes, kind)
nodes.add(nonTerminal)
result = newRule[N, T](parser, kind)
proc fail*[N, T](message: string, kind: N): Rule[N, T] =
let parser = proc (text: T, start: int, nodes: var seq[Node[N]]): int =
let lineno = countLines(text[0..start])
var startline = start
var endline = start
while startline>0:
if text[startline] in NewLines:
break
startline-=1
while endline < len(text):
if text[endline] in NewLines:
break
endline+=1
let charno = start-startline
echo text.substr(startline, endline)
echo ' '.repeat(max(charno,0)) & '^'
raise newException(ValueError, "Position: " & $start & " Line: " & $lineno & ", Symbol: " & $charno & ": " & message)
result = newRule[N, T](parser, kind)
proc `+`*[N, T](left: Rule[N, T], right: Rule[N, T]): Rule[N, T] =
let parser = proc (text: T, start: int, nodes: var seq[Node[N]]): int =
var mynodes = newSeq[Node[N]]()
assert(not isNil(left.parser), "Left hand side parser is nil")
let leftlength = left.parser(text, start, mynodes)
if leftlength == -1:
return leftlength
assert(not isNil(right.parser), "Right hand side parser is nil")
let rightlength = right.parser(text, start+leftlength, mynodes)
if rightlength == -1:
return rightlength
result = leftlength + rightlength
nodes.add(mynodes)
result = newRule[N, T](parser, left.kind)
proc `/`*[N, T](left: Rule[N, T], right: Rule[N, T]): Rule[N, T] =
let parser = proc (text: T, start: int, nodes: var seq[Node[N]]): int =
var mynodes = newSeq[Node[N]]()
assert(not isNil(left.parser), "Left hand side of / is not fully defined")
let leftlength = left.parser(text, start, mynodes)
if leftlength != -1:
nodes.add(mynodes)
return leftlength
mynodes = newSeq[Node[N]]()
assert(not isNil(right.parser), "Right hand side of / is not fully defined")
let rightlength = right.parser(text, start, mynodes)
if rightlength == -1:
return rightlength
nodes.add(mynodes)
return rightlength
result = newRule[N, T](parser, left.kind)
proc `?`*[N, T](rule: Rule[N, T]): Rule[N, T] =
let parser = proc (text: T, start: int, nodes: var seq[Node[N]]): int =
let success = rule.parser(text, start, nodes)
return if success != -1: success else: 0
result = newRule[N, T](parser, rule.kind)
proc `+`*[N, T](rule: Rule[N, T]): Rule[N, T] =
let parser = proc (text: T, start: int, nodes: var seq[Node[N]]): int =
var success = rule.parser(text, start, nodes)
if success == -1:
return success
var total = 0
while success != -1 and start+total < len(text):
total += success
success = rule.parser(text, start+total, nodes)
return total
result = newRule[N, T](parser, rule.kind)
proc `*`*[N, T](rule: Rule[N, T]): Rule[N, T] =
let parser = proc (text: T, start: int, nodes: var seq[Node[N]]): int =
let success = (+rule).parser(text, start, nodes)
return if success != -1: success else: 0
result = newRule[N, T](parser, rule.kind)
#Note: this consumes - for zero-width lookahead see !
proc `^`*[N, T](rule: Rule[N, T]): Rule[N, T] =
let parser = proc (text: T, start: int, nodes: var seq[Node[N]]): int =
var mynodes = newSeq[Node[N]]()
let success = rule.parser(text, start, mynodes)
return if success == -1: 1 else: -1
result = newRule[N, T](parser, rule.kind)
proc `*`*[N, T](repetitions: int, rule: Rule[N, T]): Rule[N, T] =
let parser = proc (text: T, start: int, nodes: var seq[Node[N]]): int =
var mynodes = newSeq[Node[N]]()
var total = 0
for i in 0..<repetitions:
let success = rule.parser(text, start+total, mynodes)
if success == -1:
return success
else:
total += success
nodes.add(mynodes)
return total
result = newRule[N, T](parser, rule.kind)
# Positive zero-width lookahead
proc `&`*[N, T](rule: Rule[N, T]): Rule[N, T] =
let parser = proc (text: T, start: int, nodes: var seq[Node[N]]): int =
var mynodes = newSeq[Node[N]]()
let success = rule.parser(text, start, mynodes)
return if success != -1: 0 else: -1
result = newRule[N, T](parser, rule.kind)
# Negative zero-width lookahead
proc `!`*[N, T](rule: Rule[N, T]): Rule[N, T] =
let parser = proc (text: T, start: int, nodes: var seq[Node[N]]): int =
var mynodes = newSeq[Node[N]]()
let failure = rule.parser(text, start, mynodes)
return if failure == -1: 0 else: -1
result = newRule[N, T](parser, rule.kind)
proc `/`*[N, T](rule: Rule[N, T]): Rule[N, T] =
let parser = proc (text: T, start: int, nodes: var seq[Node[N]]): int =
var mynodes = newSeq[Node[N]]()
var length = 0
var success = rule.parser(text, start+length, mynodes)
while success == -1 and start+length < len(text):
length += 1
success = rule.parser(text, start+length, mynodes)
if start+length >= len(text):
result = -1
else:
nodes.add(initNode(start, length, rule.kind))
nodes.add(mynodes)
result = length + success
result = newRule[N, T](parser, rule.kind)
proc `->`*(rule: Rule, production: Rule) =
assert(not isnil(production.parser), "Right hand side of -> is nil - has the rule been defined yet?")
rule.parser = production.parser
template grammar*[K](Kind, Text, Symbol: typedesc; default: K, code: untyped): typed {.hint[XDeclaredButNotUsed]: off.} =
proc newRule(): Rule[Kind, Text] {.inject.} = newRule[Kind, Text](default)
proc chartest(testfunc: proc(c: Symbol): bool): Rule[Kind, Text] {.inject.} = chartest[Kind, Text, Symbol](testfunc, default)
proc literal[P](pattern: P, kind: K): Rule[Kind, Text] {.inject.} = literal[Kind, Text, P](pattern, kind)
proc literal[P](pattern: P): Rule[Kind, Text] {.inject.} = literal[Kind, Text, P](pattern, default)
when Text is string:
proc token(pattern: string): Rule[Kind, Text] {.inject.} = token(pattern, default)
proc fail(message: string): Rule[Kind, Text] {.inject.} = fail[Kind, Text](message, default)
let alpha {.inject.} = chartest[Kind, Text, Symbol](isAlphaAscii, default)
let alphanumeric {.inject.}= chartest[Kind, Text, Symbol](isAlphaNumeric, default)
let digit {.inject.} = chartest[Kind, Text, Symbol](isDigit, default)
let lower {.inject.} = chartest[Kind, Text, Symbol](isLowerAscii, default)
let upper {.inject.} = chartest[Kind, Text, Symbol](isUpperAscii, default)
let isspace = proc (x: char): bool = x.isSpaceAscii and not (x in NewLines)
let space {.inject.} = chartest[Kind, Text, Symbol](isspace, default)
let isnewline = proc (x: char): bool = x in NewLines
let newline {.inject.} = chartest[Kind, Text, Symbol](isnewline, default)
let alphas {.inject.} = combine(+alpha, default)
let alphanumerics {.inject.} = combine(+alphanumeric, default)
let digits {.inject.} = combine(+digit, default)
let lowers {.inject.} = combine(+lower, default)
let uppers {.inject.} = combine(+upper, default)
let spaces {.inject.} = combine(+space, default)
let newlines {.inject.} = combine(+newline, default)
proc any(chars: Text): Rule[Kind, Text] {.inject.} = any[Kind, Text, Symbol](chars, default)
proc combine(rule: Rule[Kind, Text]): Rule[Kind, Text] {.inject.} = combine[Kind, Text](rule, default)
code
template grammar*[K](Kind: typedesc; default: K, code: untyped): typed {.hint[XDeclaredButNotUsed]: off.} =
grammar(Kind, string, char, default, code)
block:
type DummyKind = enum dkDefault
grammar(DummyKind, string, char, dkDefault):
let rule = token("h[a]+m") + ignore(token(r"\s+")) + (literal("eggs") / literal("beans"))
var text = "ham beans"
discard rule.parse(text)
var recursive = newRule()
recursive -> (literal("(") + recursive + literal(")")) / token(r"\d+")
for test in ["spam", "57", "(25)", "((25))"]:
discard recursive.parse(test)
let repeated = +literal("spam") + ?literal("ham") + *literal("salami")
for test in ["ham", "spam", "spamspamspam" , "spamham", "spamsalami", "spamsalamisalami"]:
discard repeated.parse(test)
|