1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
|
import macros
macro case_token(n: varargs[untyped]): untyped =
# creates a lexical analyzer from regular expressions
# ... (implementation is an exercise for the reader :-)
nil
case_token: # this colon tells the parser it is a macro statement
of r"[A-Za-z_]+[A-Za-z_0-9]*":
return tkIdentifier
of r"0-9+":
return tkInteger
of r"[\+\-\*\?]+":
return tkOperator
else:
return tkUnknown
case_token: inc i
#bug #488
macro foo() =
var exp = newCall("whatwhat", newIntLitNode(1))
if compiles(getAst(exp)):
return exp
else: echo "Does not compute! (test OK)"
foo()
#------------------------------------
# bug #8287
type MyString = distinct string
proc `$` (c: MyString): string {.borrow.}
proc `!!` (c: cstring): int =
c.len
proc f(name: MyString): int =
!! $ name
macro repr_and_parse(fn: typed) =
let fn_impl = fn.getImpl
fn_impl.name = genSym(nskProc, $fn_impl.name)
echo fn_impl.repr
result = parseStmt(fn_impl.repr)
macro repr_to_string(fn: typed): string =
let fn_impl = fn.getImpl
result = newStrLitNode(fn_impl.repr)
repr_and_parse(f)
#------------------------------------
# bugs #8343 and #8344
proc one_if_proc(x, y : int): int =
if x < y: result = x
else: result = y
proc test_block(x, y : int): int =
block label:
result = x
result = y
#------------------------------------
# bugs #8348
template `>`(x, y: untyped): untyped =
## "is greater" operator. This is the same as ``y < x``.
y < x
proc test_cond_stmtlist(x, y: int): int =
result = x
if x > y:
result = x
#------------------------------------
# bug #8762
proc t2(a, b: int): int =
`+`(a, b)
#------------------------------------
# bug #8761
proc fn1(x, y: int):int =
2 * (x + y)
proc fn2(x, y: float): float =
(y + 2 * x) / (x - y)
proc fn3(x, y: int): bool =
(((x and 3) div 4) or (x mod (y xor -1))) == 0 or y notin [1,2]
proc fn4(x: int): int =
if x mod 2 == 0: return x + 2
else: return 0
proc fn5(a, b: float): float =
result = - a * a / (b * b)
#------------------------------------
# bug #10807
proc fn_unsafeaddr(x: int): int =
cast[int](unsafeAddr(x))
static:
echo fn_unsafeaddr.repr_to_string
let fn1s = "proc fn1(x, y: int): int =\n result = 2 * (x + y)\n"
let fn2s = "proc fn2(x, y: float): float =\n result = (y + 2 * x) / (x - y)\n"
let fn3s = "proc fn3(x, y: int): bool =\n result = ((x and 3) div 4 or x mod (y xor -1)) == 0 or not contains([1, 2], y)\n"
let fn4s = "proc fn4(x: int): int =\n if x mod 2 == 0:\n return x + 2\n else:\n return 0\n"
let fn5s = "proc fn5(a, b: float): float =\n result = -a * a / (b * b)\n"
let fnAddr = "proc fn_unsafeaddr(x: int): int =\n result = cast[int](unsafeAddr(x))\n"
doAssert fn1.repr_to_string == fn1s
doAssert fn2.repr_to_string == fn2s
doAssert fn3.repr_to_string == fn3s
doAssert fn4.repr_to_string == fn4s
doAssert fn5.repr_to_string == fn5s
doAssert fn_unsafeaddr.repr_to_string == fnAddr
#------------------------------------
# bug #8763
type
A {.pure.} = enum
X, Y
B {.pure.} = enum
X, Y
proc test_pure_enums(a: B) =
case a
of B.X: echo B.X
of B.Y: echo B.Y
repr_and_parse(one_if_proc)
repr_and_parse(test_block)
repr_and_parse(test_cond_stmtlist)
repr_and_parse(t2)
repr_and_parse(test_pure_enums)
|