summary refs log tree commit diff stats
path: root/tests/parser/tbraces.nim
blob: 86c854546f12adbf834e07c4f19efc9b4f1149e1 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
#? braces

#
#
#            Nim's Runtime Library
#        (c) Copyright 2015 Andreas Rumpf
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

## This module implements some common generic algorithms.

type
  SortOrder* = enum {  ## sort order
    Descending, Ascending
  }


type(
  DummyAlias = int
  OtherAlias = distinct char

  SomeObject = object of RootObj { ## declaration here
    fieldA, fieldB: int
    case order: SortOrder {
      of Descending {a: string}
      of Ascending {b: seq[char]}
    }
  }

  MyConcept = concept x {
     x is int
  }
)

{.deprecated: [TSortOrder: SortOrder].}


proc `*`*(x: int, order: SortOrder): int @inline {
  ## flips `x` if ``order == Descending``;
  ## if ``order == Ascending`` then `x` is returned.
  ## `x` is supposed to be the result of a comparator, ie ``< 0`` for
  ## *less than*, ``== 0`` for *equal*, ``> 0`` for *greater than*.
  var y = order.ord - 1
  result = (x xor y) - y
}

proc fill*[T](a: var openArray[T], first, last: Natural, value: T) {
  ## fills the array ``a[first..last]`` with `value`.
  var x = first
  while x <= last {
    a[x] = value
    inc(x)
  }
}

proc fill*[T](a: var openArray[T], value: T) {
  ## fills the array `a` with `value`.
  fill(a, 0, a.high, value)
}

proc reverse*[T](a: var openArray[T], first, last: Natural) {
  ## reverses the array ``a[first..last]``.
  var x = first
  var y = last
  while x < y {
    swap(a[x], a[y])
    dec(y)
    inc(x)
  }
}

proc reverse*[T](a: var openArray[T]) {
  ## reverses the array `a`.
  reverse(a, 0, a.high)
}

proc reversed*[T](a: openArray[T], first: Natural, last: int): seq[T] {
  ## returns the reverse of the array `a[first..last]`.
  assert last >= first-1
  var i = last - first
  var x = first.int
  result = newSeq[T](i + 1)
  while i >= 0 {
    result[i] = a[x]
    dec(i)
    inc(x)
  }
}

proc reversed*[T](a: openArray[T]): seq[T] {
  ## returns the reverse of the array `a`.
  reversed(a, 0, a.high)
}

proc binarySearch*[T](a: openArray[T], key: T): int {
  ## binary search for `key` in `a`. Returns -1 if not found.
  var b = len(a)
  while result < b {
    var mid = (result + b) div 2
    if a[mid] < key { result = mid + 1 } else { b = mid }
  }
  if result >= len(a) or a[result] != key { result = -1 }
}

proc smartBinarySearch*[T](a: openArray[T], key: T): int {
  ## ``a.len`` must be a power of 2 for this to work.
  var step = a.len div 2
  while step > 0 {
    if a[result or step] <= key { result = result or step }
    step = step shr 1
  }
  if a[result] != key { result = -1 }
}

const (
  onlySafeCode = true
)

proc lowerBound*[T](a: openArray[T], key: T, cmp: proc(x,y: T): int @closure): int {
  ## same as binarySearch except that if key is not in `a` then this
  ## returns the location where `key` would be if it were. In other
  ## words if you have a sorted sequence and you call
  ## insert(thing, elm, lowerBound(thing, elm))
  ## the sequence will still be sorted.
  ##
  ## `cmp` is the comparator function to use, the expected return values are
  ## the same as that of system.cmp.
  ##
  ## example::
  ##
  ##   var arr = @[1,2,3,5,6,7,8,9]
  ##   arr.insert(4, arr.lowerBound(4))
  ##   # after running the above arr is `[1,2,3,4,5,6,7,8,9]`
  result = a.low
  var count = a.high - a.low + 1
  var step, pos: int
  while count != 0 {
    step = count div 2
    pos = result + step
    if cmp(a[pos], key) < 0 {
      result = pos + 1
      count -= step + 1
    } else {
      count = step
    }
  }
}

proc lowerBound*[T](a: openArray[T], key: T): int { lowerBound(a, key, cmp[T]) }
proc merge[T](a, b: var openArray[T], lo, m, hi: int,
              cmp: proc (x, y: T): int @closure, order: SortOrder) {
  template `<-` (a, b) {
    when false {
      a = b
    } elif onlySafeCode {
      shallowCopy(a, b)
    } else {
      copyMem(addr(a), addr(b), sizeof(T))
    }
  }
  # optimization: If max(left) <= min(right) there is nothing to do!
  # 1 2 3 4  ## 5 6 7 8
  # -> O(n) for sorted arrays.
  # On random data this safes up to 40% of merge calls
  if cmp(a[m], a[m+1]) * order <= 0 { return }
  var j = lo
  # copy a[j..m] into b:
  assert j <= m
  when onlySafeCode {
    var bb = 0
    while j <= m {
      b[bb] <- a[j]
      inc(bb)
      inc(j)
    }
  } else {
    copyMem(addr(b[0]), addr(a[j]), sizeof(T)*(m-j+1))
    j = m+1
  }
  var i = 0
  var k = lo
  # copy proper element back:
  while k < j and j <= hi {
    if cmp(b[i], a[j]) * order <= 0 {
      a[k] <- b[i]
      inc(i)
    } else {
      a[k] <- a[j]
      inc(j)
    }
    inc(k)
  }
  # copy rest of b:
  when onlySafeCode {
    while k < j {
      a[k] <- b[i]
      inc(k)
      inc(i)
    }
  } else {
    if k < j { copyMem(addr(a[k]), addr(b[i]), sizeof(T)*(j-k)) }
  }
}

proc sort*[T](a: var openArray[T],
              cmp: proc (x, y: T): int @closure,
              order = SortOrder.Ascending) {
  ## Default Nim sort (an implementation of merge sort). The sorting
  ## is guaranteed to be stable and the worst case is guaranteed to
  ## be O(n log n).
  ## The current implementation uses an iterative
  ## mergesort to achieve this. It uses a temporary sequence of
  ## length ``a.len div 2``. Currently Nim does not support a
  ## sensible default argument for ``cmp``, so you have to provide one
  ## of your own. However, the ``system.cmp`` procs can be used:
  ##
  ## .. code-block:: nim
  ##
  ##    sort(myIntArray, system.cmp[int])
  ##
  ##    # do not use cmp[string] here as we want to use the specialized
  ##    # overload:
  ##    sort(myStrArray, system.cmp)
  ##
  ## You can inline adhoc comparison procs with the `do notation
  ## <manual.html#procedures-do-notation>`_. Example:
  ##
  ## .. code-block:: nim
  ##
  ##   people.sort do (x, y: Person) -> int:
  ##     result = cmp(x.surname, y.surname)
  ##     if result == 0:
  ##       result = cmp(x.name, y.name)
  var n = a.len
  var b: seq[T]
  newSeq(b, n div 2)
  var s = 1
  while s < n {
    var m = n-1-s
    while m >= 0 {
      merge(a, b, max(m-s+1, 0), m, m+s, cmp, order)
      dec(m, s*2)
    }
    s = s*2
  }
}

proc sorted*[T](a: openArray[T], cmp: proc(x, y: T): int {.closure.},
                order = SortOrder.Ascending): seq[T] {
  ## returns `a` sorted by `cmp` in the specified `order`.
  result = newSeq[T](a.len)
  for i in 0 .. a.high { result[i] = a[i] }
  sort(result, cmp, order)
}

template sortedByIt*(seq1, op: untyped): untyped {
  ## Convenience template around the ``sorted`` proc to reduce typing.
  ##
  ## The template injects the ``it`` variable which you can use directly in an
  ## expression. Example:
  ##
  ## .. code-block:: nim
  ##
  ##   type Person = tuple[name: string, age: int]
  ##   var
  ##     p1: Person = (name: "p1", age: 60)
  ##     p2: Person = (name: "p2", age: 20)
  ##     p3: Person = (name: "p3", age: 30)
  ##     p4: Person = (name: "p4", age: 30)
  ##     people = @[p1,p2,p4,p3]
  ##
  ##   echo people.sortedByIt(it.name)
  ##
  ## Because the underlying ``cmp()`` is defined for tuples you can do
  ## a nested sort like in the following example:
  ##
  ## .. code-block:: nim
  ##
  ##   echo people.sortedByIt((it.age, it.name))
  ##
  var result = sorted(seq1, proc(x, y: type[seq1[0]]): int {
    var it {.inject.} = x
    let a = op
    it = y
    let b = op
    result = cmp(a, b)
  })
  result
}

proc isSorted*[T](a: openarray[T],
                 cmp: proc(x, y: T): int {.closure.},
                 order = SortOrder.Ascending): bool {
  ## Checks to see whether `a` is already sorted in `order`
  ## using `cmp` for the comparison. Parameters identical
  ## to `sort`
  result = true
  for i in 0..<len(a)-1 {
    case cmp(a[i],a[i+1]) * order > 0 {
      of true { return false }
      of false {}
    }
  }
}

proc product*[T](x: openArray[seq[T]]): seq[seq[T]] {
  ## produces the Cartesian product of the array. Warning: complexity
  ## may explode.
  result = newSeq[seq[T]]()
  if x.len == 0 { return }
  if x.len == 1 {
    result = @x
    return
  }
  var (
    indexes = newSeq[int](x.len)
    initial = newSeq[int](x.len)
    index = 0
  )
  var next = newSeq[T]()
  next.setLen(x.len)
  for i in 0..(x.len-1) {
    if len(x[i]) == 0 { return }
    initial[i] = len(x[i])-1
  }
  indexes = initial
  while true {
    while indexes[index] == -1 {
      indexes[index] = initial[index]
      index += 1
      if index == x.len { return }
      indexes[index] -= 1
    }
    for ni, i in indexes {
      next[ni] = x[ni][i]
    }
    var res: seq[T]
    shallowCopy(res, next)
    result.add(res)
    index = 0
    indexes[index] -= 1
  }
}

proc nextPermutation*[T](x: var openarray[T]): bool {.discardable.} {
  ## Calculates the next lexicographic permutation, directly modifying ``x``.
  ## The result is whether a permutation happened, otherwise we have reached
  ## the last-ordered permutation.
  ##
  ## .. code-block:: nim
  ##
  ##     var v = @[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
  ##     v.nextPermutation()
  ##     echo v # @[0, 1, 2, 3, 4, 5, 6, 7, 9, 8]
  if x.len < 2 {
    return false }

  var i = x.high
  while i > 0 and x[i-1] >= x[i] { dec i }
  if i == 0 { return false }

  var j = x.high
  while j >= i and x[j] <= x[i-1] { dec j }

  swap x[j], x[i-1]
  x.reverse(i, x.high)

  result = true
}

proc prevPermutation*[T](x: var openarray[T]): bool @discardable {
  ## Calculates the previous lexicographic permutation, directly modifying
  ## ``x``.  The result is whether a permutation happened, otherwise we have
  ## reached the first-ordered permutation.
  ##
  ## .. code-block:: nim
  ##
  ##     var v = @[0, 1, 2, 3, 4, 5, 6, 7, 9, 8]
  ##     v.prevPermutation()
  ##     echo v # @[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
  if x.len < 2 { return false }

  var i = x.high
  while i > 0 and x[i-1] <= x[i] {
    dec i
  }
  if i == 0 { return false }

  x.reverse(i, x.high)

  var j = x.high
  while j >= i and x[j-1] < x[i-1] {
    dec j
  }
  swap x[i-1], x[j]

  result = true
}

when isMainModule {
  # Tests for lowerBound
  var arr = @[1,2,3,5,6,7,8,9]
  assert arr.lowerBound(0) == 0
  assert arr.lowerBound(4) == 3
  assert arr.lowerBound(5) == 3
  assert arr.lowerBound(10) == 8
  arr = @[1,5,10]
  try {
    assert arr.lowerBound(4) == 1
    assert arr.lowerBound(5) == 1
    assert arr.lowerBound(6) == 2
  } except ValueError {}
  # Tests for isSorted
  var srt1 = [1,2,3,4,4,4,4,5]
  var srt2 = ["iello","hello"]
  var srt3 = [1.0,1.0,1.0]
  var srt4: seq[int] = @[]
  assert srt1.isSorted(cmp) == true
  assert srt2.isSorted(cmp) == false
  assert srt3.isSorted(cmp) == true
  var srtseq = newSeq[int]()
  assert srtseq.isSorted(cmp) == true
  # Tests for reversed
  var arr1 = @[0,1,2,3,4]
  assert arr1.reversed() == @[4,3,2,1,0]
  for i in 0 .. high(arr1) {
    assert arr1.reversed(0, i) == arr1.reversed()[high(arr1) - i .. high(arr1)]
    assert arr1.reversed(i, high(arr1)) == arr1.reversed()[0 .. high(arr1) - i]
  }
}