1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
|
include sets
let
s1: TSet[int] = toSet([1, 2, 4, 8, 16])
s2: TSet[int] = toSet([1, 2, 3, 5, 8])
s3: TSet[int] = toSet([3, 5, 7])
block union:
let
s1_s2 = union(s1, s2)
s1_s3 = s1 + s3
s2_s3 = s2 + s3
assert s1_s2.len == 7
assert s1_s3.len == 8
assert s2_s3.len == 6
for i in s1:
assert i in s1_s2
assert i in s1_s3
for i in s2:
assert i in s1_s2
assert i in s2_s3
for i in s3:
assert i in s1_s3
assert i in s2_s3
assert((s1 + s1) == s1)
assert((s2 + s1) == s1_s2)
block intersection:
let
s1_s2 = intersection(s1, s2)
s1_s3 = intersection(s1, s3)
s2_s3 = s2 * s3
assert s1_s2.len == 3
assert s1_s3.len == 0
assert s2_s3.len == 2
for i in s1_s2:
assert i in s1
assert i in s2
for i in s1_s3:
assert i in s1
assert i in s3
for i in s2_s3:
assert i in s2
assert i in s3
assert((s2 * s2) == s2)
assert((s3 * s2) == s2_s3)
block symmetricDifference:
let
s1_s2 = symmetricDifference(s1, s2)
s1_s3 = s1 -+- s3
s2_s3 = s2 -+- s3
assert s1_s2.len == 4
assert s1_s3.len == 8
assert s2_s3.len == 4
for i in s1:
assert i in s1_s2 xor i in s2
assert i in s1_s3 xor i in s3
for i in s2:
assert i in s1_s2 xor i in s1
assert i in s2_s3 xor i in s3
for i in s3:
assert i in s1_s3 xor i in s1
assert i in s2_s3 xor i in s2
assert((s3 -+- s3) == initSet[int]())
assert((s3 -+- s1) == s1_s3)
block disjoint:
assert(not disjoint(s1, s2))
assert disjoint(s1, s3)
assert(not disjoint(s2, s3))
assert(not disjoint(s2, s2))
|