summary refs log tree commit diff stats
path: root/tests/stdlib/tmath.nim
blob: a023be86cf649ddaf7da07251c2369608a367fd1 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
discard """
  action: run
  output: '''[Suite] random int

[Suite] random float

[Suite] cumsum

[Suite] random sample

[Suite] ^

'''
"""

import math, random, os
import unittest
import sets, tables

suite "random int":
  test "there might be some randomness":
    var set = initHashSet[int](128)

    for i in 1..1000:
      incl(set, random(high(int)))
    check len(set) == 1000
  test "single number bounds work":

    var rand: int
    for i in 1..1000:
      rand = random(1000)
      check rand < 1000
      check rand > -1
  test "slice bounds work":

    var rand: int
    for i in 1..1000:
      rand = random(100..1000)
      check rand < 1000
      check rand >= 100
  test " again gives new numbers":

    var rand1 = random(1000000)
    os.sleep(200)

    var rand2 = random(1000000)
    check rand1 != rand2


suite "random float":
  test "there might be some randomness":
    var set = initSet[float](128)

    for i in 1..100:
      incl(set, random(1.0))
    check len(set) == 100
  test "single number bounds work":

    var rand: float
    for i in 1..1000:
      rand = random(1000.0)
      check rand < 1000.0
      check rand > -1.0
  test "slice bounds work":

    var rand: float
    for i in 1..1000:
      rand = random(100.0..1000.0)
      check rand < 1000.0
      check rand >= 100.0
  test " again gives new numbers":

    var rand1:float = random(1000000.0)
    os.sleep(200)

    var rand2:float = random(1000000.0)
    check rand1 != rand2

suite "cumsum":
  test "cumsum int seq return":
    let counts = [ 1, 2, 3, 4 ]
    check counts.cumsummed == [ 1, 3, 6, 10 ]

  test "cumsum float seq return":
    let counts = [ 1.0, 2.0, 3.0, 4.0 ]
    check counts.cumsummed == [ 1.0, 3.0, 6.0, 10.0 ]

  test "cumsum int in-place":
    var counts = [ 1, 2, 3, 4 ]
    counts.cumsum
    check counts == [ 1, 3, 6, 10 ]

  test "cumsum float in-place":
    var counts = [ 1.0, 2.0, 3.0, 4.0 ]
    counts.cumsum
    check counts == [ 1.0, 3.0, 6.0, 10.0 ]

suite "random sample":
  test "non-uniform array sample unnormalized int CDF":
    let values = [ 10, 20, 30, 40, 50 ] # values
    let counts = [ 4, 3, 2, 1, 0 ]      # weights aka unnormalized probabilities
    var histo = initCountTable[int]()
    let cdf = counts.cumsummed          # unnormalized CDF
    for i in 0 ..< 5000:
      histo.inc(sample(values, cdf))
    check histo.len == 4                # number of non-zero in `counts`
    # Any one bin is a binomial random var for n samples, each with prob p of
    # adding a count to k; E[k]=p*n, Var k=p*(1-p)*n, approximately Normal for
    # big n.  So, P(abs(k - p*n)/sqrt(p*(1-p)*n))>3.0) =~ 0.0027, while
    # P(wholeTestFails) =~ 1 - P(binPasses)^4 =~ 1 - (1-0.0027)^4 =~ 0.01.
    for i, c in counts:
      if c == 0:
        check values[i] notin histo
        continue
      let p = float(c) / float(cdf[^1])
      let n = 5000.0
      let expected = p * n
      let stdDev = sqrt(n * p * (1.0 - p))
      check abs(float(histo[values[i]]) - expected) <= 3.0 * stdDev

  test "non-uniform array sample normalized float CDF":
    let values = [ 10, 20, 30, 40, 50 ]     # values
    let counts = [ 0.4, 0.3, 0.2, 0.1, 0 ]  # probabilities
    var histo = initCountTable[int]()
    let cdf = counts.cumsummed              # normalized CDF
    for i in 0 ..< 5000:
      histo.inc(sample(values, cdf))
    check histo.len == 4                    # number of non-zero in ``counts``
    for i, c in counts:
      if c == 0:
        check values[i] notin histo
        continue
      let p = float(c) / float(cdf[^1])
      let n = 5000.0
      let expected = p * n
      let stdDev = sqrt(n * p * (1.0 - p))
      # NOTE: like unnormalized int CDF test, P(wholeTestFails) =~ 0.01.
      check abs(float(histo[values[i]]) - expected) <= 3.0 * stdDev

suite "^":
  test "compiles for valid types":
    check: compiles(5 ^ 2)
    check: compiles(5.5 ^ 2)
    check: compiles(5.5 ^ 2.int8)
    check: compiles(5.5 ^ 2.uint)
    check: compiles(5.5 ^ 2.uint8)
    check: not compiles(5.5 ^ 2.2)