1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
|
discard """
joinable: false # to avoid messing with global rand state
matrix: "--mm:refc; --mm:orc; --backend:js --jsbigint64:off -d:nimStringHash2; --backend:js --jsbigint64:on"
"""
import std/[assertions, formatfloat]
import std/[random, math, stats, sets, tables]
import std/private/jsutils
when not defined(js):
import std/os
randomize(233)
proc main() =
var occur: array[1000, int]
for i in 0..100_000:
let x = rand(high(occur))
inc occur[x]
doAssert max(occur) <= 140 and min(occur) >= 60 # gives some slack
var a = [0, 1]
shuffle(a)
doAssert a in [[0,1], [1,0]]
doAssert rand(0) == 0
when not defined(nimscript):
doAssert sample("a") == 'a'
when compileOption("rangeChecks") and not defined(nimscript):
doAssertRaises(RangeDefect):
discard rand(-1)
doAssertRaises(RangeDefect):
discard rand(-1.0)
# don't use causes integer overflow
doAssert compiles(rand[int](low(int) .. high(int)))
main()
block:
when not defined(js):
doAssert almostEqual(rand(12.5), 7.355175342026979)
doAssert almostEqual(rand(2233.3322), 499.342386778917)
type DiceRoll = range[0..6]
when not defined(js):
doAssert rand(DiceRoll).int == 3
else:
doAssert rand(DiceRoll).int == 6
var rs: RunningStat
for j in 1..5:
for i in 1 .. 100_000:
rs.push(gauss())
doAssert abs(rs.mean-0) < 0.08, $rs.mean
doAssert abs(rs.standardDeviation()-1.0) < 0.1
let bounds = [3.5, 5.0]
for a in [rs.max, -rs.min]:
doAssert a >= bounds[0] and a <= bounds[1]
rs.clear()
block:
type DiceRoll = range[3..6]
var flag = false
for i in 0..<100:
if rand(5.DiceRoll) < 3:
flag = true
doAssert flag # because of: rand(max: int): int
block: # random int
block: # there might be some randomness
var set = initHashSet[int](128)
for i in 1..1000:
incl(set, rand(high(int)))
doAssert len(set) == 1000
block: # single number bounds work
var rand: int
for i in 1..1000:
rand = rand(1000)
doAssert rand <= 1000
doAssert rand >= 0
block: # slice bounds work
var rand: int
for i in 1..1000:
rand = rand(100..1000)
doAssert rand <= 1000
doAssert rand >= 100
block: # again gives new numbers
var rand1 = rand(1000000)
when not (defined(js) or defined(nimscript)):
os.sleep(200)
var rand2 = rand(1000000)
doAssert rand1 != rand2
block: # random float
block: # there might be some randomness
var set = initHashSet[float](128)
for i in 1..100:
incl(set, rand(1.0))
doAssert len(set) == 100
block: # single number bounds work
var rand: float
for i in 1..1000:
rand = rand(1000.0)
doAssert rand <= 1000.0
doAssert rand >= 0.0
block: # slice bounds work
var rand: float
for i in 1..1000:
rand = rand(100.0..1000.0)
doAssert rand <= 1000.0
doAssert rand >= 100.0
block: # again gives new numbers
var rand1: float = rand(1000000.0)
when not (defined(js) or defined(nimscript)):
os.sleep(200)
var rand2: float = rand(1000000.0)
doAssert rand1 != rand2
block: # random sample
block: # "non-uniform array sample unnormalized int CDF
let values = [10, 20, 30, 40, 50] # values
let counts = [4, 3, 2, 1, 0] # weights aka unnormalized probabilities
var histo = initCountTable[int]()
let cdf = counts.cumsummed # unnormalized CDF
for i in 0 ..< 5000:
histo.inc(sample(values, cdf))
doAssert histo.len == 4 # number of non-zero in `counts`
# Any one bin is a binomial random var for n samples, each with prob p of
# adding a count to k; E[k]=p*n, Var k=p*(1-p)*n, approximately Normal for
# big n. So, P(abs(k - p*n)/sqrt(p*(1-p)*n))>3.0) =~ 0.0027, while
# P(wholeTestFails) =~ 1 - P(binPasses)^4 =~ 1 - (1-0.0027)^4 =~ 0.01.
for i, c in counts:
if c == 0:
doAssert values[i] notin histo
continue
let p = float(c) / float(cdf[^1])
let n = 5000.0
let expected = p * n
let stdDev = sqrt(n * p * (1.0 - p))
doAssert abs(float(histo[values[i]]) - expected) <= 3.0 * stdDev
block: # non-uniform array sample normalized float CDF
let values = [10, 20, 30, 40, 50] # values
let counts = [0.4, 0.3, 0.2, 0.1, 0] # probabilities
var histo = initCountTable[int]()
let cdf = counts.cumsummed # normalized CDF
for i in 0 ..< 5000:
histo.inc(sample(values, cdf))
doAssert histo.len == 4 # number of non-zero in ``counts``
for i, c in counts:
if c == 0:
doAssert values[i] notin histo
continue
let p = float(c) / float(cdf[^1])
let n = 5000.0
let expected = p * n
let stdDev = sqrt(n * p * (1.0 - p))
# NOTE: like unnormalized int CDF test, P(wholeTestFails) =~ 0.01.
doAssert abs(float(histo[values[i]]) - expected) <= 3.0 * stdDev
block:
# 0 is a valid seed
var r = initRand(0)
doAssert r.rand(1.0) != r.rand(1.0)
r = initRand(10)
doAssert r.rand(1.0) != r.rand(1.0)
# changing the seed changes the sequence
var r1 = initRand(123)
var r2 = initRand(124)
doAssert r1.rand(1.0) != r2.rand(1.0)
block: # bug #17467
let n = 1000
for i in -n .. n:
var r = initRand(i)
let x = r.rand(1.0)
doAssert x > 1e-4, $(x, i)
# This used to fail for each i in 0..<26844, i.e. the 1st produced value
# was predictable and < 1e-4, skewing distributions.
block: # bug #16360, Natural overload
var r = initRand()
template test(a) =
let a2 = a
block:
let a3 = r.rand(a2)
doAssert a3 <= a2
doAssert a3.type is a2.type
block:
let a3 = rand(a2)
doAssert a3 <= a2
doAssert a3.type is a2.type
test int.high
test int.high - 1
test int.high - 2
test 0
block: # same as above but use slice overload
var r = initRand()
template test[T](a: T) =
let a2: T = a
block:
let a3 = r.rand(T(0) .. a2)
doAssert a3 <= a2
doAssert a3.type is a2.type
block:
let a3 = rand(T(0) .. a2)
doAssert a3 <= a2
doAssert a3.type is a2.type
test cast[uint](int.high)
test cast[uint](int.high) + 1
whenJsNoBigInt64: discard
do:
test uint64.high
test uint64.high - 1
test uint.high - 2
test uint.high - 1
test uint.high
test int.high
test int.high - 1
test int.high - 2
test 0
test 0'u
test 0'u64
block: # bug #16296
var r = initRand()
template test(x) =
let a2 = x
let a3 = r.rand(a2)
doAssert a3 <= a2.b
doAssert a3 >= a2.a
doAssert a3.type is a2.a.type
test(-2 .. int.high-1)
test(int.low .. int.high)
test(int.low+1 .. int.high)
test(int.low .. int.high-1)
test(int.low .. 0)
test(int.low .. -1)
test(int.low .. 1)
test(int64.low .. 1'i64)
test(10'u64 .. uint64.high)
block: # bug #17670
type UInt48 = range[0'u64..2'u64^48-1]
let x = rand(UInt48)
doAssert x is UInt48
block: # bug #17898
# Checks whether `initRand()` generates unique states.
# size should be 2^64, but we don't have time and space.
# Disable this test for js until js gets proper skipRandomNumbers.
when not defined(js):
const size = 1000
var
rands: array[size, Rand]
randSet: HashSet[Rand]
for i in 0..<size:
rands[i] = initRand()
randSet.incl rands[i]
doAssert randSet.len == size
# Checks random number sequences overlapping.
const numRepeat = 100
for i in 0..<size:
for j in 0..<numRepeat:
discard rands[i].next
doAssert rands[i] notin randSet
block: # bug #22360
const size = 1000
var fc = 0
var tc = 0
for _ in 1..size:
let s = rand(bool)
if s:
inc tc
else:
inc fc
when defined(js):
when compileOption("jsbigint64"):
doAssert (tc, fc) == (517, 483), $(tc, fc)
else:
doAssert (tc, fc) == (515, 485), $(tc, fc)
else:
doAssert (tc, fc) == (510, 490), $(tc, fc)
|