1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
|
import macros
from strutils import IdentStartChars
import parseutils
import unicode
import math
import fenv
import pegs
import streams
type
FormatError = object of Exception ## Error in the format string.
Writer = concept W
## Writer to output a character `c`.
when (NimMajor, NimMinor, NimPatch) > (0, 10, 2):
write(W, 'c')
else:
block:
var x: W
write(x, char)
FmtAlign = enum ## Format alignment
faDefault ## default for given format type
faLeft ## left aligned
faRight ## right aligned
faCenter ## centered
faPadding ## right aligned, fill characters after sign (numbers only)
FmtSign = enum ## Format sign
fsMinus ## only unary minus, no reservered sign space for positive numbers
fsPlus ## unary minus and unary plus
fsSpace ## unary minus and reserved space for positive numbers
FmtType = enum ## Format type
ftDefault ## default format for given parameter type
ftStr ## string
ftChar ## character
ftDec ## decimal integer
ftBin ## binary integer
ftOct ## octal integer
ftHex ## hexadecimal integer
ftFix ## real number in fixed point notation
ftSci ## real number in scientific notation
ftGen ## real number in generic form (either fixed point or scientific)
ftPercent ## real number multiplied by 100 and % added
Format = tuple ## Formatting information.
typ: FmtType ## format type
precision: int ## floating point precision
width: int ## minimal width
fill: string ## the fill character, UTF8
align: FmtAlign ## alignment
sign: FmtSign ## sign notation
baseprefix: bool ## whether binary, octal, hex should be prefixed by 0b, 0x, 0o
upcase: bool ## upper case letters in hex or exponential formats
comma: bool ##
arysep: string ## separator for array elements
PartKind = enum pkStr, pkFmt
Part = object
## Information of a part of the target string.
case kind: PartKind ## type of the part
of pkStr:
str: string ## literal string
of pkFmt:
arg: int ## position argument
fmt: string ## format string
field: string ## field of argument to be accessed
index: int ## array index of argument to be accessed
nested: bool ## true if the argument contains nested formats
const
DefaultPrec = 6 ## Default precision for floating point numbers.
DefaultFmt: Format = (ftDefault, -1, -1, "", faDefault, fsMinus, false, false, false, "")
## Default format corresponding to the empty format string, i.e.
## `x.format("") == x.format(DefaultFmt)`.
round_nums = [0.5, 0.05, 0.005, 0.0005, 0.00005, 0.000005, 0.0000005, 0.00000005]
## Rounding offset for floating point numbers up to precision 8.
proc write(s: var string; c: char) =
s.add(c)
proc has(c: Captures; i: range[0..pegs.MaxSubpatterns-1]): bool {.nosideeffect, inline.} =
## Tests whether `c` contains a non-empty capture `i`.
let b = c.bounds(i)
result = b.first <= b.last
proc get(str: string; c: Captures; i: range[0..MaxSubpatterns-1]; def: char): char {.nosideeffect, inline.} =
## If capture `i` is non-empty return that portion of `str` casted
## to `char`, otherwise return `def`.
result = if c.has(i): str[c.bounds(i).first] else: def
proc get(str: string; c: Captures; i: range[0..MaxSubpatterns-1]; def: string; begoff: int = 0): string {.nosideeffect, inline.} =
## If capture `i` is non-empty return that portion of `str` as
## string, otherwise return `def`.
let b = c.bounds(i)
result = if c.has(i): str.substr(b.first + begoff, b.last) else: def
proc get(str: string; c: Captures; i: range[0..MaxSubpatterns-1]; def: int; begoff: int = 0): int {.nosideeffect, inline.} =
## If capture `i` is non-empty return that portion of `str`
## converted to int, otherwise return `def`.
if c.has(i):
discard str.parseInt(result, c.bounds(i).first + begoff)
else:
result = def
proc parse(fmt: string): Format {.nosideeffect.} =
# Converts the format string `fmt` into a `Format` structure.
let p =
sequence(capture(?sequence(anyRune(), &charSet({'<', '>', '=', '^'}))),
capture(?charSet({'<', '>', '=', '^'})),
capture(?charSet({'-', '+', ' '})),
capture(?charSet({'#'})),
capture(?(+digits())),
capture(?charSet({','})),
capture(?sequence(charSet({'.'}), +digits())),
capture(?charSet({'b', 'c', 'd', 'e', 'E', 'f', 'F', 'g', 'G', 'n', 'o', 's', 'x', 'X', '%'})),
capture(?sequence(charSet({'a'}), *pegs.any())))
# let p=peg"{(_&[<>=^])?}{[<>=^]?}{[-+ ]?}{[#]?}{[0-9]+?}{[,]?}{([.][0-9]+)?}{[bcdeEfFgGnosxX%]?}{(a.*)?}"
var caps: Captures
if fmt.rawmatch(p, 0, caps) < 0:
raise newException(FormatError, "Invalid format string")
result.fill = fmt.get(caps, 0, "")
case fmt.get(caps, 1, 0.char)
of '<': result.align = faLeft
of '>': result.align = faRight
of '^': result.align = faCenter
of '=': result.align = faPadding
else: result.align = faDefault
case fmt.get(caps, 2, '-')
of '-': result.sign = fsMinus
of '+': result.sign = fsPlus
of ' ': result.sign = fsSpace
else: result.sign = fsMinus
result.baseprefix = caps.has(3)
result.width = fmt.get(caps, 4, -1)
if caps.has(4) and fmt[caps.bounds(4).first] == '0':
if result.fill != "":
raise newException(FormatError, "Leading 0 in with not allowed with explicit fill character")
if result.align != faDefault:
raise newException(FormatError, "Leading 0 in with not allowed with explicit alignment")
result.fill = "0"
result.align = faPadding
result.comma = caps.has(5)
result.precision = fmt.get(caps, 6, -1, 1)
case fmt.get(caps, 7, 0.char)
of 's': result.typ = ftStr
of 'c': result.typ = ftChar
of 'd', 'n': result.typ = ftDec
of 'b': result.typ = ftBin
of 'o': result.typ = ftOct
of 'x': result.typ = ftHex
of 'X': result.typ = ftHex; result.upcase = true
of 'f', 'F': result.typ = ftFix
of 'e': result.typ = ftSci
of 'E': result.typ = ftSci; result.upcase = true
of 'g': result.typ = ftGen
of 'G': result.typ = ftGen; result.upcase = true
of '%': result.typ = ftPercent
else: result.typ = ftDefault
result.arysep = fmt.get(caps, 8, "", 1)
proc getalign(fmt: Format; defalign: FmtAlign; slen: int) : tuple[left, right:int] {.nosideeffect.} =
## Returns the number of left and right padding characters for a
## given format alignment and width of the object to be printed.
##
## `fmt`
## the format data
## `default`
## if `fmt.align == faDefault`, then this alignment is used
## `slen`
## the width of the object to be printed.
##
## The returned values `(left, right)` will be as minimal as possible
## so that `left + slen + right >= fmt.width`.
result.left = 0
result.right = 0
if (fmt.width >= 0) and (slen < fmt.width):
let alg = if fmt.align == faDefault: defalign else: fmt.align
case alg:
of faLeft: result.right = fmt.width - slen
of faRight, faPadding: result.left = fmt.width - slen
of faCenter:
result.left = (fmt.width - slen) div 2
result.right = fmt.width - slen - result.left
else: discard
proc writefill(o: var Writer; fmt: Format; n: int; signum: int = 0) =
## Write characters for filling. This function also writes the sign
## of a numeric format and handles the padding alignment
## accordingly.
##
## `o`
## output object
## `add`
## output function
## `fmt`
## format to be used (important for padding alignment)
## `n`
## the number of filling characters to be written
## `signum`
## the sign of the number to be written, < 0 negative, > 0 positive, = 0 zero
if fmt.align == faPadding and signum != 0:
if signum < 0: write(o, '-')
elif fmt.sign == fsPlus: write(o, '+')
elif fmt.sign == fsSpace: write(o, ' ')
if fmt.fill.len == 0:
for i in 1..n: write(o, ' ')
else:
for i in 1..n:
for c in fmt.fill:
write(o, c)
if fmt.align != faPadding and signum != 0:
if signum < 0: write(o, '-')
elif fmt.sign == fsPlus: write(o, '+')
elif fmt.sign == fsSpace: write(o, ' ')
proc writeformat(o: var Writer; s: string; fmt: Format) =
## Write string `s` according to format `fmt` using output object
## `o` and output function `add`.
if fmt.typ notin {ftDefault, ftStr}:
raise newException(FormatError, "String variable must have 's' format type")
# compute alignment
let len = if fmt.precision < 0: runelen(s) else: min(runelen(s), fmt.precision)
var alg = getalign(fmt, faLeft, len)
writefill(o, fmt, alg.left)
var pos = 0
for i in 0..len-1:
let rlen = runeLenAt(s, pos)
for j in pos..pos+rlen-1: write(o, s[j])
pos += rlen
writefill(o, fmt, alg.right)
proc writeformat(o: var Writer; c: char; fmt: Format) =
## Write character `c` according to format `fmt` using output object
## `o` and output function `add`.
if not (fmt.typ in {ftChar, ftDefault}):
raise newException(FormatError, "Character variable must have 'c' format type")
# compute alignment
var alg = getalign(fmt, faLeft, 1)
writefill(o, fmt, alg.left)
write(o, c)
writefill(o, fmt, alg.right)
proc writeformat(o: var Writer; c: Rune; fmt: Format) =
## Write rune `c` according to format `fmt` using output object
## `o` and output function `add`.
if not (fmt.typ in {ftChar, ftDefault}):
raise newException(FormatError, "Character variable must have 'c' format type")
# compute alignment
var alg = getalign(fmt, faLeft, 1)
writefill(o, fmt, alg.left)
let s = c.toUTF8
for c in s: write(o, c)
writefill(o, fmt, alg.right)
proc abs(x: SomeUnsignedInt): SomeUnsignedInt {.inline.} = x
## Return the absolute value of the unsigned int `x`.
proc writeformat(o: var Writer; i: SomeInteger; fmt: Format) =
## Write integer `i` according to format `fmt` using output object
## `o` and output function `add`.
var fmt = fmt
if fmt.typ == ftDefault:
fmt.typ = ftDec
if not (fmt.typ in {ftBin, ftOct, ftHex, ftDec}):
raise newException(FormatError, "Integer variable must of one of the following types: b,o,x,X,d,n")
var base: type(i)
var len = 0
case fmt.typ:
of ftDec:
base = 10
of ftBin:
base = 2
if fmt.baseprefix: len += 2
of ftOct:
base = 8
if fmt.baseprefix: len += 2
of ftHex:
base = 16
if fmt.baseprefix: len += 2
else: assert(false)
if fmt.sign != fsMinus or i < 0: len.inc
var x: type(i) = abs(i)
var irev: type(i) = 0
var ilen = 0
while x > 0.SomeInteger:
len.inc
ilen.inc
irev = irev * base + x mod base
x = x div base
if ilen == 0:
ilen.inc
len.inc
var alg = getalign(fmt, faRight, len)
writefill(o, fmt, alg.left, if i >= 0.SomeInteger: 1 else: -1)
if fmt.baseprefix:
case fmt.typ
of ftBin:
write(o, '0')
write(o, 'b')
of ftOct:
write(o, '0')
write(o, 'o')
of ftHex:
write(o, '0')
write(o, 'x')
else:
raise newException(FormatError, "# only allowed with b, o, x or X")
while ilen > 0:
ilen.dec
let c = irev mod base
irev = irev div base
if c < 10:
write(o, ('0'.int + c.int).char)
elif fmt.upcase:
write(o, ('A'.int + c.int - 10).char)
else:
write(o, ('a'.int + c.int - 10).char)
writefill(o, fmt, alg.right)
proc writeformat(o: var Writer; p: pointer; fmt: Format) =
## Write pointer `i` according to format `fmt` using output object
## `o` and output function `add`.
##
## Pointers are casted to unsigned int and formatted as hexadecimal
## with prefix unless specified otherwise.
var f = fmt
if f.typ == 0.char:
f.typ = 'x'
f.baseprefix = true
writeformat(o, add, cast[uint](p), f)
proc writeformat(o: var Writer; x: SomeFloat; fmt: Format) =
## Write real number `x` according to format `fmt` using output
## object `o` and output function `add`.
var fmt = fmt
# handle default format
if fmt.typ == ftDefault:
fmt.typ = ftGen
if fmt.precision < 0: fmt.precision = DefaultPrec
if not (fmt.typ in {ftFix, ftSci, ftGen, ftPercent}):
raise newException(FormatError, "Integer variable must of one of the following types: f,F,e,E,g,G,%")
let positive = x >= 0 and classify(x) != fcNegZero
var len = 0
if fmt.sign != fsMinus or not positive: len.inc
var prec = if fmt.precision < 0: DefaultPrec else: fmt.precision
var y = abs(x)
var exp = 0
var numstr, frstr: array[0..31, char]
var numlen, frbeg, frlen = 0
if fmt.typ == ftPercent: y *= 100
case classify(x):
of fcNan:
numstr[0..2] = ['n', 'a', 'n']
numlen = 3
of fcInf, fcNegInf:
numstr[0..2] = ['f', 'n', 'i']
numlen = 3
of fcZero, fcNegZero:
numstr[0] = '0'
numlen = 1
else: # a usual fractional number
if not (fmt.typ in {ftFix, ftPercent}): # not fixed point
exp = int(floor(log10(y)))
if fmt.typ == ftGen:
if prec == 0: prec = 1
if -4 <= exp and exp < prec:
prec = prec-1-exp
exp = 0
else:
prec = prec - 1
len += 4 # exponent
else:
len += 4 # exponent
# shift y so that 1 <= abs(y) < 2
if exp > 0: y /= pow(10.SomeFloat, abs(exp).SomeFloat)
elif exp < 0: y *= pow(10.SomeFloat, abs(exp).SomeFloat)
elif fmt.typ == ftPercent:
len += 1 # percent sign
# handle rounding by adding +0.5 * LSB
if prec < len(round_nums): y += round_nums[prec]
# split into integer and fractional part
var mult = 1'i64
for i in 1..prec: mult *= 10
var num = y.int64
var fr = ((y - num.SomeFloat) * mult.SomeFloat).int64
# build integer part string
while num != 0:
numstr[numlen] = ('0'.int + (num mod 10)).char
numlen.inc
num = num div 10
if numlen == 0:
numstr[0] = '0'
numlen.inc
# build fractional part string
while fr != 0:
frstr[frlen] = ('0'.int + (fr mod 10)).char
frlen.inc
fr = fr div 10
while frlen < prec:
frstr[frlen] = '0'
frlen.inc
# possible remove trailing 0
if fmt.typ == ftGen:
while frbeg < frlen and frstr[frbeg] == '0': frbeg.inc
# update length of string
len += numlen;
if frbeg < frlen:
len += 1 + frlen - frbeg # decimal point and fractional string
let alg = getalign(fmt, faRight, len)
writefill(o, fmt, alg.left, if positive: 1 else: -1)
for i in (numlen-1).countdown(0): write(o, numstr[i])
if frbeg < frlen:
write(o, '.')
for i in (frlen-1).countdown(frbeg): write(o, frstr[i])
if fmt.typ == ftSci or (fmt.typ == ftGen and exp != 0):
write(o, if fmt.upcase: 'E' else: 'e')
if exp >= 0:
write(o, '+')
else:
write(o, '-')
exp = -exp
if exp < 10:
write(o, '0')
write(o, ('0'.int + exp).char)
else:
var i=0
while exp > 0:
numstr[i] = ('0'.int + exp mod 10).char
i+=1
exp = exp div 10
while i>0:
i-=1
write(o, numstr[i])
if fmt.typ == ftPercent: write(o, '%')
writefill(o, fmt, alg.right)
proc writeformat(o: var Writer; b: bool; fmt: Format) =
## Write boolean value `b` according to format `fmt` using output
## object `o`. A boolean may be formatted numerically or as string.
## In the former case true is written as 1 and false as 0, in the
## latter the strings "true" and "false" are shown, respectively.
## The default is string format.
if fmt.typ in {ftStr, ftDefault}:
writeformat(o,
if b: "true"
else: "false",
fmt)
elif fmt.typ in {ftBin, ftOct, ftHex, ftDec}:
writeformat(o,
if b: 1
else: 0,
fmt)
else:
raise newException(FormatError, "Boolean values must of one of the following types: s,b,o,x,X,d,n")
proc writeformat(o: var Writer; ary: openarray[system.any]; fmt: Format) =
## Write array `ary` according to format `fmt` using output object
## `o` and output function `add`.
if ary.len == 0: return
var sep: string
var nxtfmt = fmt
if fmt.arysep == nil:
sep = "\t"
elif fmt.arysep.len == 0:
sep = ""
else:
let sepch = fmt.arysep[0]
let nxt = 1 + skipUntil(fmt.arysep, sepch, 1)
if nxt >= 1:
nxtfmt.arysep = fmt.arysep.substr(nxt)
sep = fmt.arysep.substr(1, nxt-1)
else:
nxtfmt.arysep = ""
sep = fmt.arysep.substr(1)
writeformat(o, ary[0], nxtfmt)
for i in 1..ary.len-1:
for c in sep: write(o, c)
writeformat(o, ary[i], nxtfmt)
proc addformat[T](o: var Writer; x: T; fmt: Format = DefaultFmt) {.inline.} =
## Write `x` formatted with `fmt` to `o`.
writeformat(o, x, fmt)
proc addformat[T](o: var Writer; x: T; fmt: string) {.inline.} =
## The same as `addformat(o, x, parse(fmt))`.
addformat(o, x, fmt.parse)
proc addformat(s: var string; x: string) {.inline.} =
## Write `x` to `s`. This is a fast specialized version for
## appending unformatted strings.
add(s, x)
proc addformat(f: File; x: string) {.inline.} =
## Write `x` to `f`. This is a fast specialized version for
## writing unformatted strings to a file.
write(f, x)
proc addformat[T](f: File; x: T; fmt: Format = DefaultFmt) {.inline.} =
## Write `x` to file `f` using format `fmt`.
var g = f
writeformat(g, x, fmt)
proc addformat[T](f: File; x: T; fmt: string) {.inline.} =
## Write `x` to file `f` using format string `fmt`. This is the same
## as `addformat(f, x, parse(fmt))`
addformat(f, x, parse(fmt))
proc addformat(s: Stream; x: string) {.inline.} =
## Write `x` to `s`. This is a fast specialized version for
## writing unformatted strings to a stream.
write(s, x)
proc addformat[T](s: Stream; x: T; fmt: Format = DefaultFmt) {.inline.} =
## Write `x` to stream `s` using format `fmt`.
var g = s
writeformat(g, x, fmt)
proc addformat[T](s: Stream; x: T; fmt: string) {.inline.} =
## Write `x` to stream `s` using format string `fmt`. This is the same
## as `addformat(s, x, parse(fmt))`
addformat(s, x, parse(fmt))
proc format[T](x: T; fmt: Format): string =
## Return `x` formatted as a string according to format `fmt`.
result = ""
addformat(result, x, fmt)
proc format[T](x: T; fmt: string): string =
## Return `x` formatted as a string according to format string `fmt`.
result = format(x, fmt.parse)
proc format[T](x: T): string {.inline.} =
## Return `x` formatted as a string according to the default format.
## The default format corresponds to an empty format string.
var fmt {.global.} : Format = DefaultFmt
result = format(x, fmt)
proc unquoted(s: string): string {.compileTime.} =
## Return `s` {{ and }} by single { and }, respectively.
result = ""
var pos = 0
while pos < s.len:
let nxt = pos + skipUntil(s, {'{', '}'})
result.add(s.substr(pos, nxt))
pos = nxt + 2
proc splitfmt(s: string): seq[Part] {.compiletime, nosideeffect.} =
## Split format string `s` into a sequence of "parts".
##
## Each part is either a literal string or a format specification. A
## format specification is a substring of the form
## "{[arg][:format]}" where `arg` is either empty or a number
## referring to the arg-th argument and an additional field or array
## index. The format string is a string accepted by `parse`.
let subpeg = sequence(capture(digits()),
capture(?sequence(charSet({'.'}), *pegs.identStartChars(), *identChars())),
capture(?sequence(charSet({'['}), +digits(), charSet({']'}))),
capture(?sequence(charSet({':'}), *pegs.any())))
result = @[]
var pos = 0
while true:
let oppos = pos + skipUntil(s, {'{', '}'}, pos)
# reached the end
if oppos >= s.len:
if pos < s.len:
result.add(Part(kind: pkStr, str: s.substr(pos).unquoted))
return
# skip double
if oppos + 1 < s.len and s[oppos] == s[oppos+1]:
result.add(Part(kind: pkStr, str: s.substr(pos, oppos)))
pos = oppos + 2
continue
if s[oppos] == '}':
error("Single '}' encountered in format string")
if oppos > pos:
result.add(Part(kind: pkStr, str: s.substr(pos, oppos-1).unquoted))
# find matching closing }
var lvl = 1
var nested = false
pos = oppos
while lvl > 0:
pos.inc
pos = pos + skipUntil(s, {'{', '}'}, pos)
if pos >= s.len:
error("Single '{' encountered in format string")
if s[pos] == '{':
lvl.inc
if lvl == 2:
nested = true
if lvl > 2:
error("Too many nested format levels")
else:
lvl.dec
let clpos = pos
var fmtpart = Part(kind: pkFmt, arg: -1, fmt: s.substr(oppos+1, clpos-1), field: "", index: int.high, nested: nested)
if fmtpart.fmt.len > 0:
var m: array[0..3, string]
if not fmtpart.fmt.match(subpeg, m):
error("invalid format string")
if m[1].len > 0:
fmtpart.field = m[1].substr(1)
if m[2].len > 0:
discard parseInt(m[2].substr(1, m[2].len-2), fmtpart.index)
if m[0].len > 0: discard parseInt(m[0], fmtpart.arg)
if m[3].len == 0:
fmtpart.fmt = ""
elif m[3][0] == ':':
fmtpart.fmt = m[3].substr(1)
else:
fmtpart.fmt = m[3]
result.add(fmtpart)
pos = clpos + 1
proc literal(s: string): NimNode {.compiletime, nosideeffect.} =
## Return the nim literal of string `s`. This handles the case if
## `s` is nil.
result = newLit(s)
proc literal(b: bool): NimNode {.compiletime, nosideeffect.} =
## Return the nim literal of boolean `b`. This is either `true`
## or `false` symbol.
result = if b: "true".ident else: "false".ident
proc literal[T](x: T): NimNode {.compiletime, nosideeffect.} =
## Return the nim literal of value `x`.
when type(x) is enum:
result = ($x).ident
else:
result = newLit(x)
proc generatefmt(fmtstr: string;
args: var openarray[tuple[arg:NimNode, cnt:int]];
arg: var int;): seq[tuple[val, fmt:NimNode]] {.compiletime.} =
## fmtstr
## the format string
## args
## array of expressions for the arguments
## arg
## the number of the next argument for automatic parsing
##
## If arg is < 0 then the functions assumes that explicit numbering
## must be used, otherwise automatic numbering is used starting at
## `arg`. The value of arg is updated according to the number of
## arguments being used. If arg == 0 then automatic and manual
## numbering is not decided (because no explicit manual numbering is
## fixed und no automatically numbered argument has been used so
## far).
##
## The function returns a list of pairs `(val, fmt)` where `val` is
## an expression to be formatted and `fmt` is the format string (or
## Format). Therefore, the resulting string can be generated by
## concatenating expressions `val.format(fmt)`. If `fmt` is `nil`
## then `val` is a (literal) string expression.
try:
result = @[]
for part in splitfmt(fmtstr):
case part.kind
of pkStr: result.add((newLit(part.str), nil))
of pkFmt:
# first compute the argument expression
# start with the correct index
var argexpr : NimNode
if part.arg >= 0:
if arg > 0:
error("Cannot switch from automatic field numbering to manual field specification")
if part.arg >= args.len:
error("Invalid explicit argument index: " & $part.arg)
argexpr = args[part.arg].arg
args[part.arg].cnt = args[part.arg].cnt + 1
arg = -1
else:
if arg < 0:
error("Cannot switch from manual field specification to automatic field numbering")
if arg >= args.len:
error("Too few arguments for format string")
argexpr = args[arg].arg
args[arg].cnt = args[arg].cnt + 1
arg.inc
# possible field access
if part.field.len > 0:
argexpr = newDotExpr(argexpr, part.field.ident)
# possible array access
if part.index < int.high:
argexpr = newNimNode(nnkBracketExpr).add(argexpr, newLit(part.index))
# now the expression for the format data
var fmtexpr: NimNode
if part.nested:
# nested format string. Compute the format string by
# concatenating the parts of the substring.
for e in generatefmt(part.fmt, args, arg):
var newexpr = if part.fmt.len == 0: e.val else: newCall(bindsym"format", e.val, e.fmt)
if fmtexpr != nil and fmtexpr.kind != nnkNilLit:
fmtexpr = infix(fmtexpr, "&", newexpr)
else:
fmtexpr = newexpr
else:
# literal format string, precompute the format data
fmtexpr = newNimNode(nnkPar)
for field, val in part.fmt.parse.fieldPairs:
fmtexpr.add(newNimNode(nnkExprColonExpr).add(field.ident, literal(val)))
# add argument
result.add((argexpr, fmtexpr))
finally:
discard
proc addfmtfmt(fmtstr: string; args: NimNode; retvar: NimNode): NimNode {.compileTime.} =
var argexprs = newseq[tuple[arg:NimNode; cnt:int]](args.len)
result = newNimNode(nnkStmtListExpr)
# generate let bindings for arguments
for i in 0..args.len-1:
let argsym = gensym(nskLet, "arg" & $i)
result.add(newLetStmt(argsym, args[i]))
argexprs[i].arg = argsym
# add result values
var arg = 0
for e in generatefmt(fmtstr, argexprs, arg):
if e.fmt == nil or e.fmt.kind == nnkNilLit:
result.add(newCall(bindsym"addformat", retvar, e.val))
else:
result.add(newCall(bindsym"addformat", retvar, e.val, e.fmt))
for i, arg in argexprs:
if arg.cnt == 0:
warning("Argument " & $(i+1) & " `" & args[i].repr & "` is not used in format string")
macro addfmt(s: var string, fmtstr: string{lit}, args: varargs[typed]): untyped =
## The same as `s.add(fmtstr.fmt(args...))` but faster.
result = addfmtfmt($fmtstr, args, s)
var s: string = ""
s.addfmt("a:{}", 42)
|