summary refs log tree commit diff stats
path: root/tools/vccexe/vccenv.nim
blob: bd3b0b30a06dca4b44bb0cc290c5e8c23a3d9a15 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
## VCC compiler backend installation discovery using Visual Studio common tools
## environment variables.

import os

type
  VccEnvVersion* = enum ## The version of the Visual Studio C/C++ Developer Environment to load
                        ## Valid versions are Versions of Visual Studio that permanently set a COMNTOOLS
                        ## environment variable. That includes Visual Studio version up to and including
                        ## Visual Studio 2015
    vsUndefined = (0, ""), ## Version not specified, use latest recogized version on the system
    vs90  = (90,   "VS90COMNTOOLS"), ## Visual Studio 2008
    vs100 = (100, "VS100COMNTOOLS"), ## Visual Studio 2010
    vs110 = (110, "VS110COMNTOOLS"), ## Visual Studio 2012
    vs120 = (120, "VS120COMNTOOLS"), ## Visual Studio 2013
    vs140 = (140, "VS140COMNTOOLS")  ## Visual Studio 2015

const
  vcvarsallRelativePath = joinPath("..", "..", "VC", "vcvarsall.bat") ## Relative path from the COMNTOOLS path to the vcvarsall file.

proc vccEnvVcVarsAllPath*(version: VccEnvVersion = vsUndefined): string = 
  ## Returns the path to the VCC Developer Command Prompt executable for the specified VCC version.
  ##
  ## Returns `nil` if the specified VCC compiler backend installation was not found.
  ## 
  ## If the `version` parameter is omitted or set to `vsUndefined`, `vccEnvVcVarsAllPath` searches 
  ## for the latest recognizable version of the VCC tools it can find.
  ## 
  ## `vccEnvVcVarsAllPath` uses the COMNTOOLS environment variables to find the Developer Command Prompt
  ## executable path. The COMNTOOLS environment variable are permanently set when Visual Studio is installed.
  ## Each version of Visual Studio has its own COMNTOOLS environment variable. E.g.: Visual Studio 2015 sets
  ## The VS140COMNTOOLS environment variable.
  ##
  ## Note: Beginning with Visual Studio 2017, the installers no longer set environment variables to allow for
  ## multiple side-by-side installations of Visual Studio. Therefore, `vccEnvVcVarsAllPath` cannot be used
  ## to detect the VCC Developer Command Prompt executable path for Visual Studio 2017 and later.

  if version == vsUndefined:
    for tryVersion in [vs140, vs120, vs110, vs100, vs90]:
      let tryPath = vccEnvVcVarsAllPath(tryVersion)
      if tryPath.len > 0:
        result = tryPath
  else: # Specific version requested
    let key = $version
    let val = getEnv key
    if val.len > 0:
      result = try: expandFilename(joinPath(val, vcvarsallRelativePath)) except OSError: ""
1'>501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773
#
#
#            Nim's Runtime Library
#        (c) Copyright 2015 Andreas Rumpf
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#


## The compiler depends on the System module to work properly and the System
## module depends on the compiler. Most of the routines listed here use
## special compiler magic.
##
## Each module implicitly imports the System module; it must not be listed
## explicitly. Because of this there cannot be a user-defined module named
## `system`.
##
## System module
## =============
##
## .. include:: ./system_overview.rst


include "system/basic_types"

func zeroDefault*[T](_: typedesc[T]): T {.magic: "ZeroDefault".} =
  ## returns the default value of the type `T`.

include "system/compilation"

{.push warning[GcMem]: off, warning[Uninit]: off.}
# {.push hints: off.}

type
  `static`*[T] {.magic: "Static".}
    ## Meta type representing all values that can be evaluated at compile-time.
    ##
    ## The type coercion `static(x)` can be used to force the compile-time
    ## evaluation of the given expression `x`.

  `type`*[T] {.magic: "Type".}
    ## Meta type representing the type of all type values.
    ##
    ## The coercion `type(x)` can be used to obtain the type of the given
    ## expression `x`.

type
  TypeOfMode* = enum ## Possible modes of `typeof`.
    typeOfProc,      ## Prefer the interpretation that means `x` is a proc call.
    typeOfIter       ## Prefer the interpretation that means `x` is an iterator call.

proc typeof*(x: untyped; mode = typeOfIter): typedesc {.
  magic: "TypeOf", noSideEffect, compileTime.} =
  ## Builtin `typeof` operation for accessing the type of an expression.
  ## Since version 0.20.0.
  runnableExamples:
    proc myFoo(): float = 0.0
    iterator myFoo(): string = yield "abc"
    iterator myFoo2(): string = yield "abc"
    iterator myFoo3(): string {.closure.} = yield "abc"
    doAssert type(myFoo()) is string
    doAssert typeof(myFoo()) is string
    doAssert typeof(myFoo(), typeOfIter) is string
    doAssert typeof(myFoo3) is "iterator"

    doAssert typeof(myFoo(), typeOfProc) is float
    doAssert typeof(0.0, typeOfProc) is float
    doAssert typeof(myFoo3, typeOfProc) is "iterator"
    doAssert not compiles(typeof(myFoo2(), typeOfProc))
      # this would give: Error: attempting to call routine: 'myFoo2'
      # since `typeOfProc` expects a typed expression and `myFoo2()` can
      # only be used in a `for` context.

proc `or`*(a, b: typedesc): typedesc {.magic: "TypeTrait", noSideEffect.}
  ## Constructs an `or` meta class.

proc `and`*(a, b: typedesc): typedesc {.magic: "TypeTrait", noSideEffect.}
  ## Constructs an `and` meta class.

proc `not`*(a: typedesc): typedesc {.magic: "TypeTrait", noSideEffect.}
  ## Constructs an `not` meta class.

when defined(nimHasIterable):
  type
    iterable*[T] {.magic: IterableType.}  ## Represents an expression that yields `T`

type
  Ordinal*[T] {.magic: Ordinal.} ## Generic ordinal type. Includes integer,
                                  ## bool, character, and enumeration types
                                  ## as well as their subtypes. See also
                                  ## `SomeOrdinal`.


proc `addr`*[T](x: T): ptr T {.magic: "Addr", noSideEffect.} =
  ## Builtin `addr` operator for taking the address of a memory location.
  ##
  ## .. note:: This works for `let` variables or parameters
  ##   for better interop with C. When you use it to write a wrapper
  ##   for a C library and take the address of `let` variables or parameters,
  ##   you should always check that the original library
  ##   does never write to data behind the pointer that is returned from
  ##   this procedure.
  ##
  ## Cannot be overloaded.
  ##
  ##   ```
  ##   var
  ##     buf: seq[char] = @['a','b','c']
  ##     p = buf[1].addr
  ##   echo p.repr # ref 0x7faa35c40059 --> 'b'
  ##   echo p[]    # b
  ##   ```
  discard

proc unsafeAddr*[T](x: T): ptr T {.magic: "Addr", noSideEffect.} =
  ## .. warning:: `unsafeAddr` is a deprecated alias for `addr`,
  ##    use `addr` instead.
  discard


const ThisIsSystem = true

proc internalNew*[T](a: var ref T) {.magic: "New", noSideEffect.}
  ## Leaked implementation detail. Do not use.

proc new*[T](a: var ref T, finalizer: proc (x: ref T) {.nimcall.}) {.
  magic: "NewFinalize", noSideEffect.}
  ## Creates a new object of type `T` and returns a safe (traced)
  ## reference to it in `a`.
  ##
  ## When the garbage collector frees the object, `finalizer` is called.
  ## The `finalizer` may not keep a reference to the
  ## object pointed to by `x`. The `finalizer` cannot prevent the GC from
  ## freeing the object.
  ##
  ## **Note**: The `finalizer` refers to the type `T`, not to the object!
  ## This means that for each object of type `T` the finalizer will be called!

proc wasMoved*[T](obj: var T) {.magic: "WasMoved", noSideEffect.} =
  ## Resets an object `obj` to its initial (binary zero) value to signify
  ## it was "moved" and to signify its destructor should do nothing and
  ## ideally be optimized away.
  discard

proc move*[T](x: var T): T {.magic: "Move", noSideEffect.} =
  result = x
  wasMoved(x)

type
  range*[T]{.magic: "Range".}         ## Generic type to construct range types.
  array*[I, T]{.magic: "Array".}      ## Generic type to construct
                                      ## fixed-length arrays.
  openArray*[T]{.magic: "OpenArray".} ## Generic type to construct open arrays.
                                      ## Open arrays are implemented as a
                                      ## pointer to the array data and a
                                      ## length field.
  varargs*[T]{.magic: "Varargs".}     ## Generic type to construct a varargs type.
  seq*[T]{.magic: "Seq".}             ## Generic type to construct sequences.
  set*[T]{.magic: "Set".}             ## Generic type to construct bit sets.

type
  UncheckedArray*[T]{.magic: "UncheckedArray".}
  ## Array with no bounds checking.

type sink*[T]{.magic: "BuiltinType".}
type lent*[T]{.magic: "BuiltinType".}

proc high*[T: Ordinal|enum|range](x: T): T {.magic: "High", noSideEffect,
  deprecated: "Deprecated since v1.4; there should not be `high(value)`. Use `high(type)`.".}
  ## Returns the highest possible value of an ordinal value `x`.
  ##
  ## As a special semantic rule, `x` may also be a type identifier.
  ##
  ## **This proc is deprecated**, use this one instead:
  ## * `high(typedesc) <#high,typedesc[T]>`_
  ##
  ## ```
  ## high(2) # => 9223372036854775807
  ## ```

proc high*[T: Ordinal|enum|range](x: typedesc[T]): T {.magic: "High", noSideEffect.}
  ## Returns the highest possible value of an ordinal or enum type.
  ##
  ## `high(int)` is Nim's way of writing `INT_MAX`:idx: or `MAX_INT`:idx:.
  ##   ```
  ##   high(int) # => 9223372036854775807
  ##   ```
  ##
  ## See also:
  ## * `low(typedesc) <#low,typedesc[T]>`_

proc high*[T](x: openArray[T]): int {.magic: "High", noSideEffect.}
  ## Returns the highest possible index of a sequence `x`.
  ##   ```
  ##   var s = @[1, 2, 3, 4, 5, 6, 7]
  ##   high(s) # => 6
  ##   for i in low(s)..high(s):
  ##     echo s[i]
  ##   ```
  ##
  ## See also:
  ## * `low(openArray) <#low,openArray[T]>`_

proc high*[I, T](x: array[I, T]): I {.magic: "High", noSideEffect.}
  ## Returns the highest possible index of an array `x`.
  ##
  ## For empty arrays, the return type is `int`.
  ##   ```
  ##   var arr = [1, 2, 3, 4, 5, 6, 7]
  ##   high(arr) # => 6
  ##   for i in low(arr)..high(arr):
  ##     echo arr[i]
  ##   ```
  ##
  ## See also:
  ## * `low(array) <#low,array[I,T]>`_

proc high*[I, T](x: typedesc[array[I, T]]): I {.magic: "High", noSideEffect.}
  ## Returns the highest possible index of an array type.
  ##
  ## For empty arrays, the return type is `int`.
  ##   ```
  ##   high(array[7, int]) # => 6
  ##   ```
  ##
  ## See also:
  ## * `low(typedesc[array]) <#low,typedesc[array[I,T]]>`_

proc high*(x: cstring): int {.magic: "High", noSideEffect.}
  ## Returns the highest possible index of a compatible string `x`.
  ## This is sometimes an O(n) operation.
  ##
  ## See also:
  ## * `low(cstring) <#low,cstring>`_

proc high*(x: string): int {.magic: "High", noSideEffect.}
  ## Returns the highest possible index of a string `x`.
  ##   ```
  ##   var str = "Hello world!"
  ##   high(str) # => 11
  ##   ```
  ##
  ## See also:
  ## * `low(string) <#low,string>`_

proc low*[T: Ordinal|enum|range](x: T): T {.magic: "Low", noSideEffect,
  deprecated: "Deprecated since v1.4; there should not be `low(value)`. Use `low(type)`.".}
  ## Returns the lowest possible value of an ordinal value `x`. As a special
  ## semantic rule, `x` may also be a type identifier.
  ##
  ## **This proc is deprecated**, use this one instead:
  ## * `low(typedesc) <#low,typedesc[T]>`_
  ##
  ## ```
  ## low(2) # => -9223372036854775808
  ## ```

proc low*[T: Ordinal|enum|range](x: typedesc[T]): T {.magic: "Low", noSideEffect.}
  ## Returns the lowest possible value of an ordinal or enum type.
  ##
  ## `low(int)` is Nim's way of writing `INT_MIN`:idx: or `MIN_INT`:idx:.
  ##   ```
  ##   low(int) # => -9223372036854775808
  ##   ```
  ##
  ## See also:
  ## * `high(typedesc) <#high,typedesc[T]>`_

proc low*[T](x: openArray[T]): int {.magic: "Low", noSideEffect.}
  ## Returns the lowest possible index of a sequence `x`.
  ##   ```
  ##   var s = @[1, 2, 3, 4, 5, 6, 7]
  ##   low(s) # => 0
  ##   for i in low(s)..high(s):
  ##     echo s[i]
  ##   ```
  ##
  ## See also:
  ## * `high(openArray) <#high,openArray[T]>`_

proc low*[I, T](x: array[I, T]): I {.magic: "Low", noSideEffect.}
  ## Returns the lowest possible index of an array `x`.
  ##
  ## For empty arrays, the return type is `int`.
  ##   ```
  ##   var arr = [1, 2, 3, 4, 5, 6, 7]
  ##   low(arr) # => 0
  ##   for i in low(arr)..high(arr):
  ##     echo arr[i]
  ##   ```
  ##
  ## See also:
  ## * `high(array) <#high,array[I,T]>`_

proc low*[I, T](x: typedesc[array[I, T]]): I {.magic: "Low", noSideEffect.}
  ## Returns the lowest possible index of an array type.
  ##
  ## For empty arrays, the return type is `int`.
  ##   ```
  ##   low(array[7, int]) # => 0
  ##   ```
  ##
  ## See also:
  ## * `high(typedesc[array]) <#high,typedesc[array[I,T]]>`_

proc low*(x: cstring): int {.magic: "Low", noSideEffect.}
  ## Returns the lowest possible index of a compatible string `x`.
  ##
  ## See also:
  ## * `high(cstring) <#high,cstring>`_

proc low*(x: string): int {.magic: "Low", noSideEffect.}
  ## Returns the lowest possible index of a string `x`.
  ##   ```
  ##   var str = "Hello world!"
  ##   low(str) # => 0
  ##   ```
  ##
  ## See also:
  ## * `high(string) <#high,string>`_

when not defined(gcArc) and not defined(gcOrc):
  proc shallowCopy*[T](x: var T, y: T) {.noSideEffect, magic: "ShallowCopy".}
    ## Use this instead of `=` for a `shallow copy`:idx:.
    ##
    ## The shallow copy only changes the semantics for sequences and strings
    ## (and types which contain those).
    ##
    ## Be careful with the changed semantics though!
    ## There is a reason why the default assignment does a deep copy of sequences
    ## and strings.

# :array|openArray|string|seq|cstring|tuple
proc `[]`*[I: Ordinal;T](a: T; i: I): T {.
  noSideEffect, magic: "ArrGet".}
proc `[]=`*[I: Ordinal;T,S](a: T; i: I;
  x: sink S) {.noSideEffect, magic: "ArrPut".}
proc `=`*[T](dest: var T; src: T) {.noSideEffect, magic: "Asgn".}
proc `=copy`*[T](dest: var T; src: T) {.noSideEffect, magic: "Asgn".}

proc arrGet[I: Ordinal;T](a: T; i: I): T {.
  noSideEffect, magic: "ArrGet".}
proc arrPut[I: Ordinal;T,S](a: T; i: I;
  x: S) {.noSideEffect, magic: "ArrPut".}

proc `=destroy`*[T](x: var T) {.inline, magic: "Destroy".} =
  ## Generic `destructor`:idx: implementation that can be overridden.
  discard
proc `=sink`*[T](x: var T; y: T) {.inline, nodestroy, magic: "Asgn".} =
  ## Generic `sink`:idx: implementation that can be overridden.
  when defined(gcArc) or defined(gcOrc):
    x = y
  else:
    shallowCopy(x, y)

when defined(nimHasTrace):
  proc `=trace`*[T](x: var T; env: pointer) {.inline, magic: "Trace".} =
    ## Generic `trace`:idx: implementation that can be overridden.
    discard

type
  HSlice*[T, U] = object   ## "Heterogeneous" slice type.
    a*: T                  ## The lower bound (inclusive).
    b*: U                  ## The upper bound (inclusive).
  Slice*[T] = HSlice[T, T] ## An alias for `HSlice[T, T]`.

proc `..`*[T, U](a: sink T, b: sink U): HSlice[T, U] {.noSideEffect, inline, magic: "DotDot".} =
  ## Binary `slice`:idx: operator that constructs an interval `[a, b]`, both `a`
  ## and `b` are inclusive.
  ##
  ## Slices can also be used in the set constructor and in ordinal case
  ## statements, but then they are special-cased by the compiler.
  ##   ```
  ##   let a = [10, 20, 30, 40, 50]
  ##   echo a[2 .. 3] # @[30, 40]
  ##   ```
  result = HSlice[T, U](a: a, b: b)

proc `..`*[T](b: sink T): HSlice[int, T]
  {.noSideEffect, inline, magic: "DotDot", deprecated: "replace `..b` with `0..b`".} =
  ## Unary `slice`:idx: operator that constructs an interval `[default(int), b]`.
  ##   ```
  ##   let a = [10, 20, 30, 40, 50]
  ##   echo a[.. 2] # @[10, 20, 30]
  ##   ```
  result = HSlice[int, T](a: 0, b: b)

when defined(hotCodeReloading):
  {.pragma: hcrInline, inline.}
else:
  {.pragma: hcrInline.}

include "system/arithmetics"
include "system/comparisons"

const
  appType* {.magic: "AppType".}: string = ""
    ## A string that describes the application type. Possible values:
    ## `"console"`, `"gui"`, `"lib"`.

include "system/inclrtl"

const NoFakeVars = defined(nimscript) ## `true` if the backend doesn't support \
  ## "fake variables" like `var EBADF {.importc.}: cint`.

const notJSnotNims = not defined(js) and not defined(nimscript)

when not defined(js) and not defined(nimSeqsV2):
  type
    TGenericSeq {.compilerproc, pure, inheritable.} = object
      len, reserved: int
      when defined(gogc):
        elemSize: int
        elemAlign: int
    PGenericSeq {.exportc.} = ptr TGenericSeq
    # len and space without counting the terminating zero:
    NimStringDesc {.compilerproc, final.} = object of TGenericSeq
      data: UncheckedArray[char]
    NimString = ptr NimStringDesc

when notJSnotNims and not defined(nimSeqsV2):
  template space(s: PGenericSeq): int {.dirty.} =
    s.reserved and not (seqShallowFlag or strlitFlag)

when notJSnotNims:
  include "system/hti"

type
  byte* = uint8 ## This is an alias for `uint8`, that is an unsigned
                ## integer, 8 bits wide.

  Natural* = range[0..high(int)]
    ## is an `int` type ranging from zero to the maximum value
    ## of an `int`. This type is often useful for documentation and debugging.

  Positive* = range[1..high(int)]
    ## is an `int` type ranging from one to the maximum value
    ## of an `int`. This type is often useful for documentation and debugging.

type
  RootObj* {.compilerproc, inheritable.} =
    object ## The root of Nim's object hierarchy.
           ##
           ## Objects should inherit from `RootObj` or one of its descendants.
           ## However, objects that have no ancestor are also allowed.
  RootRef* = ref RootObj ## Reference to `RootObj`.

const NimStackTraceMsgs = compileOption("stacktraceMsgs")

type
  RootEffect* {.compilerproc.} = object of RootObj ## \
    ## Base effect class.
    ##
    ## Each effect should inherit from `RootEffect` unless you know what
    ## you're doing.

type
  StackTraceEntry* = object ## In debug mode exceptions store the stack trace that led
                            ## to them. A `StackTraceEntry` is a single entry of the
                            ## stack trace.
    procname*: cstring      ## Name of the proc that is currently executing.
    line*: int              ## Line number of the proc that is currently executing.
    filename*: cstring      ## Filename of the proc that is currently executing.
    when NimStackTraceMsgs:
      frameMsg*: string     ## When a stacktrace is generated in a given frame and
                            ## rendered at a later time, we should ensure the stacktrace
                            ## data isn't invalidated; any pointer into PFrame is
                            ## subject to being invalidated so shouldn't be stored.
    when defined(nimStackTraceOverride):
      programCounter*: uint ## Program counter - will be used to get the rest of the info,
                            ## when `$` is called on this type. We can't use
                            ## "cuintptr_t" in here.
      procnameStr*, filenameStr*: string ## GC-ed alternatives to "procname" and "filename"

  Exception* {.compilerproc, magic: "Exception".} = object of RootObj ## \
    ## Base exception class.
    ##
    ## Each exception has to inherit from `Exception`. See the full `exception
    ## hierarchy <manual.html#exception-handling-exception-hierarchy>`_.
    parent*: ref Exception ## Parent exception (can be used as a stack).
    name*: cstring         ## The exception's name is its Nim identifier.
                           ## This field is filled automatically in the
                           ## `raise` statement.
    msg* {.exportc: "message".}: string ## The exception's message. Not
                                        ## providing an exception message
                                        ## is bad style.
    when defined(js):
      trace*: string
    else:
      trace*: seq[StackTraceEntry]
    up: ref Exception # used for stacking exceptions. Not exported!

  Defect* = object of Exception ## \
    ## Abstract base class for all exceptions that Nim's runtime raises
    ## but that are strictly uncatchable as they can also be mapped to
    ## a `quit` / `trap` / `exit` operation.

  CatchableError* = object of Exception ## \
    ## Abstract class for all exceptions that are catchable.

when defined(nimIcIntegrityChecks):
  include "system/exceptions"
else:
  import system/exceptions
  export exceptions

when defined(js) or defined(nimdoc):
  type
    JsRoot* = ref object of RootObj
      ## Root type of the JavaScript object hierarchy

proc unsafeNew*[T](a: var ref T, size: Natural) {.magic: "New", noSideEffect.}
  ## Creates a new object of type `T` and returns a safe (traced)
  ## reference to it in `a`.
  ##
  ## This is **unsafe** as it allocates an object of the passed `size`.
  ## This should only be used for optimization purposes when you know
  ## what you're doing!
  ##
  ## See also:
  ## * `new <#new,ref.T,proc(ref.T)>`_

proc sizeof*[T](x: T): int {.magic: "SizeOf", noSideEffect.}
  ## Returns the size of `x` in bytes.
  ##
  ## Since this is a low-level proc,
  ## its usage is discouraged - using `new <#new,ref.T,proc(ref.T)>`_ for
  ## the most cases suffices that one never needs to know `x`'s size.
  ##
  ## As a special semantic rule, `x` may also be a type identifier
  ## (`sizeof(int)` is valid).
  ##
  ## Limitations: If used for types that are imported from C or C++,
  ## sizeof should fallback to the `sizeof` in the C compiler. The
  ## result isn't available for the Nim compiler and therefore can't
  ## be used inside of macros.
  ##   ```
  ##   sizeof('A') # => 1
  ##   sizeof(2) # => 8
  ##   ```

proc alignof*[T](x: T): int {.magic: "AlignOf", noSideEffect.}
proc alignof*(x: typedesc): int {.magic: "AlignOf", noSideEffect.}

proc offsetOfDotExpr(typeAccess: typed): int {.magic: "OffsetOf", noSideEffect, compileTime.}

template offsetOf*[T](t: typedesc[T]; member: untyped): int =
  var tmp {.noinit.}: ptr T
  offsetOfDotExpr(tmp[].member)

template offsetOf*[T](value: T; member: untyped): int =
  offsetOfDotExpr(value.member)

#proc offsetOf*(memberaccess: typed): int {.magic: "OffsetOf", noSideEffect.}

proc sizeof*(x: typedesc): int {.magic: "SizeOf", noSideEffect.}


proc newSeq*[T](s: var seq[T], len: Natural) {.magic: "NewSeq", noSideEffect.}
  ## Creates a new sequence of type `seq[T]` with length `len`.
  ##
  ## This is equivalent to `s = @[]; setlen(s, len)`, but more
  ## efficient since no reallocation is needed.
  ##
  ## Note that the sequence will be filled with zeroed entries.
  ## After the creation of the sequence you should assign entries to
  ## the sequence instead of adding them. Example:
  ##   ```
  ##   var inputStrings: seq[string]
  ##   newSeq(inputStrings, 3)
  ##   assert len(inputStrings) == 3
  ##   inputStrings[0] = "The fourth"
  ##   inputStrings[1] = "assignment"
  ##   inputStrings[2] = "would crash"
  ##   #inputStrings[3] = "out of bounds"
  ##   ```

proc newSeq*[T](len = 0.Natural): seq[T] =
  ## Creates a new sequence of type `seq[T]` with length `len`.
  ##
  ## Note that the sequence will be filled with zeroed entries.
  ## After the creation of the sequence you should assign entries to
  ## the sequence instead of adding them.
  ##   ```
  ##   var inputStrings = newSeq[string](3)
  ##   assert len(inputStrings) == 3
  ##   inputStrings[0] = "The fourth"
  ##   inputStrings[1] = "assignment"
  ##   inputStrings[2] = "would crash"
  ##   #inputStrings[3] = "out of bounds"
  ##   ```
  ##
  ## See also:
  ## * `newSeqOfCap <#newSeqOfCap,Natural>`_
  ## * `newSeqUninitialized <#newSeqUninitialized,Natural>`_
  newSeq(result, len)

proc newSeqOfCap*[T](cap: Natural): seq[T] {.
  magic: "NewSeqOfCap", noSideEffect.} =
  ## Creates a new sequence of type `seq[T]` with length zero and capacity
  ## `cap`. Example:
  ##   ```
  ##   var x = newSeqOfCap[int](5)
  ##   assert len(x) == 0
  ##   x.add(10)
  ##   assert len(x) == 1
  ##   ```
  discard

when not defined(js):
  proc newSeqUninitialized*[T: SomeNumber](len: Natural): seq[T] =
    ## Creates a new sequence of type `seq[T]` with length `len`.
    ##
    ## Only available for numbers types. Note that the sequence will be
    ## uninitialized. After the creation of the sequence you should assign
    ## entries to the sequence instead of adding them.
    ## Example:
    ##   ```
    ##   var x = newSeqUninitialized[int](3)
    ##   assert len(x) == 3
    ##   x[0] = 10
    ##   ```
    result = newSeqOfCap[T](len)
    when defined(nimSeqsV2):
      cast[ptr int](addr result)[] = len
    else:
      var s = cast[PGenericSeq](result)
      s.len = len

func len*[TOpenArray: openArray|varargs](x: TOpenArray): int {.magic: "LengthOpenArray".} =
  ## Returns the length of an openArray.
  runnableExamples:
    proc bar[T](a: openArray[T]): int = len(a)
    assert bar([1,2]) == 2
    assert [1,2].len == 2

func len*(x: string): int {.magic: "LengthStr".} =
  ## Returns the length of a string.
  runnableExamples:
    assert "abc".len == 3
    assert "".len == 0
    assert string.default.len == 0

proc len*(x: cstring): int {.magic: "LengthStr", noSideEffect.} =
  ## Returns the length of a compatible string. This is an O(n) operation except
  ## in js at runtime.
  ##
  ## **Note:** On the JS backend this currently counts UTF-16 code points
  ## instead of bytes at runtime (not at compile time). For now, if you
  ## need the byte length of the UTF-8 encoding, convert to string with
  ## `$` first then call `len`.
  runnableExamples:
    doAssert len(cstring"abc") == 3
    doAssert len(cstring r"ab\0c") == 5 # \0 is escaped
    doAssert len(cstring"ab\0c") == 5 # ditto
    var a: cstring = "ab\0c"
    when defined(js): doAssert a.len == 4 # len ignores \0 for js
    else: doAssert a.len == 2 # \0 is a null terminator
    static:
      var a2: cstring = "ab\0c"
      doAssert a2.len == 2 # \0 is a null terminator, even in js vm

func len*(x: (type array)|array): int {.magic: "LengthArray".} =
  ## Returns the length of an array or an array type.
  ## This is roughly the same as `high(T)-low(T)+1`.
  runnableExamples:
    var a = [1, 1, 1]
    assert a.len == 3
    assert array[0, float].len == 0
    static: assert array[-2..2, float].len == 5

func len*[T](x: seq[T]): int {.magic: "LengthSeq".} =
  ## Returns the length of `x`.
  runnableExamples:
    assert @[0, 1].len == 2
    assert seq[int].default.len == 0
    assert newSeq[int](3).len == 3
    let s = newSeqOfCap[int](3)
    assert s.len == 0
  # xxx this gives cgen error: assert newSeqOfCap[int](3).len == 0

func ord*[T: Ordinal|enum](x: T): int {.magic: "Ord".} =
  ## Returns the internal `int` value of `x`, including for enum with holes
  ## and distinct ordinal types.
  runnableExamples:
    assert ord('A') == 65
    type Foo = enum
      f0 = 0, f1 = 3
    assert f1.ord == 3
    type Bar = distinct int
    assert 3.Bar.ord == 3

func chr*(u: range[0..255]): char {.magic: "Chr".} =
  ## Converts `u` to a `char`, same as `char(u)`.
  runnableExamples:
    doAssert chr(65) == 'A'
    doAssert chr(255) == '\255'
    doAssert chr(255) == char(255)
    doAssert not compiles chr(256)
    doAssert not compiles char(256)
    var x = 256
    doAssertRaises(RangeDefect): discard chr(x)
    doAssertRaises(RangeDefect): discard char(x)


include "system/setops"


proc contains*[U, V, W](s: HSlice[U, V], value: W): bool {.noSideEffect, inline.} =
  ## Checks if `value` is within the range of `s`; returns true if
  ## `value >= s.a and value <= s.b`.
  ##   ```
  ##   assert((1..3).contains(1) == true)
  ##   assert((1..3).contains(2) == true)
  ##   assert((1..3).contains(4) == false)
  ##   ```
  result = s.a <= value and value <= s.b

when not defined(nimHasCallsitePragma):
  {.pragma: callsite.}

template `in`*(x, y: untyped): untyped {.dirty, callsite.} = contains(y, x)
  ## Sugar for `contains`.
  ##   ```
  ##   assert(1 in (1..3) == true)
  ##   assert(5 in (1..3) == false)
  ##   ```
template `notin`*(x, y: untyped): untyped {.dirty, callsite.} = not contains(y, x)
  ## Sugar for `not contains`.
  ##   ```
  ##   assert(1 notin (1..3) == false)
  ##   assert(5 notin (1..3) == true)
  ##   ```

proc `is`*[T, S](x: T, y: S): bool {.magic: "Is", noSideEffect.}
  ## Checks if `T` is of the same type as `S`.
  ##
  ## For a negated version, use `isnot <#isnot.t,untyped,untyped>`_.
  ##
  ##   ```
  ##   assert 42 is int
  ##   assert @[1, 2] is seq
  ##
  ##   proc test[T](a: T): int =
  ##     when (T is int):
  ##       return a
  ##     else:
  ##       return 0
  ##
  ##   assert(test[int](3) == 3)
  ##   assert(test[string]("xyz") == 0)
  ##   ```
template `isnot`*(x, y: untyped): untyped {.callsite.} = not (x is y)
  ## Negated version of `is <#is,T,S>`_. Equivalent to `not(x is y)`.
  ##   ```
  ##   assert 42 isnot float
  ##   assert @[1, 2] isnot enum
  ##   ```

when (defined(nimOwnedEnabled) and not defined(nimscript)) or defined(nimFixedOwned):
  type owned*[T]{.magic: "BuiltinType".} ## type constructor to mark a ref/ptr or a closure as `owned`.
else:
  template owned*(t: typedesc): typedesc = t

when defined(nimOwnedEnabled) and not defined(nimscript):
  proc new*[T](a: var owned(ref T)) {.magic: "New", noSideEffect.}
    ## Creates a new object of type `T` and returns a safe (traced)
    ## reference to it in `a`.

  proc new*(t: typedesc): auto =
    ## Creates a new object of type `T` and returns a safe (traced)
    ## reference to it as result value.
    ##
    ## When `T` is a ref type then the resulting type will be `T`,
    ## otherwise it will be `ref T`.
    when (t is ref):
      var r: owned t
    else:
      var r: owned(ref t)
    new(r)
    return r

  proc unown*[T](x: T): T {.magic: "Unown", noSideEffect.}
    ## Use the expression `x` ignoring its ownership attribute.


else:
  template unown*(x: typed): untyped = x

  proc new*[T](a: var ref T) {.magic: "New", noSideEffect.}
    ## Creates a new object of type `T` and returns a safe (traced)
    ## reference to it in `a`.

  proc new*(t: typedesc): auto =
    ## Creates a new object of type `T` and returns a safe (traced)
    ## reference to it as result value.
    ##
    ## When `T` is a ref type then the resulting type will be `T`,
    ## otherwise it will be `ref T`.
    when (t is ref):
      var r: t
    else:
      var r: ref t
    new(r)
    return r


template disarm*(x: typed) =
  ## Useful for `disarming` dangling pointers explicitly for `--newruntime`.
  ## Regardless of whether `--newruntime` is used or not
  ## this sets the pointer or callback `x` to `nil`. This is an
  ## experimental API!
  x = nil

proc `of`*[T, S](x: T, y: typedesc[S]): bool {.magic: "Of", noSideEffect.} =
  ## Checks if `x` is an instance of `y`.
  runnableExamples:
    type
      Base = ref object of RootObj
      Sub1 = ref object of Base
      Sub2 = ref object of Base
      Unrelated = ref object

    var base: Base = Sub1() # downcast
    doAssert base of Base # generates `CondTrue` (statically true)
    doAssert base of Sub1
    doAssert base isnot Sub1
    doAssert not (base of Sub2)

    base = Sub2() # re-assign
    doAssert base of Sub2
    doAssert Sub2(base) != nil # upcast
    doAssertRaises(ObjectConversionDefect): discard Sub1(base)

    var sub1 = Sub1()
    doAssert sub1 of Base
    doAssert sub1.Base of Sub1

    doAssert not compiles(base of Unrelated)

proc cmp*[T](x, y: T): int =
  ## Generic compare proc.
  ##
  ## Returns:
  ## * a value less than zero, if `x < y`
  ## * a value greater than zero, if `x > y`
  ## * zero, if `x == y`
  ##
  ## This is useful for writing generic algorithms without performance loss.
  ## This generic implementation uses the `==` and `<` operators.
  ##   ```
  ##   import std/algorithm
  ##   echo sorted(@[4, 2, 6, 5, 8, 7], cmp[int])
  ##   ```
  if x == y: return 0
  if x < y: return -1
  return 1

proc cmp*(x, y: string): int {.noSideEffect.}
  ## Compare proc for strings. More efficient than the generic version.
  ##
  ## **Note**: The precise result values depend on the used C runtime library and
  ## can differ between operating systems!

proc `@`* [IDX, T](a: sink array[IDX, T]): seq[T] {.magic: "ArrToSeq", noSideEffect.}
  ## Turns an array into a sequence.
  ##
  ## This most often useful for constructing
  ## sequences with the array constructor: `@[1, 2, 3]` has the type
  ## `seq[int]`, while `[1, 2, 3]` has the type `array[0..2, int]`.
  ##
  ##   ```
  ##   let
  ##     a = [1, 3, 5]
  ##     b = "foo"
  ##
  ##   echo @a # => @[1, 3, 5]
  ##   echo @b # => @['f', 'o', 'o']
  ##   ```

proc default*[T](_: typedesc[T]): T {.magic: "Default", noSideEffect.} =
  ## returns the default value of the type `T`.
  runnableExamples:
    assert (int, float).default == (0, 0.0)
    # note: `var a = default(T)` is usually the same as `var a: T` and (currently) generates
    # a value whose binary representation is all 0, regardless of whether this
    # would violate type constraints such as `range`, `not nil`, etc. This
    # property is required to implement certain algorithms efficiently which
    # may require intermediate invalid states.
    type Foo = object
      a: range[2..6]
    var a1: range[2..6] # currently, this compiles
    # var a2: Foo # currently, this errors: Error: The Foo type doesn't have a default value.
    # var a3 = Foo() # ditto
    var a3 = Foo.default # this works, but generates a `UnsafeDefault` warning.
  # note: the doc comment also explains why `default` can't be implemented
  # via: `template default*[T](t: typedesc[T]): T = (var v: T; v)`


proc reset*[T](obj: var T) {.noSideEffect.} =
  ## Resets an object `obj` to its default value.
  obj = default(typeof(obj))

proc setLen*[T](s: var seq[T], newlen: Natural) {.
  magic: "SetLengthSeq", noSideEffect.}
  ## Sets the length of seq `s` to `newlen`. `T` may be any sequence type.
  ##
  ## If the current length is greater than the new length,
  ## `s` will be truncated.
  ##   ```
  ##   var x = @[10, 20]
  ##   x.setLen(5)
  ##   x[4] = 50
  ##   assert x == @[10, 20, 0, 0, 50]
  ##   x.setLen(1)
  ##   assert x == @[10]
  ##   ```

proc setLen*(s: var string, newlen: Natural) {.
  magic: "SetLengthStr", noSideEffect.}
  ## Sets the length of string `s` to `newlen`.
  ##
  ## If the current length is greater than the new length,
  ## `s` will be truncated.
  ##   ```
  ##   var myS = "Nim is great!!"
  ##   myS.setLen(3) # myS <- "Nim"
  ##   echo myS, " is fantastic!!"
  ##   ```

proc newString*(len: Natural): string {.
  magic: "NewString", importc: "mnewString", noSideEffect.}
  ## Returns a new string of length `len` but with uninitialized
  ## content. One needs to fill the string character after character
  ## with the index operator `s[i]`.
  ##
  ## This procedure exists only for optimization purposes;
  ## the same effect can be achieved with the `&` operator or with `add`.

proc newStringOfCap*(cap: Natural): string {.
  magic: "NewStringOfCap", importc: "rawNewString", noSideEffect.}
  ## Returns a new string of length `0` but with capacity `cap`.
  ##
  ## This procedure exists only for optimization purposes; the same effect can
  ## be achieved with the `&` operator or with `add`.

proc `&`*(x: string, y: char): string {.
  magic: "ConStrStr", noSideEffect.}
  ## Concatenates `x` with `y`.
  ##   ```
  ##   assert("ab" & 'c' == "abc")
  ##   ```
proc `&`*(x, y: char): string {.
  magic: "ConStrStr", noSideEffect.}
  ## Concatenates characters `x` and `y` into a string.
  ##   ```
  ##   assert('a' & 'b' == "ab")
  ##   ```
proc `&`*(x, y: string): string {.
  magic: "ConStrStr", noSideEffect.}
  ## Concatenates strings `x` and `y`.
  ##   ```
  ##   assert("ab" & "cd" == "abcd")
  ##   ```
proc `&`*(x: char, y: string): string {.
  magic: "ConStrStr", noSideEffect.}
  ## Concatenates `x` with `y`.
  ##   ```
  ##   assert('a' & "bc" == "abc")
  ##   ```

# implementation note: These must all have the same magic value "ConStrStr" so
# that the merge optimization works properly.

proc add*(x: var string, y: char) {.magic: "AppendStrCh", noSideEffect.}
  ## Appends `y` to `x` in place.
  ##   ```
  ##   var tmp = ""
  ##   tmp.add('a')
  ##   tmp.add('b')
  ##   assert(tmp == "ab")
  ##   ```

proc add*(x: var string, y: string) {.magic: "AppendStrStr", noSideEffect.} =
  ## Concatenates `x` and `y` in place.
  ##
  ## See also `strbasics.add`.
  runnableExamples:
    var tmp = ""
    tmp.add("ab")
    tmp.add("cd")
    assert tmp == "abcd"

type
  Endianness* = enum ## Type describing the endianness of a processor.
    littleEndian, bigEndian

const
  cpuEndian* {.magic: "CpuEndian".}: Endianness = littleEndian
    ## The endianness of the target CPU. This is a valuable piece of
    ## information for low-level code only. This works thanks to compiler
    ## magic.

  hostOS* {.magic: "HostOS".}: string = ""
    ## A string that describes the host operating system.
    ##
    ## Possible values:
    ## `"windows"`, `"macosx"`, `"linux"`, `"netbsd"`, `"freebsd"`,
    ## `"openbsd"`, `"solaris"`, `"aix"`, `"haiku"`, `"standalone"`.

  hostCPU* {.magic: "HostCPU".}: string = ""
    ## A string that describes the host CPU.
    ##
    ## Possible values:
    ## `"i386"`, `"alpha"`, `"powerpc"`, `"powerpc64"`, `"powerpc64el"`,
    ## `"sparc"`, `"amd64"`, `"mips"`, `"mipsel"`, `"arm"`, `"arm64"`,
    ## `"mips64"`, `"mips64el"`, `"riscv32"`, `"riscv64"`, '"loongarch64"'.

  seqShallowFlag = low(int)
  strlitFlag = 1 shl (sizeof(int)*8 - 2) # later versions of the codegen \
  # emit this flag
  # for string literals, it allows for some optimizations.

const
  hasThreadSupport = compileOption("threads") and not defined(nimscript)
  hasSharedHeap = defined(boehmgc) or defined(gogc) # don't share heaps; every thread has its own

when hasThreadSupport and defined(tcc) and not compileOption("tlsEmulation"):
  # tcc doesn't support TLS
  {.error: "`--tlsEmulation:on` must be used when using threads with tcc backend".}

when defined(boehmgc):
  when defined(windows):
    when sizeof(int) == 8:
      const boehmLib = "boehmgc64.dll"
    else:
      const boehmLib = "boehmgc.dll"
  elif defined(macosx):
    const boehmLib = "libgc.dylib"
  elif defined(openbsd):
    const boehmLib = "libgc.so.(4|5).0"
  elif defined(freebsd):
    const boehmLib = "libgc-threaded.so.1"
  else:
    const boehmLib = "libgc.so.1"
  {.pragma: boehmGC, noconv, dynlib: boehmLib.}

when not defined(nimPreviewSlimSystem):
  type TaintedString* {.deprecated: "Deprecated since 1.5".} = string


when defined(profiler) and not defined(nimscript):
  proc nimProfile() {.compilerproc, noinline.}
when hasThreadSupport:
  {.pragma: rtlThreadVar, threadvar.}
else:
  {.pragma: rtlThreadVar.}

const
  QuitSuccess* = 0
    ## is the value that should be passed to `quit <#quit,int>`_ to indicate
    ## success.

  QuitFailure* = 1
    ## is the value that should be passed to `quit <#quit,int>`_ to indicate
    ## failure.

when not defined(js) and hostOS != "standalone":
  var programResult* {.compilerproc, exportc: "nim_program_result".}: int
    ## deprecated, prefer `quit` or `exitprocs.getProgramResult`, `exitprocs.setProgramResult`.

import std/private/since
import system/ctypes
export ctypes

proc align(address, alignment: int): int =
  if alignment == 0: # Actually, this is illegal. This branch exists to actively
                     # hide problems.
    result = address
  else:
    result = (address + (alignment - 1)) and not (alignment - 1)

include system/rawquits
when defined(genode):
  export GenodeEnv

template sysAssert(cond: bool, msg: string) =
  when defined(useSysAssert):
    if not cond:
      cstderr.rawWrite "[SYSASSERT] "
      cstderr.rawWrite msg
      cstderr.rawWrite "\n"
      rawQuit 1

const hasAlloc = (hostOS != "standalone" or not defined(nogc)) and not defined(nimscript)

when notJSnotNims and hostOS != "standalone" and hostOS != "any":
  include "system/cgprocs"
when notJSnotNims and hasAlloc and not defined(nimSeqsV2):
  proc addChar(s: NimString, c: char): NimString {.compilerproc, benign.}

when defined(nimscript) or not defined(nimSeqsV2):
  proc add*[T](x: var seq[T], y: sink T) {.magic: "AppendSeqElem", noSideEffect.}
    ## Generic proc for adding a data item `y` to a container `x`.
    ##
    ## For containers that have an order, `add` means *append*. New generic
    ## containers should also call their adding proc `add` for consistency.
    ## Generic code becomes much easier to write if the Nim naming scheme is
    ## respected.

when false: # defined(gcDestructors):
  proc add*[T](x: var seq[T], y: sink openArray[T]) {.noSideEffect.} =
    ## Generic proc for adding a container `y` to a container `x`.
    ##
    ## For containers that have an order, `add` means *append*. New generic
    ## containers should also call their adding proc `add` for consistency.
    ## Generic code becomes much easier to write if the Nim naming scheme is
    ## respected.
    ##   ```
    ##   var s: seq[string] = @["test2","test2"]
    ##   s.add("test") # s <- @[test2, test2, test]
    ##   ```
    ##
    ## See also:
    ## * `& proc <#&,seq[T],seq[T]>`_
    {.noSideEffect.}:
      let xl = x.len
      setLen(x, xl + y.len)
      for i in 0..high(y):
        when nimvm:
          # workaround the fact that the VM does not yet
          # handle sink parameters properly:
          x[xl+i] = y[i]
        else:
          x[xl+i] = move y[i]
else:
  proc add*[T](x: var seq[T], y: openArray[T]) {.noSideEffect.} =
    ## Generic proc for adding a container `y` to a container `x`.
    ##
    ## For containers that have an order, `add` means *append*. New generic
    ## containers should also call their adding proc `add` for consistency.
    ## Generic code becomes much easier to write if the Nim naming scheme is
    ## respected.
    ##   ```
    ##   var s: seq[string] = @["test2","test2"]
    ##   s.add("test") # s <- @[test2, test2, test]
    ##   ```
    ##
    ## See also:
    ## * `& proc <#&,seq[T],seq[T]>`_
    {.noSideEffect.}:
      let xl = x.len
      setLen(x, xl + y.len)
      for i in 0..high(y): x[xl+i] = y[i]


when defined(nimSeqsV2):
  template movingCopy(a, b: typed) =
    a = move(b)
else:
  template movingCopy(a, b: typed) =
    shallowCopy(a, b)

proc del*[T](x: var seq[T], i: Natural) {.noSideEffect.} =
  ## Deletes the item at index `i` by putting `x[high(x)]` into position `i`.
  ##
  ## This is an `O(1)` operation.
  ##
  ## See also:
  ## * `delete <#delete,seq[T],Natural>`_ for preserving the order
  runnableExamples:
    var a = @[10, 11, 12, 13, 14]
    a.del(2)
    assert a == @[10, 11, 14, 13]
  let xl = x.len - 1
  movingCopy(x[i], x[xl])
  setLen(x, xl)

proc insert*[T](x: var seq[T], item: sink T, i = 0.Natural) {.noSideEffect.} =
  ## Inserts `item` into `x` at position `i`.
  ##   ```
  ##   var i = @[1, 3, 5]
  ##   i.insert(99, 0) # i <- @[99, 1, 3, 5]
  ##   ```
  {.noSideEffect.}:
    template defaultImpl =
      let xl = x.len
      setLen(x, xl+1)
      var j = xl-1
      while j >= i:
        movingCopy(x[j+1], x[j])
        dec(j)
    when nimvm:
      defaultImpl()
    else:
      when defined(js):
        var it : T
        {.emit: "`x` = `x` || []; `x`.splice(`i`, 0, `it`);".}
      else:
        defaultImpl()
    x[i] = item

when not defined(nimV2):
  proc repr*[T](x: T): string {.magic: "Repr", noSideEffect.}
    ## Takes any Nim variable and returns its string representation.
    ## No trailing newline is inserted (so `echo` won't add an empty newline).
    ## Use `-d:nimLegacyReprWithNewline` to revert to old behavior where newlines
    ## were added in some cases.
    ##
    ## It works even for complex data graphs with cycles. This is a great
    ## debugging tool.
    ##   ```
    ##   var s: seq[string] = @["test2", "test2"]
    ##   var i = @[1, 2, 3, 4, 5]
    ##   echo repr(s) # => 0x1055eb050[0x1055ec050"test2", 0x1055ec078"test2"]
    ##   echo repr(i) # => 0x1055ed050[1, 2, 3, 4, 5]
    ##   ```

when not defined(nimPreviewSlimSystem):
  type
    csize* {.importc: "size_t", nodecl, deprecated: "use `csize_t` instead".} = int
      ## This isn't the same as `size_t` in *C*. Don't use it.

const
  Inf* = 0x7FF0000000000000'f64
    ## Contains the IEEE floating point value of positive infinity.
  NegInf* = 0xFFF0000000000000'f64
    ## Contains the IEEE floating point value of negative infinity.
  NaN* = 0x7FF7FFFFFFFFFFFF'f64
    ## Contains an IEEE floating point value of *Not A Number*.
    ##
    ## Note that you cannot compare a floating point value to this value
    ## and expect a reasonable result - use the `isNaN` or `classify` procedure
    ## in the `math module <math.html>`_ for checking for NaN.

proc high*(T: typedesc[SomeFloat]): T = Inf
proc low*(T: typedesc[SomeFloat]): T = NegInf

proc toFloat*(i: int): float {.noSideEffect, inline.} =
  ## Converts an integer `i` into a `float`. Same as `float(i)`.
  ##
  ## If the conversion fails, `ValueError` is raised.
  ## However, on most platforms the conversion cannot fail.
  ##
  ##   ```
  ##   let
  ##     a = 2
  ##     b = 3.7
  ##
  ##   echo a.toFloat + b # => 5.7
  ##   ```
  float(i)

proc toBiggestFloat*(i: BiggestInt): BiggestFloat {.noSideEffect, inline.} =
  ## Same as `toFloat <#toFloat,int>`_ but for `BiggestInt` to `BiggestFloat`.
  BiggestFloat(i)

proc toInt*(f: float): int {.noSideEffect.} =
  ## Converts a floating point number `f` into an `int`.
  ##
  ## Conversion rounds `f` half away from 0, see
  ## `Round half away from zero
  ## <https://en.wikipedia.org/wiki/Rounding#Round_half_away_from_zero>`_,
  ## as opposed to a type conversion which rounds towards zero.
  ##
  ## Note that some floating point numbers (e.g. infinity or even 1e19)
  ## cannot be accurately converted.
  ##   ```
  ##   doAssert toInt(0.49) == 0
  ##   doAssert toInt(0.5) == 1
  ##   doAssert toInt(-0.5) == -1 # rounding is symmetrical
  ##   ```
  if f >= 0: int(f+0.5) else: int(f-0.5)

proc toBiggestInt*(f: BiggestFloat): BiggestInt {.noSideEffect.} =
  ## Same as `toInt <#toInt,float>`_ but for `BiggestFloat` to `BiggestInt`.
  if f >= 0: BiggestInt(f+0.5) else: BiggestInt(f-0.5)

proc `/`*(x, y: int): float {.inline, noSideEffect.} =
  ## Division of integers that results in a float.
  ##   ```
  ##   echo 7 / 5 # => 1.4
  ##   ```
  ##
  ## See also:
  ## * `div <system.html#div,int,int>`_
  ## * `mod <system.html#mod,int,int>`_
  result = toFloat(x) / toFloat(y)

{.push stackTrace: off.}

when defined(js):
  proc js_abs[T: SomeNumber](x: T): T {.importc: "Math.abs".}
else:
  proc c_fabs(x: cdouble): cdouble {.importc: "fabs", header: "<math.h>".}
  proc c_fabsf(x: cfloat): cfloat {.importc: "fabsf", header: "<math.h>".}

proc abs*[T: float64 | float32](x: T): T {.noSideEffect, inline.} =
  when nimvm:
    if x < 0.0: result = -x
    elif x == 0.0: result = 0.0 # handle 0.0, -0.0
    else: result = x # handle NaN, > 0
  else:
    when defined(js): result = js_abs(x)
    else:
      when T is float64:
        result = c_fabs(x)
      else:
        result = c_fabsf(x)

func abs*(x: int): int {.magic: "AbsI", inline.} =
  if x < 0: -x else: x
func abs*(x: int8): int8 {.magic: "AbsI", inline.} =
  if x < 0: -x else: x
func abs*(x: int16): int16 {.magic: "AbsI", inline.} =
  if x < 0: -x else: x
func abs*(x: int32): int32 {.magic: "AbsI", inline.} =
  if x < 0: -x else: x
func abs*(x: int64): int64 {.magic: "AbsI", inline.} =
  ## Returns the absolute value of `x`.
  ##
  ## If `x` is `low(x)` (that is -MININT for its type),
  ## an overflow exception is thrown (if overflow checking is turned on).
  result = if x < 0: -x else: x

{.pop.} # stackTrace: off

when not defined(nimPreviewSlimSystem):
  proc addQuitProc*(quitProc: proc() {.noconv.}) {.
    importc: "atexit", header: "<stdlib.h>", deprecated: "use exitprocs.addExitProc".}
    ## Adds/registers a quit procedure.
    ##
    ## Each call to `addQuitProc` registers another quit procedure. Up to 30
    ## procedures can be registered. They are executed on a last-in, first-out
    ## basis (that is, the last function registered is the first to be executed).
    ## `addQuitProc` raises an EOutOfIndex exception if `quitProc` cannot be
    ## registered.
    # Support for addQuitProc() is done by Ansi C's facilities here.
    # In case of an unhandled exception the exit handlers should
    # not be called explicitly! The user may decide to do this manually though.

proc swap*[T](a, b: var T) {.magic: "Swap", noSideEffect.}
  ## Swaps the values `a` and `b`.
  ##
  ## This is often more efficient than `tmp = a; a = b; b = tmp`.
  ## Particularly useful for sorting algorithms.
  ##
  ##   ```
  ##   var
  ##     a = 5
  ##     b = 9
  ##
  ##   swap(a, b)
  ##
  ##   assert a == 9
  ##   assert b == 5
  ##   ```

when not defined(js) and not defined(booting) and defined(nimTrMacros):
  template swapRefsInArray*{swap(arr[a], arr[b])}(arr: openArray[ref], a, b: int) =
    # Optimize swapping of array elements if they are refs. Default swap
    # implementation will cause unsureAsgnRef to be emitted which causes
    # unnecessary slow down in this case.
    swap(cast[ptr pointer](addr arr[a])[], cast[ptr pointer](addr arr[b])[])

when not defined(nimscript):
  {.push stackTrace: off, profiler: off.}

  when not defined(nimPreviewSlimSystem):
    import std/sysatomics
    export sysatomics
  else:
    import std/sysatomics

  {.pop.}

include "system/memalloc"


proc `|`*(a, b: typedesc): typedesc = discard

include "system/iterators_1"


proc len*[U: Ordinal; V: Ordinal](x: HSlice[U, V]): int {.noSideEffect, inline.} =
  ## Length of ordinal slice. When x.b < x.a returns zero length.
  ##   ```
  ##   assert((0..5).len == 6)
  ##   assert((5..2).len == 0)
  ##   ```
  result = max(0, ord(x.b) - ord(x.a) + 1)

proc isNil*[T](x: ref T): bool {.noSideEffect, magic: "IsNil".}

proc isNil*[T](x: ptr T): bool {.noSideEffect, magic: "IsNil".}
proc isNil*(x: pointer): bool {.noSideEffect, magic: "IsNil".}
proc isNil*(x: cstring): bool {.noSideEffect, magic: "IsNil".}
proc isNil*[T: proc](x: T): bool {.noSideEffect, magic: "IsNil".}
  ## Fast check whether `x` is nil. This is sometimes more efficient than
  ## `== nil`.


when defined(nimHasTopDownInference):
  # magic used for seq type inference
  proc `@`*[T](a: openArray[T]): seq[T] {.magic: "OpenArrayToSeq".} =
    ## Turns an *openArray* into a sequence.
    ##
    ## This is not as efficient as turning a fixed length array into a sequence
    ## as it always copies every element of `a`.
    newSeq(result, a.len)
    for i in 0..a.len-1: result[i] = a[i]
else:
  proc `@`*[T](a: openArray[T]): seq[T] =
    ## Turns an *openArray* into a sequence.
    ##
    ## This is not as efficient as turning a fixed length array into a sequence
    ## as it always copies every element of `a`.
    newSeq(result, a.len)
    for i in 0..a.len-1: result[i] = a[i]


when defined(nimSeqsV2):

  proc `&`*[T](x, y: sink seq[T]): seq[T] {.noSideEffect.} =
    ## Concatenates two sequences.
    ##
    ## Requires copying of the sequences.
    ##   ```
    ##   assert(@[1, 2, 3, 4] & @[5, 6] == @[1, 2, 3, 4, 5, 6])
    ##   ```
    ##
    ## See also:
    ## * `add(var seq[T], openArray[T]) <#add,seq[T],openArray[T]>`_
    newSeq(result, x.len + y.len)
    for i in 0..x.len-1:
      result[i] = move(x[i])
    for i in 0..y.len-1:
      result[i+x.len] = move(y[i])

  proc `&`*[T](x: sink seq[T], y: sink T): seq[T] {.noSideEffect.} =
    ## Appends element y to the end of the sequence.
    ##
    ## Requires copying of the sequence.
    ##   ```
    ##   assert(@[1, 2, 3] & 4 == @[1, 2, 3, 4])
    ##   ```
    ##
    ## See also:
    ## * `add(var seq[T], T) <#add,seq[T],sinkT>`_
    newSeq(result, x.len + 1)
    for i in 0..x.len-1:
      result[i] = move(x[i])
    result[x.len] = move(y)

  proc `&`*[T](x: sink T, y: sink seq[T]): seq[T] {.noSideEffect.} =
    ## Prepends the element x to the beginning of the sequence.
    ##
    ## Requires copying of the sequence.
    ##   ```
    ##   assert(1 & @[2, 3, 4] == @[1, 2, 3, 4])
    ##   ```
    newSeq(result, y.len + 1)
    result[0] = move(x)
    for i in 0..y.len-1:
      result[i+1] = move(y[i])

else:

  proc `&`*[T](x, y: seq[T]): seq[T] {.noSideEffect.} =
    ## Concatenates two sequences.
    ##
    ## Requires copying of the sequences.
    ##   ```
    ##   assert(@[1, 2, 3, 4] & @[5, 6] == @[1, 2, 3, 4, 5, 6])
    ##   ```
    ##
    ## See also:
    ## * `add(var seq[T], openArray[T]) <#add,seq[T],openArray[T]>`_
    newSeq(result, x.len + y.len)
    for i in 0..x.len-1:
      result[i] = x[i]
    for i in 0..y.len-1:
      result[i+x.len] = y[i]

  proc `&`*[T](x: seq[T], y: T): seq[T] {.noSideEffect.} =
    ## Appends element y to the end of the sequence.
    ##
    ## Requires copying of the sequence.
    ##   ```
    ##   assert(@[1, 2, 3] & 4 == @[1, 2, 3, 4])
    ##   ```
    ##
    ## See also:
    ## * `add(var seq[T], T) <#add,seq[T],sinkT>`_
    newSeq(result, x.len + 1)
    for i in 0..x.len-1:
      result[i] = x[i]
    result[x.len] = y

  proc `&`*[T](x: T, y: seq[T]): seq[T] {.noSideEffect.} =
    ## Prepends the element x to the beginning of the sequence.
    ##
    ## Requires copying of the sequence.
    ##   ```
    ##   assert(1 & @[2, 3, 4] == @[1, 2, 3, 4])
    ##   ```
    newSeq(result, y.len + 1)
    result[0] = x
    for i in 0..y.len-1:
      result[i+1] = y[i]


proc instantiationInfo*(index = -1, fullPaths = false): tuple[
  filename: string, line: int, column: int] {.magic: "InstantiationInfo", noSideEffect.}
  ## Provides access to the compiler's instantiation stack line information
  ## of a template.
  ##
  ## While similar to the `caller info`:idx: of other languages, it is determined
  ## at compile time.
  ##
  ## This proc is mostly useful for meta programming (eg. `assert` template)
  ## to retrieve information about the current filename and line number.
  ## Example:
  ##
  ##   ```
  ##   import std/strutils
  ##
  ##   template testException(exception, code: untyped): typed =
  ##     try:
  ##       let pos = instantiationInfo()
  ##       discard(code)
  ##       echo "Test failure at $1:$2 with '$3'" % [pos.filename,
  ##         $pos.line, astToStr(code)]
  ##       assert false, "A test expecting failure succeeded?"
  ##     except exception:
  ##       discard
  ##
  ##   proc tester(pos: int): int =
  ##     let
  ##       a = @[1, 2, 3]
  ##     result = a[pos]
  ##
  ##   when isMainModule:
  ##     testException(IndexDefect, tester(30))
  ##     testException(IndexDefect, tester(1))
  ##     # --> Test failure at example.nim:20 with 'tester(1)'
  ##   ```


when notJSnotNims:
  import system/ansi_c
  import system/memory


{.push stackTrace: off.}

when not defined(js) and hasThreadSupport and hostOS != "standalone":
  import std/private/syslocks
  include "system/threadlocalstorage"

when not defined(js) and defined(nimV2):
  type
    DestructorProc = proc (p: pointer) {.nimcall, benign, raises: [].}
    TNimTypeV2 {.compilerproc.} = object
      destructor: pointer
      size: int
      align: int16
      depth: int16
      display: ptr UncheckedArray[uint32] # classToken
      when defined(nimTypeNames):
        name: cstring
      traceImpl: pointer
      typeInfoV1: pointer # for backwards compat, usually nil
      flags: int
    PNimTypeV2 = ptr TNimTypeV2

when notJSnotNims and defined(nimSeqsV2):
  include "system/strs_v2"
  include "system/seqs_v2"

{.pop.}

when not defined(nimscript):
  proc writeStackTrace*() {.tags: [], gcsafe, raises: [].}
    ## Writes the current stack trace to `stderr`. This is only works
    ## for debug builds. Since it's usually used for debugging, this
    ## is proclaimed to have no IO effect!

when not declared(sysFatal):
  include "system/fatal"


when defined(nimV2):
  include system/arc

template newException*(exceptn: typedesc, message: string;
                       parentException: ref Exception = nil): untyped =
  ## Creates an exception object of type `exceptn` and sets its `msg` field
  ## to `message`. Returns the new exception object.
  (ref exceptn)(msg: message, parent: parentException)

when not defined(nimPreviewSlimSystem):
  import std/assertions
  export assertions

import system/iterators
export iterators


proc find*[T, S](a: T, item: S): int {.inline.}=
  ## Returns the first index of `item` in `a` or -1 if not found. This requires
  ## appropriate `items` and `==` operations to work.
  result = 0
  for i in items(a):
    if i == item: return
    inc(result)
  result = -1

proc contains*[T](a: openArray[T], item: T): bool {.inline.}=
  ## Returns true if `item` is in `a` or false if not found. This is a shortcut
  ## for `find(a, item) >= 0`.
  ##
  ## This allows the `in` operator: `a.contains(item)` is the same as
  ## `item in a`.
  ##   ```
  ##   var a = @[1, 3, 5]
  ##   assert a.contains(5)
  ##   assert 3 in a
  ##   assert 99 notin a
  ##   ```
  return find(a, item) >= 0

proc pop*[T](s: var seq[T]): T {.inline, noSideEffect.} =
  ## Returns the last item of `s` and decreases `s.len` by one. This treats
  ## `s` as a stack and implements the common *pop* operation.
  ##
  ## Raises `IndexDefect` if `s` is empty.
  runnableExamples:
    var a = @[1, 3, 5, 7]
    let b = pop(a)
    assert b == 7
    assert a == @[1, 3, 5]

  var L = s.len-1
  when defined(nimV2):
    result = move s[L]
    shrink(s, L)
  else:
    result = s[L]
    setLen(s, L)

proc `==`*[T: tuple|object](x, y: T): bool =
  ## Generic `==` operator for tuples that is lifted from the components.
  ## of `x` and `y`.
  for a, b in fields(x, y):
    if a != b: return false
  return true

proc `<=`*[T: tuple](x, y: T): bool =
  ## Generic lexicographic `<=` operator for tuples that is lifted from the
  ## components of `x` and `y`. This implementation uses `cmp`.
  for a, b in fields(x, y):
    var c = cmp(a, b)
    if c < 0: return true
    if c > 0: return false
  return true

proc `<`*[T: tuple](x, y: T): bool =
  ## Generic lexicographic `<` operator for tuples that is lifted from the
  ## components of `x` and `y`. This implementation uses `cmp`.
  for a, b in fields(x, y):
    var c = cmp(a, b)
    if c < 0: return true
    if c > 0: return false
  return false


include "system/gc_interface"

# we have to compute this here before turning it off in except.nim anyway ...
const NimStackTrace = compileOption("stacktrace")

import system/coro_detection

{.push checks: off.}
# obviously we cannot generate checking operations here :-)
# because it would yield into an endless recursion
# however, stack-traces are available for most parts
# of the code

when notJSnotNims:
  var
    globalRaiseHook*: proc (e: ref Exception): bool {.nimcall, benign.}
      ## With this hook you can influence exception handling on a global level.
      ## If not nil, every 'raise' statement ends up calling this hook.
      ##
      ## .. warning:: Ordinary application code should never set this hook! You better know what you do when setting this.
      ##
      ## If `globalRaiseHook` returns false, the exception is caught and does
      ## not propagate further through the call stack.

    localRaiseHook* {.threadvar.}: proc (e: ref Exception): bool {.nimcall, benign.}
      ## With this hook you can influence exception handling on a
      ## thread local level.
      ## If not nil, every 'raise' statement ends up calling this hook.
      ##
      ## .. warning:: Ordinary application code should never set this hook! You better know what you do when setting this.
      ##
      ## If `localRaiseHook` returns false, the exception
      ## is caught and does not propagate further through the call stack.

    outOfMemHook*: proc () {.nimcall, tags: [], benign, raises: [].}
      ## Set this variable to provide a procedure that should be called
      ## in case of an `out of memory`:idx: event. The standard handler
      ## writes an error message and terminates the program.
      ##
      ## `outOfMemHook` can be used to raise an exception in case of OOM like so:
      ##
      ##   ```
      ##   var gOutOfMem: ref EOutOfMemory
      ##   new(gOutOfMem) # need to be allocated *before* OOM really happened!
      ##   gOutOfMem.msg = "out of memory"
      ##
      ##   proc handleOOM() =
      ##     raise gOutOfMem
      ##
      ##   system.outOfMemHook = handleOOM
      ##   ```
      ##
      ## If the handler does not raise an exception, ordinary control flow
      ## continues and the program is terminated.
    unhandledExceptionHook*: proc (e: ref Exception) {.nimcall, tags: [], benign, raises: [].}
      ## Set this variable to provide a procedure that should be called
      ## in case of an `unhandle exception` event. The standard handler
      ## writes an error message and terminates the program, except when
      ## using `--os:any`

type
  PFrame* = ptr TFrame  ## Represents a runtime frame of the call stack;
                        ## part of the debugger API.
  # keep in sync with nimbase.h `struct TFrame_`
  TFrame* {.importc, nodecl, final.} = object ## The frame itself.
    prev*: PFrame       ## Previous frame; used for chaining the call stack.
    procname*: cstring  ## Name of the proc that is currently executing.
    line*: int          ## Line number of the proc that is currently executing.
    filename*: cstring  ## Filename of the proc that is currently executing.
    len*: int16         ## Length of the inspectable slots.
    calldepth*: int16   ## Used for max call depth checking.
    when NimStackTraceMsgs:
      frameMsgLen*: int   ## end position in frameMsgBuf for this frame.

when defined(js) or defined(nimdoc):
  proc add*(x: var string, y: cstring) {.asmNoStackFrame.} =
    ## Appends `y` to `x` in place.
    runnableExamples:
      var tmp = ""
      tmp.add(cstring("ab"))
      tmp.add(cstring("cd"))
      doAssert tmp == "abcd"
    asm """
      if (`x` === null) { `x` = []; }
      var off = `x`.length;
      `x`.length += `y`.length;
      for (var i = 0; i < `y`.length; ++i) {
        `x`[off+i] = `y`.charCodeAt(i);
      }
    """
  proc add*(x: var cstring, y: cstring) {.magic: "AppendStrStr".} =
    ## Appends `y` to `x` in place.
    ## Only implemented for JS backend.
    runnableExamples:
      when defined(js):
        var tmp: cstring = ""
        tmp.add(cstring("ab"))
        tmp.add(cstring("cd"))
        doAssert tmp == cstring("abcd")

elif hasAlloc:
  {.push stackTrace: off, profiler: off.}
  proc add*(x: var string, y: cstring) =
    var i = 0
    if y != nil:
      while y[i] != '\0':
        add(x, y[i])
        inc(i)
  {.pop.}

proc echo*(x: varargs[typed, `$`]) {.magic: "Echo", benign, sideEffect.}
  ## Writes and flushes the parameters to the standard output.
  ##
  ## Special built-in that takes a variable number of arguments. Each argument
  ## is converted to a string via `$`, so it works for user-defined
  ## types that have an overloaded `$` operator.
  ## It is roughly equivalent to `writeLine(stdout, x); flushFile(stdout)`, but
  ## available for the JavaScript target too.
  ##
  ## Unlike other IO operations this is guaranteed to be thread-safe as
  ## `echo` is very often used for debugging convenience. If you want to use
  ## `echo` inside a `proc without side effects
  ## <manual.html#pragmas-nosideeffect-pragma>`_ you can use `debugEcho
  ## <#debugEcho,varargs[typed,]>`_ instead.

proc debugEcho*(x: varargs[typed, `$`]) {.magic: "Echo", noSideEffect,
                                          tags: [], raises: [].}
  ## Same as `echo <#echo,varargs[typed,]>`_, but as a special semantic rule,
  ## `debugEcho` pretends to be free of side effects, so that it can be used
  ## for debugging routines marked as `noSideEffect
  ## <manual.html#pragmas-nosideeffect-pragma>`_.

when hostOS == "standalone" and defined(nogc):
  proc nimToCStringConv(s: NimString): cstring {.compilerproc, inline.} =
    if s == nil or s.len == 0: result = cstring""
    else: result = cast[cstring](addr s.data)

proc getTypeInfo*[T](x: T): pointer {.magic: "GetTypeInfo", benign.}
  ## Get type information for `x`.
  ##
  ## Ordinary code should not use this, but the `typeinfo module
  ## <typeinfo.html>`_ instead.


when not defined(js):

  proc likelyProc(val: bool): bool {.importc: "NIM_LIKELY", nodecl, noSideEffect.}
  proc unlikelyProc(val: bool): bool {.importc: "NIM_UNLIKELY", nodecl, noSideEffect.}

template likely*(val: bool): bool =
  ## Hints the optimizer that `val` is likely going to be true.
  ##
  ## You can use this template to decorate a branch condition. On certain
  ## platforms this can help the processor predict better which branch is
  ## going to be run. Example:
  ##   ```
  ##   for value in inputValues:
  ##     if likely(value <= 100):
  ##       process(value)
  ##     else:
  ##       echo "Value too big!"
  ##   ```
  ##
  ## On backends without branch prediction (JS and the nimscript VM), this
  ## template will not affect code execution.
  when nimvm:
    val
  else:
    when defined(js):
      val
    else:
      likelyProc(val)

template unlikely*(val: bool): bool =
  ## Hints the optimizer that `val` is likely going to be false.
  ##
  ## You can use this proc to decorate a branch condition. On certain
  ## platforms this can help the processor predict better which branch is
  ## going to be run. Example:
  ##   ```
  ##   for value in inputValues:
  ##     if unlikely(value > 100):
  ##       echo "Value too big!"
  ##     else:
  ##       process(value)
  ##   ```
  ##
  ## On backends without branch prediction (JS and the nimscript VM), this
  ## template will not affect code execution.
  when nimvm:
    val
  else:
    when defined(js):
      val
    else:
      unlikelyProc(val)

import system/dollars
export dollars

when defined(nimAuditDelete):
  {.pragma: auditDelete, deprecated: "review this call for out of bounds behavior".}
else:
  {.pragma: auditDelete.}

proc delete*[T](x: var seq[T], i: Natural) {.noSideEffect, auditDelete.} =
  ## Deletes the item at index `i` by moving all `x[i+1..^1]` items by one position.
  ##
  ## This is an `O(n)` operation.
  ##
  ## .. note:: With `-d:nimStrictDelete`, an index error is produced when the index passed
  ##    to it was out of bounds. `-d:nimStrictDelete` will become the default
  ##    in upcoming versions.
  ##
  ## See also:
  ## * `del <#del,seq[T],Natural>`_ for O(1) operation
  ##
  runnableExamples:
    var s = @[1, 2, 3, 4, 5]
    s.delete(2)
    doAssert s == @[1, 2, 4, 5]

  when defined(nimStrictDelete):
    if i > high(x):
      # xxx this should call `raiseIndexError2(i, high(x))` after some refactoring
      raise (ref IndexDefect)(msg: "index out of bounds: '" & $i & "' < '" & $x.len & "' failed")

  template defaultImpl =
    let xl = x.len
    for j in i.int..xl-2: movingCopy(x[j], x[j+1])
    setLen(x, xl-1)

  when nimvm:
    defaultImpl()
  else:
    when defined(js):
      {.emit: "`x`.splice(`i`, 1);".}
    else:
      defaultImpl()


const
  NimVersion*: string = $NimMajor & "." & $NimMinor & "." & $NimPatch
    ## is the version of Nim as a string.

when not defined(js):
  {.push stackTrace: off, profiler: off.}

  when hasAlloc:
    when not defined(gcRegions) and not usesDestructors:
      proc initGC() {.gcsafe, raises: [].}

    proc initStackBottom() {.inline, compilerproc.} =
      # WARNING: This is very fragile! An array size of 8 does not work on my
      # Linux 64bit system. -- That's because the stack direction is the other
      # way around.
      when declared(nimGC_setStackBottom):
        var locals {.volatile, noinit.}: pointer
        locals = addr(locals)
        nimGC_setStackBottom(locals)

    proc initStackBottomWith(locals: pointer) {.inline, compilerproc.} =
      # We need to keep initStackBottom around for now to avoid
      # bootstrapping problems.
      when declared(nimGC_setStackBottom):
        nimGC_setStackBottom(locals)

    when not usesDestructors:
      {.push profiler: off.}
      var
        strDesc = TNimType(size: sizeof(string), kind: tyString, flags: {ntfAcyclic})
      {.pop.}

  {.pop.}


when not defined(js):
  # ugly hack, see the accompanying .pop for
  # the mysterious error message
  {.push stackTrace: off, profiler: off.}

when notJSnotNims:
  proc zeroMem(p: pointer, size: Natural) =
    nimZeroMem(p, size)
    when declared(memTrackerOp):
      memTrackerOp("zeroMem", p, size)
  proc copyMem(dest, source: pointer, size: Natural) =
    nimCopyMem(dest, source, size)
    when declared(memTrackerOp):
      memTrackerOp("copyMem", dest, size)
  proc moveMem(dest, source: pointer, size: Natural) =
    c_memmove(dest, source, csize_t(size))
    when declared(memTrackerOp):
      memTrackerOp("moveMem", dest, size)
  proc equalMem(a, b: pointer, size: Natural): bool =
    nimCmpMem(a, b, size) == 0
  proc cmpMem(a, b: pointer, size: Natural): int =
    nimCmpMem(a, b, size).int

when not defined(js):
  proc cmp(x, y: string): int =
    when nimvm:
      if x < y: result = -1
      elif x > y: result = 1
      else: result = 0
    else:
      when not defined(nimscript): # avoid semantic checking
        let minlen = min(x.len, y.len)
        result = int(nimCmpMem(x.cstring, y.cstring, cast[csize_t](minlen)))
        if result == 0:
          result = x.len - y.len

  when declared(newSeq):
    proc cstringArrayToSeq*(a: cstringArray, len: Natural): seq[string] =
      ## Converts a `cstringArray` to a `seq[string]`. `a` is supposed to be
      ## of length `len`.
      newSeq(result, len)
      for i in 0..len-1: result[i] = $a[i]

    proc cstringArrayToSeq*(a: cstringArray): seq[string] =
      ## Converts a `cstringArray` to a `seq[string]`. `a` is supposed to be
      ## terminated by `nil`.
      var L = 0
      while a[L] != nil: inc(L)
      result = cstringArrayToSeq(a, L)


when not defined(js) and declared(alloc0) and declared(dealloc):
  proc allocCStringArray*(a: openArray[string]): cstringArray =
    ## Creates a NULL terminated cstringArray from `a`. The result has to
    ## be freed with `deallocCStringArray` after it's not needed anymore.
    result = cast[cstringArray](alloc0((a.len+1) * sizeof(cstring)))

    let x = cast[ptr UncheckedArray[string]](a)
    for i in 0 .. a.high:
      result[i] = cast[cstring](alloc0(x[i].len+1))
      copyMem(result[i], addr(x[i][0]), x[i].len)

  proc deallocCStringArray*(a: cstringArray) =
    ## Frees a NULL terminated cstringArray.
    var i = 0
    while a[i] != nil:
      dealloc(a[i])
      inc(i)
    dealloc(a)

when notJSnotNims:
  type
    PSafePoint = ptr TSafePoint
    TSafePoint {.compilerproc, final.} = object
      prev: PSafePoint # points to next safe point ON THE STACK
      status: int
      context: C_JmpBuf
    SafePoint = TSafePoint

when not defined(js):
  when declared(initAllocator):
    initAllocator()
  when hasThreadSupport:
    when hostOS != "standalone":
      include system/threadimpl
      when not defined(nimPreviewSlimSystem):
        import std/typedthreads
        export typedthreads

  elif not defined(nogc) and not defined(nimscript):
    when not defined(useNimRtl) and not defined(createNimRtl): initStackBottom()
    when declared(initGC): initGC()

when notJSnotNims:
  proc setControlCHook*(hook: proc () {.noconv.})
    ## Allows you to override the behaviour of your application when CTRL+C
    ## is pressed. Only one such hook is supported.
    ## Example:
    ##
    ##   ```
    ##   proc ctrlc() {.noconv.} =
    ##     echo "Ctrl+C fired!"
    ##     # do clean up stuff
    ##     quit()
    ##
    ##   setControlCHook(ctrlc)
    ##   ```

  when not defined(noSignalHandler) and not defined(useNimRtl):
    proc unsetControlCHook*()
      ## Reverts a call to setControlCHook.

  when hostOS != "standalone":
    proc getStackTrace*(): string {.gcsafe.}
      ## Gets the current stack trace. This only works for debug builds.

    proc getStackTrace*(e: ref Exception): string {.gcsafe.}
      ## Gets the stack trace associated with `e`, which is the stack that
      ## lead to the `raise` statement. This only works for debug builds.

  {.push stackTrace: off, profiler: off.}
  when defined(memtracker):
    include "system/memtracker"

  when hostOS == "standalone":
    include "system/embedded"
  else:
    include "system/excpt"
  include "system/chcks"

  # we cannot compile this with stack tracing on
  # as it would recurse endlessly!
  include "system/integerops"
  {.pop.}


when not defined(js):
  # this is a hack: without this when statement, you would get:
  # Error: system module needs: nimGCvisit
  {.pop.} # stackTrace: off, profiler: off



when notJSnotNims:
  when hostOS != "standalone" and hostOS != "any":
    include "system/dyncalls"

  import system/countbits_impl
  include "system/sets"

  when defined(gogc):
    const GenericSeqSize = (3 * sizeof(int))
  else:
    const GenericSeqSize = (2 * sizeof(int))

  proc getDiscriminant(aa: pointer, n: ptr TNimNode): uint =
    sysAssert(n.kind == nkCase, "getDiscriminant: node != nkCase")
    var d: uint
    var a = cast[uint](aa)
    case n.typ.size
    of 1: d = uint(cast[ptr uint8](a + uint(n.offset))[])
    of 2: d = uint(cast[ptr uint16](a + uint(n.offset))[])
    of 4: d = uint(cast[ptr uint32](a + uint(n.offset))[])
    of 8: d = uint(cast[ptr uint64](a + uint(n.offset))[])
    else:
      d = 0'u
      sysAssert(false, "getDiscriminant: invalid n.typ.size")
    return d

  proc selectBranch(aa: pointer, n: ptr TNimNode): ptr TNimNode =
    var discr = getDiscriminant(aa, n)
    if discr < cast[uint](n.len):
      result = n.sons[discr]
      if result == nil: result = n.sons[n.len]
      # n.sons[n.len] contains the `else` part (but may be nil)
    else:
      result = n.sons[n.len]

when notJSnotNims and hasAlloc:
  {.push profiler: off.}
  include "system/mmdisp"
  {.pop.}
  {.push stackTrace: off, profiler: off.}
  when not defined(nimSeqsV2):
    include "system/sysstr"
  {.pop.}

  include "system/strmantle"
  include "system/assign"

  when not defined(nimV2):
    include "system/repr"

when notJSnotNims and hasThreadSupport and hostOS != "standalone":
  when not defined(nimPreviewSlimSystem):
    include "system/channels_builtin"


when notJSnotNims and hostOS != "standalone":
  proc getCurrentException*(): ref Exception {.compilerRtl, inl, benign.} =
    ## Retrieves the current exception; if there is none, `nil` is returned.
    result = currException

  proc nimBorrowCurrentException(): ref Exception {.compilerRtl, inl, benign, nodestroy.} =
    # .nodestroy here so that we do not produce a write barrier as the
    # C codegen only uses it in a borrowed way:
    result = currException

  proc getCurrentExceptionMsg*(): string {.inline, benign.} =
    ## Retrieves the error message that was attached to the current
    ## exception; if there is none, `""` is returned.
    return if currException == nil: "" else: currException.msg

  proc setCurrentException*(exc: ref Exception) {.inline, benign.} =
    ## Sets the current exception.
    ##
    ## .. warning:: Only use this if you know what you are doing.
    currException = exc
elif defined(nimscript):
  proc getCurrentException*(): ref Exception {.compilerRtl.} = discard

when notJSnotNims:
  {.push stackTrace: off, profiler: off.}
  when (defined(profiler) or defined(memProfiler)):
    include "system/profiler"
  {.pop.}

  proc rawProc*[T: proc](x: T): pointer {.noSideEffect, inline.} =
    ## Retrieves the raw proc pointer of the closure `x`. This is
    ## useful for interfacing closures with C/C++, hash compuations, etc.
    when T is "closure":
      #[
      The conversion from function pointer to `void*` is a tricky topic, but this
      should work at least for c++ >= c++11, e.g. for `dlsym` support.
      refs: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=57869,
      https://stackoverflow.com/questions/14125474/casts-between-pointer-to-function-and-pointer-to-object-in-c-and-c
      ]#
      {.emit: """
      `result` = (void*)`x`.ClP_0;
      """.}
    else:
      {.error: "Only closure function and iterator are allowed!".}

  proc rawEnv*[T: proc](x: T): pointer {.noSideEffect, inline.} =
    ## Retrieves the raw environment pointer of the closure `x`. See also `rawProc`.
    when T is "closure":
      {.emit: """
      `result` = `x`.ClE_0;
      """.}
    else:
      {.error: "Only closure function and iterator are allowed!".}

  proc finished*[T: proc](x: T): bool {.noSideEffect, inline, magic: "Finished".} =
    ## It can be used to determine if a first class iterator has finished.
    when T is "iterator":
      {.emit: """
      `result` = ((NI*) `x`.ClE_0)[1] < 0;
      """.}
    else:
      {.error: "Only closure iterator is allowed!".}

from std/private/digitsutils import addInt
export addInt

when defined(js):
  include "system/jssys"
  include "system/reprjs"


when defined(nimNoQuit):
  proc quit*(errorcode: int = QuitSuccess) = discard "ignoring quit"

elif defined(nimdoc):
  proc quit*(errorcode: int = QuitSuccess) {.magic: "Exit", noreturn.}
    ## Stops the program immediately with an exit code.
    ##
    ## Before stopping the program the "exit procedures" are called in the
    ## opposite order they were added with `addExitProc <exitprocs.html#addExitProc,proc)>`_.
    ##
    ## The proc `quit(QuitSuccess)` is called implicitly when your nim
    ## program finishes without incident for platforms where this is the
    ## expected behavior. A raised unhandled exception is
    ## equivalent to calling `quit(QuitFailure)`.
    ##
    ## Note that this is a *runtime* call and using `quit` inside a macro won't
    ## have any compile time effect. If you need to stop the compiler inside a
    ## macro, use the `error <manual.html#pragmas-error-pragma>`_ or `fatal
    ## <manual.html#pragmas-fatal-pragma>`_ pragmas.
    ##
    ## .. warning:: `errorcode` gets saturated when it exceeds the valid range
    ##    on the specific platform. On Posix, the valid range is `low(int8)..high(int8)`.
    ##    On Windows, the valid range is `low(int32)..high(int32)`. For instance,
    ##    `quit(int(0x100000000))` is equal to `quit(127)` on Linux.
    ##
    ## .. danger:: In almost all cases, in particular in library code, prefer
    ##   alternatives, e.g. `doAssert false` or raise a `Defect`.
    ##   `quit` bypasses regular control flow in particular `defer`,
    ##   `try`, `catch`, `finally` and `destructors`, and exceptions that may have been
    ##   raised by an `addExitProc` proc, as well as cleanup code in other threads.
    ##   It does *not* call the garbage collector to free all the memory,
    ##   unless an `addExitProc` proc calls `GC_fullCollect <#GC_fullCollect>`_.

elif defined(genode):
  proc quit*(errorcode: int = QuitSuccess) {.inline, noreturn.} =
    rawQuit(errorcode)

elif defined(js) and defined(nodejs) and not defined(nimscript):
  proc quit*(errorcode: int = QuitSuccess) {.magic: "Exit",
    importc: "process.exit", noreturn.}

else:
  proc quit*(errorcode: int = QuitSuccess) {.inline, noreturn.} =
    when defined(posix): # posix uses low 8 bits
      type ExitCodeRange = int8
    else: # win32 uses low 32 bits
      type ExitCodeRange = cint
    when sizeof(errorcode) > sizeof(ExitCodeRange):
      if errorcode < low(ExitCodeRange):
        rawQuit(low(ExitCodeRange).cint)
      elif errorcode > high(ExitCodeRange):
        rawQuit(high(ExitCodeRange).cint)
      else:
        rawQuit(errorcode.cint)
    else:
      rawQuit(errorcode.cint)

proc quit*(errormsg: string, errorcode = QuitFailure) {.noreturn.} =
  ## A shorthand for `echo(errormsg); quit(errorcode)`.
  when defined(nimscript) or defined(js) or (hostOS == "standalone"):
    echo errormsg
  else:
    when nimvm:
      echo errormsg
    else:
      cstderr.rawWrite(errormsg)
      cstderr.rawWrite("\n")
  quit(errorcode)

{.pop.} # checks: off
# {.pop.} # hints: off

include "system/indices"

proc `&=`*(x: var string, y: string) {.magic: "AppendStrStr", noSideEffect.}
  ## Appends in place to a string.
  ##   ```
  ##   var a = "abc"
  ##   a &= "de" # a <- "abcde"
  ##   ```

template `&=`*(x, y: typed) =
  ## Generic 'sink' operator for Nim.
  ##
  ## If not specialized further, an alias for `add`.
  add(x, y)

when compileOption("rangechecks"):
  template rangeCheck*(cond) =
    ## Helper for performing user-defined range checks.
    ## Such checks will be performed only when the `rangechecks`
    ## compile-time option is enabled.
    if not cond: sysFatal(RangeDefect, "range check failed")
else:
  template rangeCheck*(cond) = discard

when not defined(gcArc) and not defined(gcOrc):
  proc shallow*[T](s: var seq[T]) {.noSideEffect, inline.} =
    ## Marks a sequence `s` as `shallow`:idx:. Subsequent assignments will not
    ## perform deep copies of `s`.
    ##
    ## This is only useful for optimization purposes.
    if s.len == 0: return
    when not defined(js) and not defined(nimscript) and not defined(nimSeqsV2):
      var s = cast[PGenericSeq](s)
      {.noSideEffect.}:
        s.reserved = s.reserved or seqShallowFlag

  proc shallow*(s: var string) {.noSideEffect, inline.} =
    ## Marks a string `s` as `shallow`:idx:. Subsequent assignments will not
    ## perform deep copies of `s`.
    ##
    ## This is only useful for optimization purposes.
    when not defined(js) and not defined(nimscript) and not defined(nimSeqsV2):
      var s = cast[PGenericSeq](s)
      if s == nil:
        s = cast[PGenericSeq](newString(0))
      # string literals cannot become 'shallow':
      if (s.reserved and strlitFlag) == 0:
        {.noSideEffect.}:
          s.reserved = s.reserved or seqShallowFlag

type
  NimNodeObj = object

  NimNode* {.magic: "PNimrodNode".} = ref NimNodeObj
    ## Represents a Nim AST node. Macros operate on this type.

type
  ForLoopStmt* {.compilerproc.} = object ## \
    ## A special type that marks a macro as a `for-loop macro`:idx:.
    ## See `"For Loop Macro" <manual.html#macros-for-loop-macro>`_.

macro varargsLen*(x: varargs[untyped]): int {.since: (1, 1).} =
  ## returns number of variadic arguments in `x`
  proc varargsLenImpl(x: NimNode): NimNode {.magic: "LengthOpenArray", noSideEffect.}
  varargsLenImpl(x)

when defined(nimV2):
  import system/repr_v2
  export repr_v2

when hasAlloc or defined(nimscript):
  proc insert*(x: var string, item: string, i = 0.Natural) {.noSideEffect.} =
    ## Inserts `item` into `x` at position `i`.
    ##   ```
    ##   var a = "abc"
    ##   a.insert("zz", 0) # a <- "zzabc"
    ##   ```
    var xl = x.len
    setLen(x, xl+item.len)
    var j = xl-1
    while j >= i:
      when defined(gcArc) or defined(gcOrc):
        x[j+item.len] = move x[j]
      else:
        shallowCopy(x[j+item.len], x[j])
      dec(j)
    j = 0
    while j < item.len:
      x[j+i] = item[j]
      inc(j)

when declared(initDebugger):
  initDebugger()

proc addEscapedChar*(s: var string, c: char) {.noSideEffect, inline.} =
  ## Adds a char to string `s` and applies the following escaping:
  ##
  ## * replaces any ``\`` by `\\`
  ## * replaces any `'` by `\'`
  ## * replaces any `"` by `\"`
  ## * replaces any `\a` by `\\a`
  ## * replaces any `\b` by `\\b`
  ## * replaces any `\t` by `\\t`
  ## * replaces any `\n` by `\\n`
  ## * replaces any `\v` by `\\v`
  ## * replaces any `\f` by `\\f`
  ## * replaces any `\r` by `\\r`
  ## * replaces any `\e` by `\\e`
  ## * replaces any other character not in the set `{\21..\126}`
  ##   by `\xHH` where `HH` is its hexadecimal value
  ##
  ## The procedure has been designed so that its output is usable for many
  ## different common syntaxes.
  ##
  ## .. warning:: This is **not correct** for producing ANSI C code!
  ##
  case c
  of '\a': s.add "\\a" # \x07
  of '\b': s.add "\\b" # \x08
  of '\t': s.add "\\t" # \x09
  of '\n': s.add "\\n" # \x0A
  of '\v': s.add "\\v" # \x0B
  of '\f': s.add "\\f" # \x0C
  of '\r': (when defined(nimLegacyAddEscapedCharx0D): s.add "\\c" else: s.add "\\r") # \x0D
  of '\e': s.add "\\e" # \x1B
  of '\\': s.add("\\\\")
  of '\'': s.add("\\'")
  of '\"': s.add("\\\"")
  of {'\32'..'\126'} - {'\\', '\'', '\"'}: s.add(c)
  else:
    s.add("\\x")
    const HexChars = "0123456789ABCDEF"
    let n = ord(c)
    s.add(HexChars[int((n and 0xF0) shr 4)])
    s.add(HexChars[int(n and 0xF)])

proc addQuoted*[T](s: var string, x: T) =
  ## Appends `x` to string `s` in place, applying quoting and escaping
  ## if `x` is a string or char.
  ##
  ## See `addEscapedChar <#addEscapedChar,string,char>`_
  ## for the escaping scheme. When `x` is a string, characters in the
  ## range `{\128..\255}` are never escaped so that multibyte UTF-8
  ## characters are untouched (note that this behavior is different from
  ## `addEscapedChar`).
  ##
  ## The Nim standard library uses this function on the elements of
  ## collections when producing a string representation of a collection.
  ## It is recommended to use this function as well for user-side collections.
  ## Users may overload `addQuoted` for custom (string-like) types if
  ## they want to implement a customized element representation.
  ##
  ##   ```
  ##   var tmp = ""
  ##   tmp.addQuoted(1)
  ##   tmp.add(", ")
  ##   tmp.addQuoted("string")
  ##   tmp.add(", ")
  ##   tmp.addQuoted('c')
  ##   assert(tmp == """1, "string", 'c'""")
  ##   ```
  when T is string or T is cstring:
    s.add("\"")
    for c in x:
      # Only ASCII chars are escaped to avoid butchering
      # multibyte UTF-8 characters.
      if c <= 127.char:
        s.addEscapedChar(c)
      else:
        s.add c
    s.add("\"")
  elif T is char:
    s.add("'")
    s.addEscapedChar(x)
    s.add("'")
  # prevent temporary string allocation
  elif T is SomeInteger:
    s.addInt(x)
  elif T is SomeFloat:
    s.addFloat(x)
  elif compiles(s.add(x)):
    s.add(x)
  else:
    s.add($x)

proc locals*(): RootObj {.magic: "Plugin", noSideEffect.} =
  ## Generates a tuple constructor expression listing all the local variables
  ## in the current scope.
  ##
  ## This is quite fast as it does not rely
  ## on any debug or runtime information. Note that in contrast to what
  ## the official signature says, the return type is *not* `RootObj` but a
  ## tuple of a structure that depends on the current scope. Example:
  ##
  ##   ```
  ##   proc testLocals() =
  ##     var
  ##       a = "something"
  ##       b = 4
  ##       c = locals()
  ##       d = "super!"
  ##
  ##     b = 1
  ##     for name, value in fieldPairs(c):
  ##       echo "name ", name, " with value ", value
  ##     echo "B is ", b
  ##   # -> name a with value something
  ##   # -> name b with value 4
  ##   # -> B is 1
  ##   ```
  discard

when hasAlloc and notJSnotNims:
  # XXX how to implement 'deepCopy' is an open problem.
  proc deepCopy*[T](x: var T, y: T) {.noSideEffect, magic: "DeepCopy".} =
    ## Performs a deep copy of `y` and copies it into `x`.
    ##
    ## This is also used by the code generator
    ## for the implementation of `spawn`.
    ##
    ## For `--gc:arc` or `--gc:orc` deepcopy support has to be enabled
    ## via `--deepcopy:on`.
    discard

  proc deepCopy*[T](y: T): T =
    ## Convenience wrapper around `deepCopy` overload.
    deepCopy(result, y)

  include "system/deepcopy"

proc procCall*(x: untyped) {.magic: "ProcCall", compileTime.} =
  ## Special magic to prohibit dynamic binding for `method`:idx: calls.
  ## This is similar to `super`:idx: in ordinary OO languages.
  ##   ```
  ##   # 'someMethod' will be resolved fully statically:
  ##   procCall someMethod(a, b)
  ##   ```
  discard


proc `==`*(x, y: cstring): bool {.magic: "EqCString", noSideEffect,
                                   inline.} =
  ## Checks for equality between two `cstring` variables.
  proc strcmp(a, b: cstring): cint {.noSideEffect,
    importc, header: "<string.h>".}
  if pointer(x) == pointer(y): result = true
  elif x.isNil or y.isNil: result = false
  else: result = strcmp(x, y) == 0

template closureScope*(body: untyped): untyped =
  ## Useful when creating a closure in a loop to capture local loop variables by
  ## their current iteration values.
  ##
  ## Note: This template may not work in some cases, use
  ## `capture <sugar.html#capture.m,varargs[typed],untyped>`_ instead.
  ##
  ## Example:
  ##
  ##   ```
  ##   var myClosure : proc()
  ##   # without closureScope:
  ##   for i in 0 .. 5:
  ##     let j = i
  ##     if j == 3:
  ##       myClosure = proc() = echo j
  ##   myClosure() # outputs 5. `j` is changed after closure creation
  ##   # with closureScope:
  ##   for i in 0 .. 5:
  ##     closureScope: # Everything in this scope is locked after closure creation
  ##       let j = i
  ##       if j == 3:
  ##         myClosure = proc() = echo j
  ##   myClosure() # outputs 3
  ##   ```
  (proc() = body)()

template once*(body: untyped): untyped =
  ## Executes a block of code only once (the first time the block is reached).
  ##   ```
  ##   proc draw(t: Triangle) =
  ##     once:
  ##       graphicsInit()
  ##     line(t.p1, t.p2)
  ##     line(t.p2, t.p3)
  ##     line(t.p3, t.p1)
  ##   ```
  var alreadyExecuted {.global.} = false
  if not alreadyExecuted:
    alreadyExecuted = true
    body

{.pop.} # warning[GcMem]: off, warning[Uninit]: off

proc substr*(s: openArray[char]): string =
  ## Copies a slice of `s` into a new string and returns this new
  ## string.
  runnableExamples:
    let a = "abcdefgh"
    assert a.substr(2, 5) == "cdef"
    assert a.substr(2) == "cdefgh"
    assert a.substr(5, 99) == "fgh"
  result = newString(s.len)
  for i, ch in s:
    result[i] = ch

proc substr*(s: string, first, last: int): string = # A bug with `magic: Slice` requires this to exist this way
  ## Copies a slice of `s` into a new string and returns this new
  ## string.
  ##
  ## The bounds `first` and `last` denote the indices of
  ## the first and last characters that shall be copied. If `last`
  ## is omitted, it is treated as `high(s)`. If `last >= s.len`, `s.len`
  ## is used instead: This means `substr` can also be used to `cut`:idx:
  ## or `limit`:idx: a string's length.
  runnableExamples:
    let a = "abcdefgh"
    assert a.substr(2, 5) == "cdef"
    assert a.substr(2) == "cdefgh"
    assert a.substr(5, 99) == "fgh"

  let first = max(first, 0)
  let L = max(min(last, high(s)) - first + 1, 0)
  result = newString(L)
  for i in 0 .. L-1:
    result[i] = s[i+first]

proc substr*(s: string, first = 0): string =
  result = substr(s, first, high(s))

when defined(nimconfig):
  include "system/nimscript"

when not defined(js):
  proc toOpenArray*[T](x: ptr UncheckedArray[T]; first, last: int): openArray[T] {.
    magic: "Slice".}
  proc toOpenArray*(x: cstring; first, last: int): openArray[char] {.
    magic: "Slice".}
  proc toOpenArrayByte*(x: cstring; first, last: int): openArray[byte] {.
    magic: "Slice".}

proc toOpenArray*[T](x: seq[T]; first, last: int): openArray[T] {.
  magic: "Slice".}
proc toOpenArray*[T](x: openArray[T]; first, last: int): openArray[T] {.
  magic: "Slice".}
proc toOpenArray*[I, T](x: array[I, T]; first, last: I): openArray[T] {.
  magic: "Slice".}
proc toOpenArray*(x: string; first, last: int): openArray[char] {.
  magic: "Slice".}

proc toOpenArrayByte*(x: string; first, last: int): openArray[byte] {.
  magic: "Slice".}
proc toOpenArrayByte*(x: openArray[char]; first, last: int): openArray[byte] {.
  magic: "Slice".}
proc toOpenArrayByte*(x: seq[char]; first, last: int): openArray[byte] {.
  magic: "Slice".}

when defined(genode):
  var componentConstructHook*: proc (env: GenodeEnv) {.nimcall.}
    ## Hook into the Genode component bootstrap process.
    ##
    ## This hook is called after all globals are initialized.
    ## When this hook is set the component will not automatically exit,
    ## call `quit` explicitly to do so. This is the only available method
    ## of accessing the initial Genode environment.

  proc nim_component_construct(env: GenodeEnv) {.exportc.} =
    ## Procedure called during `Component::construct` by the loader.
    if componentConstructHook.isNil:
      env.rawQuit(programResult)
        # No native Genode application initialization,
        # exit as would POSIX.
    else:
      componentConstructHook(env)
        # Perform application initialization
        # and return to thread entrypoint.


when not defined(nimPreviewSlimSystem):
  import std/widestrs
  export widestrs

when notJSnotNims:
  when defined(windows) and compileOption("threads"):
    when not declared(addSysExitProc):
      proc addSysExitProc(quitProc: proc() {.noconv.}) {.importc: "atexit", header: "<stdlib.h>".}
    var echoLock: SysLock
    initSysLock echoLock
    addSysExitProc(proc() {.noconv.} = deinitSys(echoLock))

  const stdOutLock = compileOption("threads") and
                    not defined(windows) and
                    not defined(android) and
                    not defined(nintendoswitch) and
                    not defined(freertos) and
                    not defined(zephyr) and
                    not defined(nuttx) and
                    hostOS != "any"

  proc raiseEIO(msg: string) {.noinline, noreturn.} =
    sysFatal(IOError, msg)

  proc echoBinSafe(args: openArray[string]) {.compilerproc.} =
    when defined(androidNDK):
      # When running nim in android app, stdout goes nowhere, so echo gets ignored
      # To redirect echo to the android logcat, use -d:androidNDK
      const ANDROID_LOG_VERBOSE = 2.cint
      proc android_log_print(prio: cint, tag: cstring, fmt: cstring): cint
        {.importc: "__android_log_print", header: "<android/log.h>", varargs, discardable.}
      var s = ""
      for arg in args:
        s.add arg
      android_log_print(ANDROID_LOG_VERBOSE, "nim", s)
    else:
      # flockfile deadlocks some versions of Android 5.x.x
      when stdOutLock:
        proc flockfile(f: CFilePtr) {.importc, nodecl.}
        proc funlockfile(f: CFilePtr) {.importc, nodecl.}
        flockfile(cstdout)
      when defined(windows) and compileOption("threads"):
        acquireSys echoLock
      for s in args:
        when defined(windows):
          # equivalent to syncio.writeWindows
          proc writeWindows(f: CFilePtr; s: string; doRaise = false) =
            # Don't ask why but the 'printf' family of function is the only thing
            # that writes utf-8 strings reliably on Windows. At least on my Win 10
            # machine. We also enable `setConsoleOutputCP(65001)` now by default.
            # But we cannot call printf directly as the string might contain \0.
            # So we have to loop over all the sections separated by potential \0s.
            var i = c_fprintf(f, "%s", s)
            while i < s.len:
              if s[i] == '\0':
                let w = c_fputc('\0', f)
                if w != 0:
                  if doRaise: raiseEIO("cannot write string to file")
                  break
                inc i
              else:
                let w = c_fprintf(f, "%s", unsafeAddr s[i])
                if w <= 0:
                  if doRaise: raiseEIO("cannot write string to file")
                  break
                inc i, w
          writeWindows(cstdout, s)
        else:
          discard c_fwrite(s.cstring, cast[csize_t](s.len), 1, cstdout)
      const linefeed = "\n"
      discard c_fwrite(linefeed.cstring, linefeed.len, 1, cstdout)
      discard c_fflush(cstdout)
      when stdOutLock:
        funlockfile(cstdout)
      when defined(windows) and compileOption("threads"):
        releaseSys echoLock

when not defined(nimPreviewSlimSystem):
  import std/syncio
  export syncio

when not defined(createNimHcr) and not defined(nimscript):
  include nimhcr

when notJSnotNims and not defined(nimSeqsV2):
  proc prepareMutation*(s: var string) {.inline.} =
    ## String literals (e.g. "abc", etc) in the ARC/ORC mode are "copy on write",
    ## therefore you should call `prepareMutation` before modifying the strings
    ## via `addr`.
    runnableExamples("--gc:arc"):
      var x = "abc"
      var y = "defgh"
      prepareMutation(y) # without this, you may get a `SIGBUS` or `SIGSEGV`
      moveMem(addr y[0], addr x[0], x.len)
      assert y == "abcgh"
    discard

proc nimArrayWith[T](y: T, size: static int): array[size, T] {.compilerRtl, raises: [].} =
  ## Creates a new array filled with `y`.
  for i in 0..size-1:
    result[i] = y