about summary refs log blame commit diff stats
path: root/001help.cc
blob: 88c78d70c0703e48d03aa403438059427c50c6a2 (plain) (tree)
1
2
3


                                                                             













                                                             








                                                                              




                                           

























                                                                              
                                                                           
                        
                                                                                  
 
                        

                  










                    
//: Everything this project/binary supports.
//: This should give you a sense for what to look forward to in later layers.

:(before "End Commandline Parsing")
if (argc <= 1 || is_equal(argv[1], "--help")) {
  // this is the functionality later layers will provide
  // currently no automated tests for commandline arg parsing
  cerr << "To load files and run 'main':\n"
       << "  mu file1.mu file2.mu ...\n"
       << "To run all tests:\n"
       << "  mu test\n"
       << "To load files and then run all tests:\n"
       << "  mu test file1.mu file2.mu ...\n"
       ;
  return 0;
}

//:: Helper function used by the above fragment of code (and later layers too,
//:: who knows?).
//: The :(code) directive appends function definitions to the end of the
//: project. Regardless of where functions are defined, we can call them
//: anywhere we like as long as we format the function header in a specific
//: way: put it all on a single line without indent, end the line with ') {'
//: and no trailing whitespace. As long as functions uniformly start this
//: way, our makefile contains a little command to automatically generate
//: declarations for them.
:(code)
bool is_equal(char* s, const char* lit) {
  return strncmp(s, lit, strlen(lit)) == 0;
}

// I'll throw some style conventions here for want of a better place for them.
// As a rule I hate style guides. Do what you want, that's my motto. But since
// we're dealing with C/C++, the one big thing we want to avoid is undefined
// behavior. So, conventions:

// 0. Initialize all primitive variables in methods and constructors.

// 1. Avoid 'new' and 'delete' as far as possible. Rely on STL to perform
// memory management to avoid use-after-free issues (and memory leaks).

// 2. Avoid arrays to avoid out-of-bounds access. Never use operator[] except
// with map. Use at() with STL vectors and so on.

// 3. Valgrind all the things.

// 4. Avoid unsigned numbers. Not strictly an undefined-behavior issue, but
// the extra range doesn't matter, and it's one less confusing category of
// interaction gotchas to worry about.
//
// We're screwed on overflow (undefined behavior). Use a decent compiler. But
// we're more likely to try to subtract unsigned 2 from 1 than we are to
// create integers that don't fit in 64 bits.
//
// Corollary: don't use the size() method on containers, since it returns an
// unsigned and that'll cause warnings about mixing signed and unsigned,
// yadda-yadda. Instead use this macro below to perform an unsafe cast to
// signed. We'll just give up immediately if a container's every too large.
:(before "End Includes")
#define SIZE(X) (assert(X.size() < 1LL<<62), static_cast<long long int>(X.size()))

:(before "End Includes")
#include<assert.h>

#include<iostream>
using std::istream;
using std::ostream;
using std::iostream;
using std::cin;
using std::cout;
using std::cerr;

#include<cstring>
#include<string>
using std::string;
; background-color: #fff0f0 } /* Literal.String.Escape */ .highlight .sh { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Heredoc */ .highlight .si { color: #3333bb; background-color: #fff0f0 } /* Literal.String.Interpol */ .highlight .sx { color: #22bb22; background-color: #f0fff0 } /* Literal.String.Other */ .highlight .sr { color: #008800; background-color: #fff0ff } /* Literal.String.Regex */ .highlight .s1 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Single */ .highlight .ss { color: #aa6600; background-color: #fff0f0 } /* Literal.String.Symbol */ .highlight .bp { color: #003388 } /* Name.Builtin.Pseudo */ .highlight .fm { color: #0066bb; font-weight: bold } /* Name.Function.Magic */ .highlight .vc { color: #336699 } /* Name.Variable.Class */ .highlight .vg { color: #dd7700 } /* Name.Variable.Global */ .highlight .vi { color: #3333bb } /* Name.Variable.Instance */ .highlight .vm { color: #336699 } /* Name.Variable.Magic */ .highlight .il { color: #0000DD; font-weight: bold } /* Literal.Number.Integer.Long */
//: Transform to maintain multiple variants of a recipe depending on the
//: number and types of the ingredients and products. Allows us to use nice
//: names like 'print' or 'length' in many mutually extensible ways.

:(scenario static_dispatch)
recipe main [
  7:number/raw <- test 3
]
recipe test a:number -> z:number [
  z <- copy 1
]
recipe test a:number, b:number -> z:number [
  z <- copy 2
]
+mem: storing 1 in location 7

//: When loading recipes, accumulate variants if headers don't collide, and
//: raise a warning if headers collide.

:(before "End Globals")
map<string, vector<recipe_ordinal> > Recipe_variants;
:(before "End One-time Setup")
put(Recipe_variants, "main", vector<recipe_ordinal>());  // since we manually added main to Recipe_ordinal
:(before "Clear Other State For Recently_added_recipes")
for (map<string, vector<recipe_ordinal> >::iterator p = Recipe_variants.begin(); p != Recipe_variants.end(); ++p) {
  for (long long int i = 0; i < SIZE(p->second); ++i) {
    if (find(Recently_added_recipes.begin(), Recently_added_recipes.end(), p->second.at(i)) != Recently_added_recipes.end())
      p->second.at(i) = -1;  // just leave a ghost
  }
}

:(before "End Load Recipe Header(result)")
// there can only ever be one variant for main
if (result.name != "main" && contains_key(Recipe_ordinal, result.name)) {
  const recipe_ordinal r = get(Recipe_ordinal, result.name);
//?   cerr << result.name << ": " << contains_key(Recipe, r) << (contains_key(Recipe, r) ? get(Recipe, r).has_header : 0) << matching_variant_name(result) << '\n';
  if (!contains_key(Recipe, r) || get(Recipe, r).has_header) {
    string new_name = matching_variant_name(result);
    if (new_name.empty()) {
      // variant doesn't already exist
      new_name = next_unused_recipe_name(result.name);
      put(Recipe_ordinal, new_name, Next_recipe_ordinal++);
      get_or_insert(Recipe_variants, result.name).push_back(get(Recipe_ordinal, new_name));
    }
    trace(9999, "load") << "switching " << result.name << " to " << new_name << end();
    result.name = new_name;
//?     cerr << "=> " << new_name << '\n';
  }
}
else {
  // save first variant
  put(Recipe_ordinal, result.name, Next_recipe_ordinal++);
  get_or_insert(Recipe_variants, result.name).push_back(get(Recipe_ordinal, result.name));
}

:(code)
string matching_variant_name(const recipe& rr) {
  const vector<recipe_ordinal>& variants = get_or_insert(Recipe_variants, rr.name);
  for (long long int i = 0; i < SIZE(variants); ++i) {
    if (!contains_key(Recipe, variants.at(i))) continue;
    const recipe& candidate = get(Recipe, variants.at(i));
    if (!all_reagents_match(rr, candidate)) continue;
    return candidate.name;
  }
  return "";
}

bool all_reagents_match(const recipe& r1, const recipe& r2) {
  if (SIZE(r1.ingredients) != SIZE(r2.ingredients)) return false;
  if (SIZE(r1.products) != SIZE(r2.products)) return false;
  for (long long int i = 0; i < SIZE(r1.ingredients); ++i) {
    if (!deeply_equal_types(r1.ingredients.at(i), r2.ingredients.at(i))) {
      return false;
    }
  }
  for (long long int i = 0; i < SIZE(r1.products); ++i) {
    if (!deeply_equal_types(r1.products.at(i), r2.products.at(i))) {
      return false;
    }
  }
  return true;
}

:(before "End Globals")
set<string> Literal_type_names;
:(before "End One-time Setup")
Literal_type_names.insert("number");
Literal_type_names.insert("character");
:(code)
bool deeply_equal_types(const reagent& a, const reagent& b) {
  return deeply_equal_types(a.properties.at(0).second, b.properties.at(0).second);
}
bool deeply_equal_types(const string_tree* a, const string_tree* b) {
  if (!a) return !b;
  if (!b) return !a;
  if (a->value == "literal" && b->value == "literal")
    return true;
  if (a->value == "literal")
    return Literal_type_names.find(b->value) != Literal_type_names.end();
  if (b->value == "literal")
    return Literal_type_names.find(a->value) != Literal_type_names.end();
  return a->value == b->value
      && deeply_equal_types(a->left, b->left)
      && deeply_equal_types(a->right, b->right);
}

string next_unused_recipe_name(const string& recipe_name) {
  for (long long int i = 2; ; ++i) {
    ostringstream out;
    out << recipe_name << '_' << i;
    if (!contains_key(Recipe_ordinal, out.str()))
      return out.str();
  }
}

//: Once all the recipes are loaded, transform their bodies to replace each
//: call with the most suitable variant.

:(scenario static_dispatch_picks_most_similar_variant)
recipe main [
  7:number/raw <- test 3, 4, 5
]
recipe test a:number -> z:number [
  z <- copy 1
]
recipe test a:number, b:number -> z:number [
  z <- copy 2
]
+mem: storing 2 in location 7

//: support recipe headers in a previous transform to fill in missing types
:(before "End check_or_set_invalid_types")
for (long long int i = 0; i < SIZE(caller.ingredients); ++i) {
  check_or_set_invalid_types(caller.ingredients.at(i).type, caller.ingredients.at(i).properties.at(0).second,
                             maybe(caller.name), "recipe header ingredient");
}
for (long long int i = 0; i < SIZE(caller.products); ++i) {
  check_or_set_invalid_types(caller.products.at(i).type, caller.products.at(i).properties.at(0).second,
                             maybe(caller.name), "recipe header product");
}

//: after filling in all missing types (because we'll be introducing 'blank' types in this transform in a later layer, for shape-shifting recipes)
:(after "Transform.push_back(transform_names)")
Transform.push_back(resolve_ambiguous_calls);  // idempotent

//: In a later layer we'll introduce recursion in resolve_ambiguous_calls, by
//: having it generate code for shape-shifting recipes and then transform such
//: code. This data structure will help error messages be more useful.
//:
//: We're punning the 'call' data structure just because it has slots for
//: calling recipe and calling instruction.
:(before "End Globals")
list<call> resolve_stack;

:(code)
void resolve_ambiguous_calls(recipe_ordinal r) {
  recipe& caller_recipe = get(Recipe, r);
  trace(9991, "transform") << "--- resolve ambiguous calls for recipe " << caller_recipe.name << end();
//?   cerr << "--- resolve ambiguous calls for recipe " << caller_recipe.name << '\n';
  for (long long int index = 0; index < SIZE(caller_recipe.steps); ++index) {
    instruction& inst = caller_recipe.steps.at(index);
    if (inst.is_label) continue;
    if (non_ghost_size(get_or_insert(Recipe_variants, inst.name)) == 0) continue;
    trace(9992, "transform") << "instruction " << inst.original_string << end();
    resolve_stack.push_front(call(r));
    resolve_stack.front().running_step_index = index;
    string new_name = best_variant(inst, caller_recipe);
    if (!new_name.empty())
      inst.name = new_name;
    assert(resolve_stack.front().running_recipe == r);
    assert(resolve_stack.front().running_step_index == index);
    resolve_stack.pop_front();
  }
}

string best_variant(instruction& inst, const recipe& caller_recipe) {
  vector<recipe_ordinal>& variants = get(Recipe_variants, inst.name);
  vector<recipe_ordinal> candidates;

  // Static Dispatch Phase 1
  candidates = strictly_matching_variants(inst, variants);
  if (!candidates.empty()) return best_variant(inst, candidates).name;

  // Static Dispatch Phase 2 (shape-shifting recipes in a later layer)
  // End Static Dispatch Phase 2

  // Static Dispatch Phase 3
  candidates = strictly_matching_variants_except_literal_against_boolean(inst, variants);
  if (!candidates.empty()) return best_variant(inst, candidates).name;

  // Static Dispatch Phase 4
  candidates = matching_variants(inst, variants);
  if (!candidates.empty()) return best_variant(inst, candidates).name;

  // error messages
  if (get(Recipe_ordinal, inst.name) >= MAX_PRIMITIVE_RECIPES) {  // we currently don't check types for primitive variants
    raise_error << maybe(caller_recipe.name) << "failed to find a matching call for '" << inst.to_string() << "'\n" << end();
    for (list<call>::iterator p = /*skip*/++resolve_stack.begin(); p != resolve_stack.end(); ++p) {
      const recipe& specializer_recipe = get(Recipe, p->running_recipe);
      const instruction& specializer_inst = specializer_recipe.steps.at(p->running_step_index);
      if (specializer_recipe.name != "interactive")
        raise_error << "  (from '" << specializer_inst.to_string() << "' in " << specializer_recipe.name << ")\n" << end();
      else
        raise_error << "  (from '" << specializer_inst.to_string() << "')\n" << end();
      // One special-case to help with the rewrite_stash transform. (cross-layer)
      if (specializer_inst.products.at(0).name.find("stash_") == 0) {
        instruction stash_inst;
        if (next_stash(*p, &stash_inst)) {
          if (specializer_recipe.name != "interactive")
            raise_error << "  (part of '" << stash_inst.original_string << "' in " << specializer_recipe.name << ")\n" << end();
          else
            raise_error << "  (part of '" << stash_inst.original_string << "')\n" << end();
        }
      }
    }
  }
  return "";
}

// phase 1
vector<recipe_ordinal> strictly_matching_variants(const instruction& inst, vector<recipe_ordinal>& variants) {
  vector<recipe_ordinal> result;
  for (long long int i = 0; i < SIZE(variants); ++i) {
    if (variants.at(i) == -1) continue;
    trace(9992, "transform") << "checking variant (strict) " << i << ": " << header_label(variants.at(i)) << end();
    if (all_header_reagents_strictly_match(inst, get(Recipe, variants.at(i))))
      result.push_back(variants.at(i));
  }
  return result;
}

bool all_header_reagents_strictly_match(const instruction& inst, const recipe& variant) {
  for (long long int i = 0; i < min(SIZE(inst.ingredients), SIZE(variant.ingredients)); ++i) {
    if (!types_strictly_match(variant.ingredients.at(i), inst.ingredients.at(i))) {
      trace(9993, "transform") << "strict match failed: ingredient " << i << end();
      return false;
    }
  }
  for (long long int i = 0; i < min(SIZE(inst.products), SIZE(variant.products)); ++i) {
    if (is_dummy(inst.products.at(i))) continue;
    if (!types_strictly_match(variant.products.at(i), inst.products.at(i))) {
      trace(9993, "transform") << "strict match failed: product " << i << end();
      return false;
    }
  }
  return true;
}

// phase 3
vector<recipe_ordinal> strictly_matching_variants_except_literal_against_boolean(const instruction& inst, vector<recipe_ordinal>& variants) {
  vector<recipe_ordinal> result;
  for (long long int i = 0; i < SIZE(variants); ++i) {
    if (variants.at(i) == -1) continue;
    trace(9992, "transform") << "checking variant (strict except literals-against-booleans) " << i << ": " << header_label(variants.at(i)) << end();
    if (all_header_reagents_strictly_match_except_literal_against_boolean(inst, get(Recipe, variants.at(i))))
      result.push_back(variants.at(i));
  }
  return result;
}

bool all_header_reagents_strictly_match_except_literal_against_boolean(const instruction& inst, const recipe& variant) {
  for (long long int i = 0; i < min(SIZE(inst.ingredients), SIZE(variant.ingredients)); ++i) {
    if (!types_strictly_match_except_literal_against_boolean(variant.ingredients.at(i), inst.ingredients.at(i))) {
      trace(9993, "transform") << "strict match failed: ingredient " << i << end();
      return false;
    }
  }
  for (long long int i = 0; i < min(SIZE(variant.products), SIZE(inst.products)); ++i) {
    if (is_dummy(inst.products.at(i))) continue;
    if (!types_strictly_match_except_literal_against_boolean(variant.products.at(i), inst.products.at(i))) {
      trace(9993, "transform") << "strict match failed: product " << i << end();
      return false;
    }
  }
  return true;
}

// phase 4
vector<recipe_ordinal> matching_variants(const instruction& inst, vector<recipe_ordinal>& variants) {
  vector<recipe_ordinal> result;
  for (long long int i = 0; i < SIZE(variants); ++i) {
    if (variants.at(i) == -1) continue;
    trace(9992, "transform") << "checking variant " << i << ": " << header_label(variants.at(i)) << end();
    if (all_header_reagents_match(inst, get(Recipe, variants.at(i))))
      result.push_back(variants.at(i));
  }
  return result;
}

bool all_header_reagents_match(const instruction& inst, const recipe& variant) {
  for (long long int i = 0; i < min(SIZE(inst.ingredients), SIZE(variant.ingredients)); ++i) {
    if (!types_match(variant.ingredients.at(i), inst.ingredients.at(i))) {
      trace(9993, "transform") << "strict match failed: ingredient " << i << end();
      return false;
    }
  }
  for (long long int i = 0; i < min(SIZE(variant.products), SIZE(inst.products)); ++i) {
    if (is_dummy(inst.products.at(i))) continue;
    if (!types_match(variant.products.at(i), inst.products.at(i))) {
      trace(9993, "transform") << "strict match failed: product " << i << end();
      return false;
    }
  }
  return true;
}

// tie-breaker for each phase
const recipe& best_variant(const instruction& inst, vector<recipe_ordinal>& candidates) {
  assert(!candidates.empty());
  long long int min_score = 999;
  long long int min_index = 0;
  for (long long int i = 0; i < SIZE(candidates); ++i) {
    const recipe& candidate = get(Recipe, candidates.at(i));
    long long int score = abs(SIZE(candidate.products)-SIZE(inst.products))
                          + abs(SIZE(candidate.ingredients)-SIZE(inst.ingredients));
    assert(score < 999);
    if (score < min_score) {
      min_score = score;
      min_index = i;
    }
  }
  return get(Recipe, candidates.at(min_index));
}

long long int non_ghost_size(vector<recipe_ordinal>& variants) {
  long long int result = 0;
  for (long long int i = 0; i < SIZE(variants); ++i)
    if (variants.at(i) != -1) ++result;
  return result;
}

bool next_stash(const call& c, instruction* stash_inst) {
  const recipe& specializer_recipe = get(Recipe, c.running_recipe);
  long long int index = c.running_step_index;
  for (++index; index < SIZE(specializer_recipe.steps); ++index) {
    const instruction& inst = specializer_recipe.steps.at(index);
    if (inst.name == "stash") {
      *stash_inst = inst;
      return true;
    }
  }
  return false;
}

:(scenario static_dispatch_disabled_in_recipe_without_variants)
recipe main [
  1:number <- test 3
]
recipe test [
  2:number <- next-ingredient  # ensure no header
  reply 34
]
+mem: storing 34 in location 1

:(scenario static_dispatch_disabled_on_headerless_definition)
% Hide_warnings = true;
recipe test a:number -> z:number [
  z <- copy 1
]
recipe test [
  reply 34
]
+warn: redefining recipe test

:(scenario static_dispatch_disabled_on_headerless_definition_2)
% Hide_warnings = true;
recipe test [
  reply 34
]
recipe test a:number -> z:number [
  z <- copy 1
]
+warn: redefining recipe test

:(scenario static_dispatch_on_primitive_names)
recipe main [
  1:number <- copy 34
  2:number <- copy 34
  3:boolean <- equal 1:number, 2:number
  4:boolean <- copy 0/false
  5:boolean <- copy 0/false
  6:boolean <- equal 4:boolean, 5:boolean
]

# temporarily hardcode number equality to always fail
recipe equal x:number, y:number -> z:boolean [
  local-scope
  load-ingredients
  z <- copy 0/false
]
# comparing numbers used overload
+mem: storing 0 in location 3
# comparing booleans continues to use primitive
+mem: storing 1 in location 6

:(scenario static_dispatch_works_with_dummy_results_for_containers)
% Hide_errors = true;
recipe main [
  _ <- test 3, 4
]
recipe test a:number -> z:point [
  local-scope
  load-ingredients
  z <- merge a, 0
]
recipe test a:number, b:number -> z:point [
  local-scope
  load-ingredients
  z <- merge a, b
]
$error: 0

:(scenario static_dispatch_works_with_compound_type_containing_container_defined_after_first_use)
% Hide_errors = true;
recipe main [
  x:address:shared:foo <- new foo:type
  test x
]
container foo [
  x:number
]
recipe test a:address:shared:foo -> z:number [
  local-scope
  load-ingredients
  z:number <- get *a, x:offset
]
$error: 0

:(scenario static_dispatch_works_with_compound_type_containing_container_defined_after_second_use)
% Hide_errors = true;
recipe main [
  x:address:shared:foo <- new foo:type
  test x
]
recipe test a:address:shared:foo -> z:number [
  local-scope
  load-ingredients
  z:number <- get *a, x:offset
]
container foo [
  x:number
]
$error: 0

:(scenario static_dispatch_prefers_literals_to_be_numbers_rather_than_addresses)
recipe main [
  1:number <- foo 0
]
recipe foo x:address:number -> y:number [
  reply 34
]
recipe foo x:number -> y:number [
  reply 35
]
+mem: storing 35 in location 1

:(scenario static_dispatch_on_non_literal_character_ignores_variant_with_numbers)
% Hide_errors = true;
recipe main [
  local-scope
  x:character <- copy 10/newline
  1:number/raw <- foo x
]
recipe foo x:number -> y:number [
  load-ingredients
  reply 34
]
+error: main: ingredient 0 has the wrong type at '1:number/raw <- foo x'
-mem: storing 34 in location 1

:(scenario static_dispatch_dispatches_literal_to_boolean_before_character)
recipe main [
  1:number/raw <- foo 0  # valid literal for boolean
]
recipe foo x:character -> y:number [
  local-scope
  load-ingredients
  reply 34
]
recipe foo x:boolean -> y:number [
  local-scope
  load-ingredients
  reply 35
]
# boolean variant is preferred
+mem: storing 35 in location 1

:(scenario static_dispatch_dispatches_literal_to_character_when_out_of_boolean_range)
recipe main [
  1:number/raw <- foo 97  # not a valid literal for boolean
]
recipe foo x:character -> y:number [
  local-scope
  load-ingredients
  reply 34
]
recipe foo x:boolean -> y:number [
  local-scope
  load-ingredients
  reply 35
]
# character variant is preferred
+mem: storing 34 in location 1

:(scenario static_dispatch_dispatches_literal_to_number_if_at_all_possible)
recipe main [
  1:number/raw <- foo 97
]
recipe foo x:character -> y:number [
  local-scope
  load-ingredients
  reply 34
]
recipe foo x:number -> y:number [
  local-scope
  load-ingredients
  reply 35
]
# number variant is preferred
+mem: storing 35 in location 1

:(code)
string header_label(recipe_ordinal r) {
  const recipe& caller = get(Recipe, r);
  ostringstream out;
  out << "recipe " << caller.name;
  for (long long int i = 0; i < SIZE(caller.ingredients); ++i)
    out << ' ' << caller.ingredients.at(i).to_string();
  if (!caller.products.empty()) out << " ->";
  for (long long int i = 0; i < SIZE(caller.products); ++i)
    out << ' ' << caller.products.at(i).to_string();
  return out.str();
}

:(scenario reload_variant_retains_other_variants)
recipe main [
  1:number <- copy 34
  2:number <- foo 1:number
]
recipe foo x:number -> y:number [
  local-scope
  load-ingredients
  reply 34
]
recipe foo x:address:number -> y:number [
  local-scope
  load-ingredients
  reply 35
]
recipe! foo x:address:number -> y:number [
  local-scope
  load-ingredients
  reply 36
]
+mem: storing 34 in location 2
$error: 0
$warn: 0

:(scenario dispatch_errors_come_after_unknown_name_errors)
% Hide_errors = true;
recipe main [
  y:number <- foo x
]
recipe foo a:number -> b:number [
  local-scope
  load-ingredients
  reply 34
]
recipe foo a:boolean -> b:number [
  local-scope
  load-ingredients
  reply 35
]
+error: main: missing type for x in 'y:number <- foo x'
+error: main: failed to find a matching call for 'y:number <- foo x'

:(before "End Includes")
using std::abs;