//: Phase 3: Start running a loaded and transformed recipe.
//:
//: The process of running Mu code:
//: load -> transform -> run
//:
//: So far we've seen recipes as lists of instructions, and instructions point
//: at other recipes. To kick things off Mu needs to know how to run certain
//: 'primitive' recipes. That will then give the ability to run recipes
//: containing these primitives.
//:
//: This layer defines a skeleton with just two primitive recipes: IDLE which
//: does nothing, and COPY, which can copy numbers from one memory location to
//: another. Later layers will add more primitives.
:(scenario copy_literal)
def main [
1:num <- copy 23
]
+run: {1: "number"} <- copy {23: "literal"}
+mem: storing 23 in location 1
:(scenario copy)
def main [
1:num <- copy 23
2:num <- copy 1:num
]
+run: {2: "number"} <- copy {1: "number"}
+mem: location 1 is 23
+mem: storing 23 in location 2
:(scenario copy_multiple)
def main [
1:num, 2:num <- copy 23, 24
]
+mem: storing 23 in location 1
+mem: storing 24 in location 2
:(before "End Types")
// Book-keeping while running a recipe.
//: Later layers will replace this to support running multiple routines at once.
struct routine {
recipe_ordinal running_recipe;
int running_step_index;
routine(recipe_ordinal r) :running_recipe(r), running_step_index(0) {}
bool completed() const;
const vector<instruction>& steps() const;
};
:(before "End Globals")
routine* Current_routine = NULL;
:(before "End Reset")
Current_routine = NULL;
:(code)
void run(const recipe_ordinal r) {
routine rr(r);
Current_routine = &rr;
run_current_routine();
Current_routine = NULL;
}
void run_current_routine() {
while (should_continue_running(Current_routine)) { // beware: may modify Current_routine
// Running One Instruction
if (current_instruction().is_label) { ++current_step_index(); continue; }
trace(Initial_callstack_depth + Trace_stream->callstack_depth, "run") << to_string(current_instruction()) << end();
//? if (Foo) cerr << "run: " << to_string(current_instruction()) << '\n';
if (get_or_insert(Memory, 0) != 0) {
raise << "something wrote to location 0; this should never happen\n" << end();
put(Memory, 0, 0);
}
// read all ingredients from memory, each potentially spanning multiple locations
vector<vector<double> > ingredients;
if (should_copy_ingredients()) {
for (int i = 0; i < SIZE(current_instruction().ingredients); ++i)
ingredients.push_back(read_memory(current_instruction().ingredients.at(i)));
}
// instructions below will write to 'products'
vector<vector<double> > products;
//: This will be a large switch that later layers will often insert cases
//: into. Never call 'continue' within it. Instead, we'll explicitly
//: control which of the following stages after the switch we run for each
//: instruction.
bool write_products = true;
bool fall_through_to_next_instruction = true;
switch (current_instruction().operation) {
// Primitive Recipe Implementations
case COPY: {
copy(ingredients.begin(), ingredients.end(), inserter(products, products.begin()));
break;
}
// End Primitive Recipe Implementations
default: {
cout << "not a primitive op: " << current_instruction().operation << '\n';
}
}
//: used by a later layer
if (write_products) {
if (SIZE(products) < SIZE(current_instruction().products)) {
raise << SIZE(products) << " vs " << SIZE(current_instruction().products) << ": failed to write to all products in '" << to_original_string(current_instruction()) << "'\n" << end();
}
else {
for (int i = 0; i < SIZE(current_instruction().products); ++i) {
// Writing Instruction Product(i)
write_memory(current_instruction().products.at(i), products.at(i));
}
}
}
// End Running One Instruction
if (fall_through_to_next_instruction)
++current_step_index();
}
stop_running_current_routine:;
}
:(code)
//: hook replaced in a later layer
bool should_continue_running(const routine* current_routine) {
assert(current_routine == Current_routine); // argument passed in just to make caller readable above
return !Current_routine->completed();
}
bool should_copy_ingredients() {
// End should_copy_ingredients Special-cases
return true;
}
bool is_mu_scalar(reagent/*copy*/ r) {
return is_mu_scalar(r.type);
}
bool is_mu_scalar(const type_tree* type) {
if (!type) return false;
if (is_mu_address(type)) return false;
if (!type->atom) return false;
if (is_literal(type))
return type->name != "literal-string";
return size_of(type) == 1;
}
bool is_mu_address(reagent/*copy*/ r) {
// End Preprocess is_mu_address(reagent r)
return is_mu_address(r.type);
}
bool is_mu_address(const type_tree* type) {
if (!type) return false;
if (is_literal(type)) return false;
if (type->atom) return false;
if (!type->left->atom) {
raise << "invalid type " << to_string(type) << '\n' << end();
return false;
}
return type->left->value == Address_type_ordinal;
}
//: Some helpers.
//: Important that they return references into the current routine.
//: hook replaced in a later layer
int& current_step_index() {
return Current_routine->running_step_index;
}
//: hook replaced in a later layer
recipe_ordinal currently_running_recipe() {
return Current_routine->running_recipe;
}
//: hook replaced in a later layer
const string& current_recipe_name() {
return get(Recipe, Current_routine->running_recipe).name;
}
//: hook replaced in a later layer
const recipe& current_recipe() {
return get(Recipe, Current_routine->running_recipe);
}
//: hook replaced in a later layer
const instruction& current_instruction() {
return get(Recipe, Current_routine->running_recipe).steps.at(Current_routine->running_step_index);
}
//: hook replaced in a later layer
bool routine::completed() const {
return running_step_index >= SIZE(get(Recipe, running_recipe).steps);
}
//: hook replaced in a later layer
const vector<instruction>& routine::steps() const {
return get(Recipe, running_recipe).steps;
}
//:: Startup flow
//: Step 1: load all .mu files with numeric prefixes (in order)
:(before "End Load Recipes")
// Load Mu Prelude
//? Save_trace = true;
//? START_TRACING_UNTIL_END_OF_SCOPE;
load_file_or_directory("core.mu");
//? DUMP("");
//? exit(0);
//: Step 2: load any .mu files provided at the commandline
:(before "End Commandline Parsing")
// Check For .mu Files
//? START_TRACING_UNTIL_END_OF_SCOPE
//? Dump_trace = true;
if (argc > 1) {
// skip argv[0]
++argv;
--argc;
while (argc > 0) {
// ignore argv past '--'; that's commandline args for 'main'
if (string(*argv) == "--") break;
if (starts_with(*argv, "--"))
cerr << "treating " << *argv << " as a file rather than an option\n";
load_file_or_directory(*argv);
--argc;
++argv;
}
if (Run_tests) Recipe.erase(get(Recipe_ordinal, "main"));
}
transform_all();
//? cerr << to_original_string(get(Type_ordinal, "editor")) << '\n';
//? cerr << to_original_string(get(Recipe, get(Recipe_ordinal, "event-loop"))) << '\n';
//? DUMP("");
//? exit(0);
if (trace_contains_errors()) {
if (Start_tracing && Trace_stream) Trace_stream->dump();
return 1;
}
save_snapshots();
//: Step 3: if we aren't running tests, locate a recipe called 'main' and
//: start running it.
:(before "End Main")
if (!Run_tests && contains_key(Recipe_ordinal, "main") && contains_key(Recipe, get(Recipe_ordinal, "main"))) {
// Running Main
reset();
if (Start_tracing && Trace_stream == NULL) {
Trace_stream = new trace_stream;
Save_trace = true;
}
trace(2, "run") << "=== Starting to run" << end();
assert(Num_calls_to_transform_all == 1);
run_main(argc, argv);
if (Start_tracing && Trace_stream) Trace_stream->dump();
}
:(code)
void run_main(int argc, char* argv[]) {
recipe_ordinal r = get(Recipe_ordinal, "main");
if (r) run(r);
}
//: By default we don't maintain the trace while running main because its
//: overheads can grow rapidly. However, it's useful when debugging.
:(before "End Globals")
bool Start_tracing = false;
:(before "End Commandline Options(*arg)")
else if (is_equal(*arg, "--trace")) {
Start_tracing = true;
}
:(code)
void cleanup_main() {
if (!Trace_stream) return;
if (Save_trace)
Trace_stream->dump();
delete Trace_stream;
Trace_stream = NULL;
}
:(before "End One-time Setup")
atexit(cleanup_main);
:(code)
void load_file_or_directory(string filename) {
if (is_directory(filename)) {
load_all(filename);
return;
}
ifstream fin(filename.c_str());
if (!fin) {
cerr << "no such file '" << filename << "'\n" << end(); // don't raise, just warn. just in case it's just a name for a scenario to run.
return;
}
trace(9990, "load") << "=== " << filename << end();
load(fin);
fin.close();
}
bool is_directory(string path) {
struct stat info;
if (stat(path.c_str(), &info)) return false; // error
return info.st_mode & S_IFDIR;
}
void load_all(string dir) {
dirent** files;
int num_files = scandir(dir.c_str(), &files, NULL, alphasort);
for (int i = 0; i < num_files; ++i) {
string curr_file = files[i]->d_name;
if (isdigit(curr_file.at(0)) && ends_with(curr_file, ".mu"))
load_file_or_directory(dir+'/'+curr_file);
free(files[i]);
files[i] = NULL;
}
free(files);
}
bool ends_with(const string& s, const string& pat) {
for (string::const_reverse_iterator p = s.rbegin(), q = pat.rbegin(); q != pat.rend(); ++p, ++q) {
if (p == s.rend()) return false; // pat too long
if (*p != *q) return false;
}
return true;
}
:(before "End Includes")
#include <dirent.h>
#include <sys/stat.h>
//:: Reading from memory, writing to memory.
:(code)
vector<double> read_memory(reagent/*copy*/ x) {
// Begin Preprocess read_memory(x)
vector<double> result;
if (x.name == "null") result.push_back(/*alloc id*/0);
if (is_literal(x)) {
result.push_back(x.value);
return result;
}
// End Preprocess read_memory(x)
int size = size_of(x);
for (int offset = 0; offset < size; ++offset) {
double val = get_or_insert(Memory, x.value+offset);
trace("mem") << "location " << x.value+offset << " is " << no_scientific(val) << end();
result.push_back(val);
}
return result;
}
void write_memory(reagent/*copy*/ x, const vector<double>& data) {
assert(Current_routine); // run-time only
// Begin Preprocess write_memory(x, data)
if (!x.type) {
raise << "can't write to '" << to_string(x) << "'; no type\n" << end();
return;
}
if (is_dummy(x)) return;
if (is_literal(x)) return;
// End Preprocess write_memory(x, data)
if (x.value == 0) {
raise << "can't write to location 0 in '" << to_original_string(current_instruction()) << "'\n" << end();
return;
}
if (size_mismatch(x, data)) {
raise << maybe(current_recipe_name()) << "size mismatch in storing to '" << x.original_string << "' (" << size_of(x) << " vs " << SIZE(data) << ") at '" << to_original_string(current_instruction()) << "'\n" << end();
return;
}
// End write_memory(x) Special-cases
for (int offset = 0; offset < SIZE(data); ++offset) {
assert(x.value+offset > 0);
trace("mem") << "storing " << no_scientific(data.at(offset)) << " in location " << x.value+offset << end();
//? if (Foo) cerr << "mem: storing " << no_scientific(data.at(offset)) << " in location " << x.value+offset << '\n';
put(Memory, x.value+offset, data.at(offset));
}
}
:(code)
int size_of(const reagent& r) {
if (!r.type) return 0;
// End size_of(reagent r) Special-cases
return size_of(r.type);
}
int size_of(const type_tree* type) {
if (!type) return 0;
if (type->atom) {
if (type->value == -1) return 1; // error value, but we'll raise it elsewhere
if (type->value == 0) return 1;
// End size_of(type) Atom Special-cases
}
else {
if (!type->left->atom) {
raise << "invalid type " << to_string(type) << '\n' << end();
return 0;
}
if (type->left->value == Address_type_ordinal) return 2; // address and alloc id
// End size_of(type) Non-atom Special-cases
}
// End size_of(type) Special-cases
return 1;
}
bool size_mismatch(const reagent& x, const vector<double>& data) {
if (!x.type) return true;
// End size_mismatch(x) Special-cases
//? if (size_of(x) != SIZE(data)) cerr << size_of(x) << " vs " << SIZE(data) << '\n';
return size_of(x) != SIZE(data);
}
bool is_literal(const reagent& r) {
return is_literal(r.type);
}
bool is_literal(const type_tree* type) {
if (!type) return false;
if (!type->atom) return false;
return type->value == 0;
}
bool scalar(const vector<int>& x) {
return SIZE(x) == 1;
}
bool scalar(const vector<double>& x) {
return SIZE(x) == 1;
}
// helper for tests
void run(const string& form) {
vector<recipe_ordinal> tmp = load(form);
transform_all();
if (tmp.empty()) return;
if (trace_contains_errors()) {
if (Start_tracing && Trace_stream) Trace_stream->dump();
return;
}
// if a test defines main, it probably wants to start there regardless of
// definition order
if (contains_key(Recipe, get(Recipe_ordinal, "main")))
run(get(Recipe_ordinal, "main"));
else
run(tmp.front());
}
:(scenario run_label)
def main [
+foo
1:num <- copy 23
2:num <- copy 1:num
]
+run: {1: "number"} <- copy {23: "literal"}
+run: {2: "number"} <- copy {1: "number"}
-run: +foo
:(scenario run_dummy)
def main [
_ <- copy 0
]
+run: _ <- copy {0: "literal"}
:(scenario run_null)
def main [
1:&:num <- copy null
]
:(scenario write_to_0_disallowed)
% Hide_errors = true;
def main [
0:num <- copy 34
]
-mem: storing 34 in location 0
//: Mu is robust to various combinations of commas and spaces. You just have
//: to put spaces around the '<-'.
:(scenario comma_without_space)
def main [
1:num, 2:num <- copy 2,2
]
+mem: storing 2 in location 1
:(scenario space_without_comma)
def main [
1:num, 2:num <- copy 2 2
]
+mem: storing 2 in location 1
:(scenario comma_before_space)
def main [
1:num, 2:num <- copy 2, 2
]
+mem: storing 2 in location 1
:(scenario comma_after_space)
def main [
1:num, 2:num <- copy 2 ,2
]
+mem: storing 2 in location 1
//:: Counters for trying to understand where Mu programs are spending their
//:: time.
:(before "End Globals")
bool Run_profiler = false;
// We'll key profile information by recipe_ordinal rather than name because
// it's more efficient, and because later layers will show more than just the
// name of a recipe.
//
// One drawback: if you're clearing recipes your profile will be inaccurate.
// So far that happens in tests, and in 'run-sandboxed' in a later layer.
map<recipe_ordinal, int> Instructions_running;
:(before "End Commandline Options(*arg)")
else if (is_equal(*arg, "--profile")) {
Run_profiler = true;
}
:(after "Running One Instruction")
if (Run_profiler) Instructions_running[currently_running_recipe()]++;
:(before "End One-time Setup")
atexit(dump_profile);
:(code)
void dump_profile() {
if (!Run_profiler) return;
if (Run_tests) {
cerr << "It's not a good idea to profile a run with tests, since tests can create conflicting recipes and mislead you. To try it anyway, comment out this check in the code.\n";
return;
}
ofstream fout;
fout.open("profile.instructions");
if (fout) {
for (map<recipe_ordinal, int>::iterator p = Instructions_running.begin(); p != Instructions_running.end(); ++p) {
fout << std::setw(9) << p->second << ' ' << header_label(p->first) << '\n';
}
}
fout.close();
// End dump_profile
}
// overridden in a later layer
string header_label(const recipe_ordinal r) {
return get(Recipe, r).name;
}