//: Phase 3: Start running a loaded and transformed recipe.
//:
//: So far we've seen recipes as lists of instructions, and instructions point
//: at other recipes. To kick things off mu needs to know how to run certain
//: 'primitive' recipes. That will then give the ability to run recipes
//: containing these primitives.
//:
//: This layer defines a skeleton with just two primitive recipes: IDLE which
//: does nothing, and COPY, which can copy numbers from one memory location to
//: another. Later layers will add more primitives.
:(scenario copy_literal)
def main [
1:number <- copy 23
]
+run: {1: "number"} <- copy {23: "literal"}
+mem: storing 23 in location 1
:(scenario copy)
def main [
1:number <- copy 23
2:number <- copy 1:number
]
+run: {2: "number"} <- copy {1: "number"}
+mem: location 1 is 23
+mem: storing 23 in location 2
:(scenario copy_multiple)
def main [
1:number, 2:number <- copy 23, 24
]
+mem: storing 23 in location 1
+mem: storing 24 in location 2
:(before "End Types")
// Book-keeping while running a recipe.
//: Later layers will replace this to support running multiple routines at once.
struct routine {
recipe_ordinal running_recipe;
int running_step_index;
routine(recipe_ordinal r) :running_recipe(r), running_step_index(0) {}
bool completed() const;
const vector<instruction>& steps() const;
};
:(before "End Globals")
routine* Current_routine = NULL;
map<string, int> Instructions_running;
map<string, int> Locations_read;
map<string, int> Locations_read_by_instruction;
:(code)
void run(recipe_ordinal r) {
routine rr(r);
Current_routine = &rr;
run_current_routine();
}
void run_current_routine()
{ // curly on a separate line, because later layers will modify header
while (!Current_routine->completed()) // later layers will modify condition
{
// Running One Instruction
if (current_instruction().is_label) { ++current_step_index(); continue; }
trace(Initial_callstack_depth + Trace_stream->callstack_depth, "run") << to_string(current_instruction()) << end();
if (get_or_insert(Memory, 0) != 0) {
raise << "something wrote to location 0; this should never happen\n" << end();
put(Memory, 0, 0);
}
// read all ingredients from memory, each potentially spanning multiple locations
vector<vector<double> > ingredients;
if (should_copy_ingredients()) {
for (int i = 0; i < SIZE(current_instruction().ingredients); ++i)
ingredients.push_back(read_memory(current_instruction().ingredients.at(i)));
}
// instructions below will write to 'products'
vector<vector<double> > products;
switch (current_instruction().operation) {
// Primitive Recipe Implementations
case COPY: {
copy(ingredients.begin(), ingredients.end(), inserter(products, products.begin()));
break;
}
// End Primitive Recipe Implementations
default: {
cout << "not a primitive op: " << current_instruction().operation << '\n';
}
}
if (SIZE(products) < SIZE(current_instruction().products)) {
raise << SIZE(products) << " vs " << SIZE(current_instruction().products) << ": failed to write to all products! " << to_original_string(current_instruction()) << '\n' << end();
}
else {
for (int i = 0; i < SIZE(current_instruction().products); ++i) {
write_memory(current_instruction().products.at(i), products.at(i));
}
}
// End of Instruction
finish_instruction:;
++current_step_index();
}
stop_running_current_routine:;
}
bool should_copy_ingredients() {
// End should_copy_ingredients Special-cases
return true;
}
//: Some helpers.
//: We'll need to override these later as we change the definition of routine.
//: Important that they return referrences into the routine.
inline int& current_step_index() {
return Current_routine->running_step_index;
}
inline const string& current_recipe_name() {
return get(Recipe, Current_routine->running_recipe).name;
}
inline const instruction& current_instruction() {
return get(Recipe, Current_routine->running_recipe).steps.at(Current_routine->running_step_index);
}
inline bool routine::completed() const {
return running_step_index >= SIZE(get(Recipe, running_recipe).steps);
}
inline const vector<instruction>& routine::steps() const {
return get(Recipe, running_recipe).steps;
}
//:: Startup flow
//: Step 1: load all .mu files with numeric prefixes (in order)
:(before "End Load Recipes")
// Load .mu Core
//? Trace_file = "interactive";
//? START_TRACING_UNTIL_END_OF_SCOPE;
load_file_or_directory("core.mu");
//? DUMP("");
//? exit(0);
//: Step 2: load any .mu files provided at the commandline
:(before "End Commandline Parsing")
// Check For .mu Files
//? START_TRACING_UNTIL_END_OF_SCOPE
if (argc > 1) {
// skip argv[0]
argv++;
argc--;
// ignore argv past '--'; that's commandline args for 'main'
while (argc > 0) {
if (string(*argv) == "--") break;
load_file_or_directory(*argv);
argv++;
argc--;
}
if (Run_tests) Recipe.erase(get(Recipe_ordinal, "main"));
}
transform_all();
save_snapshots();
//: Step 3: if we aren't running tests, locate a recipe called 'main' and
//: start running it.
:(before "End Main")
if (!Run_tests && contains_key(Recipe_ordinal, "main") && contains_key(Recipe, get(Recipe_ordinal, "main"))) {
// Running Main
setup();
//? Trace_file = "interactive";
//? START_TRACING_UNTIL_END_OF_SCOPE;
trace(9990, "run") << "=== Starting to run" << end();
assert(Num_calls_to_transform_all == 1);
run_main(argc, argv);
teardown();
}
:(code)
void run_main(int argc, char* argv[]) {
recipe_ordinal r = get(Recipe_ordinal, "main");
if (r) run(r);
}
:(code)
void dump_profile() {
for (map<string, int>::iterator p = Instructions_running.begin(); p != Instructions_running.end(); ++p) {
cerr << p->first << ": " << p->second << '\n';
}
cerr << "== locations read\n";
for (map<string, int>::iterator p = Locations_read.begin(); p != Locations_read.end(); ++p) {
cerr << p->first << ": " << p->second << '\n';
}
cerr << "== locations read by instruction\n";
for (map<string, int>::iterator p = Locations_read_by_instruction.begin(); p != Locations_read_by_instruction.end(); ++p) {
cerr << p->first << ": " << p->second << '\n';
}
}
:(before "End One-time Setup")
//? atexit(dump_profile);
:(code)
void cleanup_main() {
if (!Trace_file.empty() && Trace_stream) {
ofstream fout((Trace_dir+Trace_file).c_str());
fout << Trace_stream->readable_contents("");
fout.close();
}
}
:(before "End One-time Setup")
atexit(cleanup_main);
:(code)
void load_file_or_directory(string filename) {
if (is_directory(filename)) {
load_all(filename);
return;
}
ifstream fin(filename.c_str());
if (!fin) {
raise << "no such file " << filename << '\n' << end();
return;
}
trace(9990, "load") << "=== " << filename << end();
load(fin);
fin.close();
}
bool is_directory(string path) {
struct stat info;
if (stat(path.c_str(), &info)) return false; // error
return info.st_mode & S_IFDIR;
}
void load_all(string dir) {
dirent** files;
int num_files = scandir(dir.c_str(), &files, NULL, alphasort);
for (int i = 0; i < num_files; ++i) {
string curr_file = files[i]->d_name;
if (isdigit(curr_file.at(0)))
load_file_or_directory(dir+'/'+curr_file);
free(files[i]);
files[i] = NULL;
}
free(files);
}
:(before "End Includes")
#include<dirent.h>
#include<sys/stat.h>
//:: Reading from memory, writing to memory.
:(code)
vector<double> read_memory(reagent/*copy*/ x) {
// Begin Preprocess read_memory(x)
vector<double> result;
if (is_literal(x)) {
result.push_back(x.value);
return result;
}
// End Preprocess read_memory(x)
int size = size_of(x);
for (int offset = 0; offset < size; ++offset) {
double val = get_or_insert(Memory, x.value+offset);
trace(9999, "mem") << "location " << x.value+offset << " is " << no_scientific(val) << end();
result.push_back(val);
}
return result;
}
void write_memory(reagent/*copy*/ x, const vector<double>& data) {
// Begin Preprocess write_memory(x, data)
if (!x.type) {
raise << "can't write to " << to_string(x) << "; no type\n" << end();
return;
}
if (is_dummy(x)) return;
if (is_literal(x)) return;
// End Preprocess write_memory(x, data)
if (x.value == 0) return;
if (size_mismatch(x, data)) {
raise << maybe(current_recipe_name()) << "size mismatch in storing to " << x.original_string << " (" << size_of(x.type) << " vs " << SIZE(data) << ") at '" << to_original_string(current_instruction()) << "'\n" << end();
return;
}
// End write_memory(x) Special-cases
for (int offset = 0; offset < SIZE(data); ++offset) {
assert(x.value+offset > 0);
trace(9999, "mem") << "storing " << no_scientific(data.at(offset)) << " in location " << x.value+offset << end();
put(Memory, x.value+offset, data.at(offset));
}
}
:(code)
int size_of(const reagent& r) {
if (r.type == NULL) return 0;
// End size_of(reagent r) Cases
return size_of(r.type);
}
int size_of(const type_tree* type) {
if (type == NULL) return 0;
// End size_of(type) Cases
return 1;
}
bool size_mismatch(const reagent& x, const vector<double>& data) {
if (x.type == NULL) return true;
// End size_mismatch(x) Cases
//? if (size_of(x) != SIZE(data)) cerr << size_of(x) << " vs " << SIZE(data) << '\n';
return size_of(x) != SIZE(data);
}
inline bool is_literal(const reagent& r) {
if (!r.type) return false;
if (r.type->value == 0)
assert(!r.type->left && !r.type->right);
return r.type->value == 0;
}
inline bool scalar(const vector<int>& x) {
return SIZE(x) == 1;
}
inline bool scalar(const vector<double>& x) {
return SIZE(x) == 1;
}
// helper for tests
void run(string form) {
vector<recipe_ordinal> tmp = load(form);
transform_all();
if (tmp.empty()) return;
if (trace_count("error") > 0) return;
// if a test defines main, it probably wants to start there regardless of
// definition order
if (contains_key(Recipe, get(Recipe_ordinal, "main")))
run(get(Recipe_ordinal, "main"));
else
run(tmp.front());
}
:(scenario run_label)
def main [
+foo
1:number <- copy 23
2:number <- copy 1:number
]
+run: {1: "number"} <- copy {23: "literal"}
+run: {2: "number"} <- copy {1: "number"}
-run: +foo
:(scenario run_dummy)
def main [
_ <- copy 0
]
+run: _ <- copy {0: "literal"}
:(scenario write_to_0_disallowed)
% Hide_errors = true;
def main [
0:number <- copy 34
]
-mem: storing 34 in location 0
//: mu is robust to various combinations of commas and spaces. You just have
//: to put spaces around the '<-'.
:(scenario comma_without_space)
def main [
1:number, 2:number <- copy 2,2
]
+mem: storing 2 in location 1
:(scenario space_without_comma)
def main [
1:number, 2:number <- copy 2 2
]
+mem: storing 2 in location 1
:(scenario comma_before_space)
def main [
1:number, 2:number <- copy 2, 2
]
+mem: storing 2 in location 1
:(scenario comma_after_space)
def main [
1:number, 2:number <- copy 2 ,2
]
+mem: storing 2 in location 1