//: Phase 3: Start running a loaded and transformed recipe.
//:
//: So far we've seen recipes as lists of instructions, and instructions point
//: at other recipes. To kick things off mu needs to know how to run certain
//: 'primitive' recipes. That will then give the ability to run recipes
//: containing these primitives.
//:
//: This layer defines a skeleton with just two primitive recipes: IDLE which
//: does nothing, and COPY, which can copy numbers from one memory location to
//: another. Later layers will add more primitives.
:(scenario copy_literal)
recipe main [
1:number <- copy 23:literal
]
+run: 1:number <- copy 23:literal
+mem: storing 23 in location 1
:(scenario copy)
recipe main [
1:number <- copy 23:literal
2:number <- copy 1:number
]
+run: 2:number <- copy 1:number
+mem: location 1 is 23
+mem: storing 23 in location 2
:(scenario copy_multiple)
recipe main [
1:number, 2:number <- copy 23:literal, 24:literal
]
+mem: storing 23 in location 1
+mem: storing 24 in location 2
:(before "End Types")
// Book-keeping while running a recipe.
//: Later layers will change this.
struct routine {
recipe_ordinal running_recipe;
long long int running_step_index;
routine(recipe_ordinal r) :running_recipe(r), running_step_index(0) {}
bool completed() const;
};
:(before "End Globals")
routine* Current_routine = NULL;
:(code)
void run(recipe_ordinal r) {
routine rr(r);
Current_routine = &rr;
run_current_routine();
}
void run_current_routine()
{ // curly on a separate line, because later layers will modify header
//? cerr << "AAA 6\n"; //? 3
while (!Current_routine->completed()) // later layers will modify condition
{
//? cerr << "AAA 7: " << current_step_index() << '\n'; //? 1
// Running One Instruction
if (current_instruction().is_label) { ++current_step_index(); continue; }
trace(Initial_callstack_depth+Callstack_depth, "run") << current_instruction().to_string();
assert(Memory[0] == 0);
// Read all ingredients from memory.
// Each ingredient loads a vector of values rather than a single value; mu
// permits operating on reagents spanning multiple locations.
vector<vector<double> > ingredients;
for (long long int i = 0; i < SIZE(current_instruction().ingredients); ++i) {
ingredients.push_back(read_memory(current_instruction().ingredients.at(i)));
}
// Instructions below will write to 'products'.
vector<vector<double> > products;
//? cerr << "AAA 8: " << current_instruction().operation << " ^" << Recipe[current_instruction().operation].name << "$\n"; //? 1
//? cerr << "% " << current_recipe_name() << "/" << current_step_index() << ": " << Memory[1013] << ' ' << Memory[1014] << '\n'; //? 1
switch (current_instruction().operation) {
// Primitive Recipe Implementations
case COPY: {
//? if (!ingredients.empty()) cerr << current_instruction().ingredients.at(0).to_string() << ' ' << ingredients.at(0).at(0) << '\n'; //? 1
copy(ingredients.begin(), ingredients.end(), inserter(products, products.begin()));
break;
}
// End Primitive Recipe Implementations
default: {
cout << "not a primitive op: " << current_instruction().operation << '\n';
}
}
if (SIZE(products) < SIZE(current_instruction().products))
raise << "failed to write to all products! " << current_instruction().to_string();
for (long long int i = 0; i < SIZE(current_instruction().products); ++i) {
write_memory(current_instruction().products.at(i), products.at(i));
}
// End of Instruction
++current_step_index();
}
//? cerr << "AAA 9\n"; //? 2
stop_running_current_routine:;
}
//: Some helpers.
//: We'll need to override these later as we change the definition of routine.
//: Important that they return referrences into the routine.
inline long long int& current_step_index() {
return Current_routine->running_step_index;
}
inline const string& current_recipe_name() {
return Recipe[Current_routine->running_recipe].name;
}
inline const instruction& current_instruction() {
return Recipe[Current_routine->running_recipe].steps.at(Current_routine->running_step_index);
}
inline bool routine::completed() const {
return running_step_index >= SIZE(Recipe[running_recipe].steps);
}
:(before "End Commandline Parsing")
// Loading Commandline Files
if (argc > 1) {
for (int i = 1; i < argc; ++i) {
load_permanently(argv[i]);
}
}
:(before "End Main")
if (!Run_tests) {
setup();
//? Trace_file = "interactive"; //? 1
//? START_TRACING_UNTIL_END_OF_SCOPE;
//? Trace_stream->dump_layer = "all"; //? 2
transform_all();
recipe_ordinal r = Recipe_ordinal[string("main")];
//? Trace_stream->dump_layer = "all"; //? 1
if (r) run(r);
//? dump_memory(); //? 1
teardown();
}
:(code)
void load_permanently(string filename) {
ifstream fin(filename.c_str());
fin.peek();
//? cerr << "AAA: " << filename << ' ' << static_cast<bool>(fin) << ' ' << fin.fail() << '\n'; //? 1
//? return; //? 1
if (!fin) {
raise << "no such file " << filename << '\n';
return;
}
fin >> std::noskipws;
load(fin);
transform_all();
fin.close();
// freeze everything so it doesn't get cleared by tests
recently_added_recipes.clear();
// End load_permanently.
}
//:: On startup, load everything in core.mu
:(before "End Load Recipes")
load_permanently("core.mu");
:(code)
// helper for tests
void run(string form) {
//? cerr << "AAA 2\n"; //? 2
//? cerr << form << '\n'; //? 1
vector<recipe_ordinal> tmp = load(form);
if (tmp.empty()) return;
transform_all();
//? cerr << "AAA 3\n"; //? 2
run(tmp.front());
//? cerr << "YYY\n"; //? 2
}
//:: Reading from memory, writing to memory.
vector<double> read_memory(reagent x) {
//? cout << "read_memory: " << x.to_string() << '\n'; //? 2
vector<double> result;
if (is_literal(x)) {
result.push_back(x.value);
return result;
}
long long int base = x.value;
long long int size = size_of(x);
for (long long int offset = 0; offset < size; ++offset) {
double val = Memory[base+offset];
trace(Primitive_recipe_depth, "mem") << "location " << base+offset << " is " << val;
result.push_back(val);
}
return result;
}
void write_memory(reagent x, vector<double> data) {
if (is_dummy(x)) return;
if (is_literal(x)) return;
long long int base = x.value;
if (size_mismatch(x, data)) {
raise << current_recipe_name() << ": size mismatch in storing to " << x.to_string() << " at " << current_instruction().to_string() << '\n' << die();
}
for (long long int offset = 0; offset < SIZE(data); ++offset) {
trace(Primitive_recipe_depth, "mem") << "storing " << data.at(offset) << " in location " << base+offset;
Memory[base+offset] = data.at(offset);
}
}
:(code)
long long int size_of(const reagent& r) {
return size_of(r.types);
}
long long int size_of(const vector<type_ordinal>& types) {
// End size_of(types) Cases
return 1;
}
bool size_mismatch(const reagent& x, const vector<double>& data) {
//? if (size_of(x) != SIZE(data)) cerr << size_of(x) << " vs " << SIZE(data) << '\n'; //? 2
return size_of(x) != SIZE(data);
}
bool is_dummy(const reagent& x) {
return x.name == "_";
}
bool is_literal(const reagent& r) {
return SIZE(r.types) == 1 && r.types.at(0) == 0;
}
:(scenario run_label)
recipe main [
+foo
1:number <- copy 23:literal
2:number <- copy 1:number
]
+run: 1:number <- copy 23:literal
+run: 2:number <- copy 1:number
-run: +foo
:(scenario run_dummy)
recipe main [
_ <- copy 0:literal
]
+run: _ <- copy 0:literal
:(scenario run_literal)
recipe main [
0:literal/screen <- copy 0:literal
]
-mem: storing 0 in location 0