//: Containers contain a fixed number of elements of different types.
:(before "End Mu Types Initialization")
//: We'll use this container as a running example, with two number elements.
type_number point = Type_number["point"] = Next_type_number++;
Type[point].size = 2;
Type[point].kind = container;
Type[point].name = "point";
vector<type_number> i;
i.push_back(number);
Type[point].elements.push_back(i);
Type[point].elements.push_back(i);
//: Containers can be copied around with a single instruction just like
//: numbers, no matter how large they are.
:(scenario copy_multiple_locations)
recipe main [
1:number <- copy 34:literal
2:number <- copy 35:literal
3:point <- copy 1:point
]
+run: ingredient 0 is 1
+mem: location 1 is 34
+mem: location 2 is 35
+mem: storing 34 in location 3
+mem: storing 35 in location 4
:(before "End Mu Types Initialization")
// A more complex container, containing another container as one of its
// elements.
type_number point_number = Type_number["point-number"] = Next_type_number++;
Type[point_number].size = 2;
Type[point_number].kind = container;
Type[point_number].name = "point-number";
vector<type_number> p2;
p2.push_back(point);
Type[point_number].elements.push_back(p2);
vector<type_number> i2;
i2.push_back(number);
Type[point_number].elements.push_back(i2);
:(scenario copy_handles_nested_container_elements)
recipe main [
12:number <- copy 34:literal
13:number <- copy 35:literal
14:number <- copy 36:literal
15:point-number <- copy 12:point-number
]
+mem: storing 36 in location 17
//: Containers can be checked for equality with a single instruction just like
//: numbers, no matter how large they are.
:(scenario compare_multiple_locations)
recipe main [
1:number <- copy 34:literal # first
2:number <- copy 35:literal
3:number <- copy 36:literal
4:number <- copy 34:literal # second
5:number <- copy 35:literal
6:number <- copy 36:literal
7:boolean <- equal 1:point-number, 4:point-number
]
+mem: storing 1 in location 7
:(scenario compare_multiple_locations2)
recipe main [
1:number <- copy 34:literal # first
2:number <- copy 35:literal
3:number <- copy 36:literal
4:number <- copy 34:literal # second
5:number <- copy 35:literal
6:number <- copy 37:literal # different
7:boolean <- equal 1:point-number, 4:point-number
]
+mem: storing 0 in location 7
:(before "End size_of(types) Cases")
type_info t = Type[types.at(0)];
if (t.kind == container) {
// size of a container is the sum of the sizes of its elements
long long int result = 0;
for (long long int i = 0; i < SIZE(t.elements); ++i) {
// todo: strengthen assertion to disallow mutual type recursion
assert(types.at(0) != t.elements.at(i).at(0));
result += size_of(t.elements.at(i));
}
return result;
}
//:: To access elements of a container, use 'get'
:(scenario get)
recipe main [
12:number <- copy 34:literal
13:number <- copy 35:literal
15:number <- get 12:point, 1:offset
]
+run: instruction main/2
+run: ingredient 0 is 12
+run: ingredient 1 is 1
+run: address to copy is 13
+run: its type is 1
+mem: location 13 is 35
+run: product 0 is 15
+mem: storing 35 in location 15
:(before "End Primitive Recipe Declarations")
GET,
:(before "End Primitive Recipe Numbers")
Recipe_number["get"] = GET;
:(before "End Primitive Recipe Implementations")
case GET: {
reagent base = current_instruction().ingredients.at(0);
long long int base_address = base.value;
type_number base_type = base.types.at(0);
assert(Type[base_type].kind == container);
assert(isa_literal(current_instruction().ingredients.at(1)));
assert(scalar(ingredients.at(1)));
long long int offset = ingredients.at(1).at(0);
long long int src = base_address;
for (long long int i = 0; i < offset; ++i) {
src += size_of(Type[base_type].elements.at(i));
}
trace("run") << "address to copy is " << src;
assert(Type[base_type].kind == container);
assert(SIZE(Type[base_type].elements) > offset);
type_number src_type = Type[base_type].elements.at(offset).at(0);
trace("run") << "its type is " << src_type;
reagent tmp;
tmp.set_value(src);
tmp.types.push_back(src_type);
products.push_back(read_memory(tmp));
break;
}
:(scenario get_handles_nested_container_elements)
recipe main [
12:number <- copy 34:literal
13:number <- copy 35:literal
14:number <- copy 36:literal
15:number <- get 12:point-number, 1:offset
]
+run: instruction main/2
+run: ingredient 0 is 12
+run: ingredient 1 is 1
+run: address to copy is 14
+run: its type is 1
+mem: location 14 is 36
+run: product 0 is 15
+mem: storing 36 in location 15
//:: To write to elements of containers, you need their address.
:(scenario get_address)
recipe main [
12:number <- copy 34:literal
13:number <- copy 35:literal
15:address:number <- get-address 12:point, 1:offset
]
+run: instruction main/2
+run: ingredient 0 is 12
+run: ingredient 1 is 1
+run: address to copy is 13
+mem: storing 13 in location 15
:(before "End Primitive Recipe Declarations")
GET_ADDRESS,
:(before "End Primitive Recipe Numbers")
Recipe_number["get-address"] = GET_ADDRESS;
:(before "End Primitive Recipe Implementations")
case GET_ADDRESS: {
reagent base = current_instruction().ingredients.at(0);
long long int base_address = base.value;
type_number base_type = base.types.at(0);
assert(Type[base_type].kind == container);
assert(isa_literal(current_instruction().ingredients.at(1)));
assert(scalar(ingredients.at(1)));
long long int offset = ingredients.at(1).at(0);
long long int result = base_address;
for (long long int i = 0; i < offset; ++i) {
result += size_of(Type[base_type].elements.at(i));
}
trace("run") << "address to copy is " << result;
products.resize(1);
products.at(0).push_back(result);
break;
}
//:: Allow containers to be defined in mu code.
:(scenarios load)
:(scenario container)
container foo [
x:number
y:number
]
+parse: reading container foo
+parse: element name: x
+parse: type: 1
+parse: element name: y
+parse: type: 1
:(scenario container_use_before_definition)
container foo [
x:number
y:bar
]
container bar [
x:number
y:number
]
+parse: reading container foo
+parse: type number: 1000
+parse: element name: x
+parse: type: 1
+parse: element name: y
+parse: type: 1001
+parse: reading container bar
+parse: type number: 1001
:(before "End Command Handlers")
else if (command == "container") {
insert_container(command, container, in);
}
:(code)
void insert_container(const string& command, kind_of_type kind, istream& in) {
skip_whitespace(in);
string name = next_word(in);
trace("parse") << "reading " << command << ' ' << name;
//? cout << name << '\n'; //? 2
//? if (Type_number.find(name) != Type_number.end()) //? 1
//? cerr << Type_number[name] << '\n'; //? 1
if (Type_number.find(name) == Type_number.end()
|| Type_number[name] == 0) {
Type_number[name] = Next_type_number++;
}
trace("parse") << "type number: " << Type_number[name];
skip_bracket(in, "'container' must begin with '['");
type_info& t = Type[Type_number[name]];
recently_added_types.push_back(Type_number[name]);
t.name = name;
t.kind = kind;
while (!in.eof()) {
skip_whitespace_and_comments(in);
string element = next_word(in);
if (element == "]") break;
istringstream inner(element);
t.element_names.push_back(slurp_until(inner, ':'));
trace("parse") << " element name: " << t.element_names.back();
vector<type_number> types;
while (!inner.eof()) {
string type_name = slurp_until(inner, ':');
if (Type_number.find(type_name) == Type_number.end()) {
//? cerr << type_name << " is " << Next_type_number << '\n'; //? 1
Type_number[type_name] = Next_type_number++;
}
types.push_back(Type_number[type_name]);
trace("parse") << " type: " << types.back();
}
t.elements.push_back(types);
}
assert(SIZE(t.elements) == SIZE(t.element_names));
t.size = SIZE(t.elements);
}
//: ensure types created in one scenario don't leak outside it.
:(before "End Globals")
vector<type_number> recently_added_types;
:(before "End load_permanently") //: for non-tests
recently_added_types.clear();
:(before "End Setup") //: for tests
for (long long int i = 0; i < SIZE(recently_added_types); ++i) {
//? cout << "erasing " << Type[recently_added_types.at(i)].name << '\n'; //? 1
Type_number.erase(Type[recently_added_types.at(i)].name);
Type.erase(recently_added_types.at(i));
}
recently_added_types.clear();
// delete recent type references
// can't rely on recently_added_types to cleanup Type_number, because of deliberately misbehaving tests with references to undefined types
map<string, type_number>::iterator p = Type_number.begin();
while(p != Type_number.end()) {
// save current item
string name = p->first;
type_number t = p->second;
// increment iterator
++p;
// now delete current item if necessary
if (t >= 1000) {
//? cerr << "AAA " << name << " " << t << '\n'; //? 1
Type_number.erase(name);
}
}
//: lastly, ensure scenarios are consistent by always starting them at the
//: same type number.
Next_type_number = 1000;
:(before "End Test Run Initialization")
assert(Next_type_number < 1000);
:(before "End Setup")
Next_type_number = 1000;
//:: Allow container definitions anywhere in the codebase, but warn if you
//:: can't find a definition.
:(scenarios run)
:(scenario run_warns_on_unknown_types)
% Hide_warnings = true;
#? % Trace_stream->dump_layer = "run";
recipe main [
# integer is not a type
1:integer <- copy 0:literal
]
+warn: unknown type: integer
:(scenario run_allows_type_definition_after_use)
% Hide_warnings = true;
recipe main [
1:bar <- copy 0:literal
]
container bar [
x:number
]
-warn: unknown type: bar
:(after "int main")
Transform.push_back(check_invalid_types);
:(code)
void check_invalid_types(const recipe_number r) {
for (long long int index = 0; index < SIZE(Recipe[r].steps); ++index) {
const instruction& inst = Recipe[r].steps.at(index);
for (long long int i = 0; i < SIZE(inst.ingredients); ++i) {
check_invalid_types(inst.ingredients.at(i));
}
for (long long int i = 0; i < SIZE(inst.products); ++i) {
check_invalid_types(inst.products.at(i));
}
}
}
void check_invalid_types(const reagent& r) {
for (long long int i = 0; i < SIZE(r.types); ++i) {
if (r.types.at(i) == 0) continue;
if (Type.find(r.types.at(i)) == Type.end())
raise << "unknown type: " << r.properties.at(0).second.at(i) << '\n';
}
}
:(scenario container_unknown_field)
% Hide_warnings = true;
container foo [
x:number
y:bar
]
+warn: unknown type for field y in foo
:(before "End Load Sanity Checks")
check_container_field_types();
:(code)
void check_container_field_types() {
for (map<type_number, type_info>::iterator p = Type.begin(); p != Type.end(); ++p) {
const type_info& info = p->second;
//? cerr << "checking " << p->first << '\n'; //? 1
for (long long int i = 0; i < SIZE(info.elements); ++i) {
for (long long int j = 0; j < SIZE(info.elements.at(i)); ++j) {
if (info.elements.at(i).at(j) == 0) continue;
if (Type.find(info.elements.at(i).at(j)) == Type.end())
raise << "unknown type for field " << info.element_names.at(i) << " in " << info.name << '\n';
}
}
}
}
//:: helpers
:(code)
void skip_bracket(istream& in, string message) {
skip_whitespace_and_comments(in);
if (in.get() != '[')
raise << message << '\n';
}