about summary refs log blame commit diff stats
path: root/031transforms.cc
blob: a6e1250264b499d994d209d10be45a285aad2e1b (plain) (tree)



















































                                                                              
                                                                      
   

                                                            








                                                                            
//: Ordering transforms is a well-known hard problem when building compilers.
//: In our case we also have the additional notion of layers. The ordering of
//: layers can have nothing in common with the ordering of transforms when
//: SubX is tangled and run. This can be confusing for readers, particularly
//: if later layers start inserting transforms at arbitrary points between
//: transforms introduced earlier. Over time adding transforms can get harder
//: and harder, having to meet the constraints of everything that's come
//: before. It's worth thinking about organization up-front so the ordering is
//: easy to hold in our heads, and it's obvious where to add a new transform.
//: Some constraints:
//:
//:   1. Layers force us to build SubX bottom-up; since we want to be able to
//:   build and run SubX after stopping loading at any layer, the overall
//:   organization has to be to introduce primitives before we start using
//:   them.
//:
//:   2. Transforms usually need to be run top-down, converting high-level
//:   representations to low-level ones so that low-level layers can be
//:   oblivious to them.
//:
//:   3. When running we'd often like new representations to be checked before
//:   they are transformed away. The whole reason for new representations is
//:   often to add new kinds of automatic checking for our machine code
//:   programs.
//:
//: Putting these constraints together, we'll use the following broad
//: organization:
//:
//:   a) We'll divide up our transforms into "levels", each level consisting
//:   of multiple transforms, and dealing in some new set of representational
//:   ideas. Levels will be added in reverse order to the one their transforms
//:   will be run in.
//:
//:     To run all transforms:
//:       Load transforms for level n
//:       Load transforms for level n-1
//:       ...
//:       Load transforms for level 2
//:       Run code at level 1
//:
//:   b) *Within* a level we'll usually introduce transforms in the order
//:   they're run in.
//:
//:     To run transforms for level n:
//:       Perform transform of layer l
//:       Perform transform of layer l+1
//:       ...
//:
//:   c) Within a level it's often most natural to introduce a new
//:   representation by showing how it's transformed to the level below. To
//:   make such exceptions more obvious checks usually won't be first-class
//:   transforms; instead code that keeps the program unmodified will run
//:   within transforms before they mutate the program. As an example:
//:
//:     Layer l introduces a transform
//:     Layer l+1 adds precondition checks for the transform
//:
//: This may all seem abstract, but will hopefully make sense over time. The
//: goals are basically to always have a working program after any layer, to
//: have the order of layers make narrative sense, and to order transforms
//: correctly at runtime.

:(before "End One-time Setup")
// Begin Transforms
// End Transforms
ref='#n466'>466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
//: operating on memory at the address provided by some register
//: we'll now start providing data in a separate segment

void test_add_r32_to_mem_at_r32() {
  Reg[EBX].i = 0x10;
  Reg[EAX].i = 0x2000;
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  01     18                                    \n"  // add EBX to *EAX
      // ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX)
      "== data 0x2000\n"
      "01 00 00 00\n"  // 0x00000001
  );
  CHECK_TRACE_CONTENTS(
      "run: add EBX to r/m32\n"
      "run: effective address is 0x00002000 (EAX)\n"
      "run: storing 0x00000011\n"
  );
}

:(before "End Mod Special-cases(addr)")
case 0:  // indirect addressing
  switch (rm) {
  default:  // address in register
    trace(Callstack_depth+1, "run") << "effective address is 0x" << HEXWORD << Reg[rm].u << " (" << rname(rm) << ")" << end();
    addr = Reg[rm].u;
    break;
  // End Mod 0 Special-cases(addr)
  }
  break;

//:

:(before "End Initialize Op Names")
put_new(Name, "03", "add rm32 to r32 (add)");

:(code)
void test_add_mem_at_r32_to_r32() {
  Reg[EAX].i = 0x2000;
  Reg[EBX].i = 0x10;
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  03     18                                    \n"  // add *EAX to EBX
      // ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX)
      "== data 0x2000\n"
      "01 00 00 00\n"  // 0x00000001
  );
  CHECK_TRACE_CONTENTS(
      "run: add r/m32 to EBX\n"
      "run: effective address is 0x00002000 (EAX)\n"
      "run: storing 0x00000011\n"
  );
}

:(before "End Single-Byte Opcodes")
case 0x03: {  // add r/m32 to r32
  const uint8_t modrm = next();
  const uint8_t arg1 = (modrm>>3)&0x7;
  trace(Callstack_depth+1, "run") << "add r/m32 to " << rname(arg1) << end();
  const int32_t* signed_arg2 = effective_address(modrm);
  int32_t signed_result = Reg[arg1].i + *signed_arg2;
  SF = (signed_result < 0);
  ZF = (signed_result == 0);
  int64_t signed_full_result = static_cast<int64_t>(Reg[arg1].i) + *signed_arg2;
  OF = (signed_result != signed_full_result);
  // set CF
  uint32_t unsigned_arg2 = static_cast<uint32_t>(*signed_arg2);
  uint32_t unsigned_result = Reg[arg1].u + unsigned_arg2;
  uint64_t unsigned_full_result = static_cast<uint64_t>(Reg[arg1].u) + unsigned_arg2;
  CF = (unsigned_result != unsigned_full_result);
  trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
  Reg[arg1].i = signed_result;
  trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << Reg[arg1].i << end();
  break;
}

:(code)
void test_add_mem_at_r32_to_r32_signed_overflow() {
  Reg[EAX].i = 0x2000;
  Reg[EBX].i = 0x7fffffff;  // largest positive signed integer
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  03     18                                    \n" // add *EAX to EBX
      // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX)
      "== data 0x2000\n"
      "01 00 00 00\n"  // 1
  );
  CHECK_TRACE_CONTENTS(
      "run: add r/m32 to EBX\n"
      "run: effective address is 0x00002000 (EAX)\n"
      "run: effective address contains 1\n"
      "run: SF=1; ZF=0; CF=0; OF=1\n"
      "run: storing 0x80000000\n"
  );
}

void test_add_mem_at_r32_to_r32_unsigned_overflow() {
  Reg[EAX].u = 0x2000;
  Reg[EBX].u = 0xffffffff;  // largest unsigned number
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  03     18                                    \n" // add *EAX to EBX
      // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX)
      "== data 0x2000\n"
      "01 00 00 00\n"
  );
  CHECK_TRACE_CONTENTS(
      "run: add r/m32 to EBX\n"
      "run: effective address is 0x00002000 (EAX)\n"
      "run: effective address contains 1\n"
      "run: SF=0; ZF=1; CF=1; OF=0\n"
      "run: storing 0x00000000\n"
  );
}

void test_add_mem_at_r32_to_r32_unsigned_and_signed_overflow() {
  Reg[EAX].u = 0x2000;
  Reg[EBX].u = 0x80000000;  // smallest negative signed integer
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  03     18                                    \n" // add *EAX to EBX
      // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX)
      "== data 0x2000\n"
      "00 00 00 80\n"  // smallest negative signed integer
  );
  CHECK_TRACE_CONTENTS(
      "run: add r/m32 to EBX\n"
      "run: effective address is 0x00002000 (EAX)\n"
      "run: effective address contains 80000000\n"
      "run: SF=0; ZF=1; CF=1; OF=1\n"
      "run: storing 0x00000000\n"
  );
}

//:: subtract

:(code)
void test_subtract_r32_from_mem_at_r32() {
  Reg[EAX].i = 0x2000;
  Reg[EBX].i = 1;
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  29     18                                    \n"  // subtract EBX from *EAX
      // ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX)
      "== data 0x2000\n"
      "0a 00 00 00\n"  // 0x0000000a
  );
  CHECK_TRACE_CONTENTS(
      "run: subtract EBX from r/m32\n"
      "run: effective address is 0x00002000 (EAX)\n"
      "run: storing 0x00000009\n"
  );
}

//:

:(before "End Initialize Op Names")
put_new(Name, "2b", "subtract rm32 from r32 (sub)");

:(code)
void test_subtract_mem_at_r32_from_r32() {
  Reg[EAX].i = 0x2000;
  Reg[EBX].i = 10;
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  2b     18                                    \n"  // subtract *EAX from EBX
      // ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX)
      "== data 0x2000\n"
      "01 00 00 00\n"  // 0x00000001
  );
  CHECK_TRACE_CONTENTS(
      "run: subtract r/m32 from EBX\n"
      "run: effective address is 0x00002000 (EAX)\n"
      "run: storing 0x00000009\n"
  );
}

:(before "End Single-Byte Opcodes")
case 0x2b: {  // subtract r/m32 from r32
  const uint8_t modrm = next();
  const uint8_t arg1 = (modrm>>3)&0x7;
  trace(Callstack_depth+1, "run") << "subtract r/m32 from " << rname(arg1) << end();
  const int32_t* signed_arg2 = effective_address(modrm);
  const int32_t signed_result = Reg[arg1].i - *signed_arg2;
  SF = (signed_result < 0);
  ZF = (signed_result == 0);
  int64_t signed_full_result = static_cast<int64_t>(Reg[arg1].i) - *signed_arg2;
  OF = (signed_result != signed_full_result);
  // set CF
  uint32_t unsigned_arg2 = static_cast<uint32_t>(*signed_arg2);
  uint32_t unsigned_result = Reg[arg1].u - unsigned_arg2;
  uint64_t unsigned_full_result = static_cast<uint64_t>(Reg[arg1].u) - unsigned_arg2;
  CF = (unsigned_result != unsigned_full_result);
  trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
  Reg[arg1].i = signed_result;
  trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << Reg[arg1].i << end();
  break;
}

:(code)
void test_subtract_mem_at_r32_from_r32_signed_overflow() {
  Reg[EAX].i = 0x2000;
  Reg[EBX].i = 0x80000000;  // smallest negative signed integer
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  2b     18                                    \n"  // subtract *EAX from EBX
      // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX)
      "== data 0x2000\n"
      "ff ff ff 7f\n"  // largest positive signed integer
  );
  CHECK_TRACE_CONTENTS(
      "run: subtract r/m32 from EBX\n"
      "run: effective address is 0x00002000 (EAX)\n"
      "run: effective address contains 7fffffff\n"
      "run: SF=0; ZF=0; CF=0; OF=1\n"
      "run: storing 0x00000001\n"
  );
}

void test_subtract_mem_at_r32_from_r32_unsigned_overflow() {
  Reg[EAX].i = 0x2000;
  Reg[EBX].i = 0;
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  2b     18                                    \n"  // subtract *EAX from EBX
      // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX)
      "== data 0x2000\n"
      "01 00 00 00\n"  // 1
  );
  CHECK_TRACE_CONTENTS(
      "run: subtract r/m32 from EBX\n"
      "run: effective address is 0x00002000 (EAX)\n"
      "run: effective address contains 1\n"
      "run: SF=1; ZF=0; CF=1; OF=0\n"
      "run: storing 0xffffffff\n"
  );
}

void test_subtract_mem_at_r32_from_r32_signed_and_unsigned_overflow() {
  Reg[EAX].i = 0x2000;
  Reg[EBX].i = 0;
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  2b     18                                    \n"  // subtract *EAX from EBX
      // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX)
      "== data 0x2000\n"
      "00 00 00 80\n"  // smallest negative signed integer
  );
  CHECK_TRACE_CONTENTS(
      "run: subtract r/m32 from EBX\n"
      "run: effective address is 0x00002000 (EAX)\n"
      "run: effective address contains 80000000\n"
      "run: SF=1; ZF=0; CF=1; OF=1\n"
      "run: storing 0x80000000\n"
  );
}

//:: and
:(code)
void test_and_r32_with_mem_at_r32() {
  Reg[EAX].i = 0x2000;
  Reg[EBX].i = 0xff;
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  21     18                                    \n"  // and EBX with *EAX
      // ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX)
      "== data 0x2000\n"
      "0d 0c 0b 0a\n"  // 0x0a0b0c0d
  );
  CHECK_TRACE_CONTENTS(
      "run: and EBX with r/m32\n"
      "run: effective address is 0x00002000 (EAX)\n"
      "run: storing 0x0000000d\n"
  );
}

//:

:(before "End Initialize Op Names")
put_new(Name, "23", "r32 = bitwise AND of r32 with rm32 (and)");

:(code)
void test_and_mem_at_r32_with_r32() {
  Reg[EAX].i = 0x2000;
  Reg[EBX].i = 0x0a0b0c0d;
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  23     18                                    \n"  // and *EAX with EBX
      // ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX)
      "== data 0x2000\n"
      "ff 00 00 00\n"  // 0x000000ff
  );
  CHECK_TRACE_CONTENTS(
      "run: and r/m32 with EBX\n"
      "run: effective address is 0x00002000 (EAX)\n"
      "run: storing 0x0000000d\n"
  );
}

:(before "End Single-Byte Opcodes")
case 0x23: {  // and r/m32 with r32
  const uint8_t modrm = next();
  const uint8_t arg1 = (modrm>>3)&0x7;
  trace(Callstack_depth+1, "run") << "and r/m32 with " << rname(arg1) << end();
  // bitwise ops technically operate on unsigned numbers, but it makes no
  // difference
  const int32_t* signed_arg2 = effective_address(modrm);
  Reg[arg1].i &= *signed_arg2;
  trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << Reg[arg1].i << end();
  SF = (Reg[arg1].i >> 31);
  ZF = (Reg[arg1].i == 0);
  CF = false;
  OF = false;
  trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
  break;
}

//:: or

:(code)
void test_or_r32_with_mem_at_r32() {
  Reg[EAX].i = 0x2000;
  Reg[EBX].i = 0xa0b0c0d0;
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  09     18                                   #\n"  // EBX with *EAX
      // ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX)
      "== data 0x2000\n"
      "0d 0c 0b 0a\n"  // 0x0a0b0c0d
  );
  CHECK_TRACE_CONTENTS(
      "run: or EBX with r/m32\n"
      "run: effective address is 0x00002000 (EAX)\n"
      "run: storing 0xaabbccdd\n"
  );
}

//:

:(before "End Initialize Op Names")
put_new(Name, "0b", "r32 = bitwise OR of r32 with rm32 (or)");

:(code)
void test_or_mem_at_r32_with_r32() {
  Reg[EAX].i = 0x2000;
  Reg[EBX].i = 0xa0b0c0d0;
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  0b     18                                    \n"  // or *EAX with EBX
      // ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX)
      "== data 0x2000\n"
      "0d 0c 0b 0a\n"  // 0x0a0b0c0d
  );
  CHECK_TRACE_CONTENTS(
      "run: or r/m32 with EBX\n"
      "run: effective address is 0x00002000 (EAX)\n"
      "run: storing 0xaabbccdd\n"
  );
}

:(before "End Single-Byte Opcodes")
case 0x0b: {  // or r/m32 with r32
  const uint8_t modrm = next();
  const uint8_t arg1 = (modrm>>3)&0x7;
  trace(Callstack_depth+1, "run") << "or r/m32 with " << rname(arg1) << end();
  // bitwise ops technically operate on unsigned numbers, but it makes no
  // difference
  const int32_t* signed_arg2 = effective_address(modrm);
  Reg[arg1].i |= *signed_arg2;
  trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << Reg[arg1].i << end();
  SF = (Reg[arg1].i >> 31);
  ZF = (Reg[arg1].i == 0);
  CF = false;
  OF = false;
  trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
  break;
}

//:: xor

:(code)
void test_xor_r32_with_mem_at_r32() {
  Reg[EAX].i = 0x2000;
  Reg[EBX].i = 0xa0b0c0d0;
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  31     18                                    \n"  // xor EBX with *EAX
      "== data 0x2000\n"
      "0d 0c bb aa\n"  // 0xaabb0c0d
  );
  CHECK_TRACE_CONTENTS(
      "run: xor EBX with r/m32\n"
      "run: effective address is 0x00002000 (EAX)\n"
      "run: storing 0x0a0bccdd\n"
  );
}

//:

:(before "End Initialize Op Names")
put_new(Name, "33", "r32 = bitwise XOR of r32 with rm32 (xor)");

:(code)
void test_xor_mem_at_r32_with_r32() {
  Reg[EAX].i = 0x2000;
  Reg[EBX].i = 0xa0b0c0d0;
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  33     18                                    \n"  // xor *EAX with EBX
      // ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX)
      "== data 0x2000\n"
      "0d 0c 0b 0a\n"  // 0x0a0b0c0d
  );
  CHECK_TRACE_CONTENTS(
      "run: xor r/m32 with EBX\n"
      "run: effective address is 0x00002000 (EAX)\n"
      "run: storing 0xaabbccdd\n"
  );
}

:(before "End Single-Byte Opcodes")
case 0x33: {  // xor r/m32 with r32
  const uint8_t modrm = next();
  const uint8_t arg1 = (modrm>>3)&0x7;
  trace(Callstack_depth+1, "run") << "xor r/m32 with " << rname(arg1) << end();
  // bitwise ops technically operate on unsigned numbers, but it makes no
  // difference
  const int32_t* signed_arg2 = effective_address(modrm);
  Reg[arg1].i |= *signed_arg2;
  trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << Reg[arg1].i << end();
  SF = (Reg[arg1].i >> 31);
  ZF = (Reg[arg1].i == 0);
  CF = false;
  OF = false;
  trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
  break;
}

//:: not

:(code)
void test_not_of_mem_at_r32() {
  Reg[EBX].i = 0x2000;
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  f7     13                                    \n"  // not *EBX
      // ModR/M in binary: 00 (indirect mode) 010 (subop not) 011 (dest EBX)
      "== data 0x2000\n"
      "ff 00 0f 0f\n"  // 0x0f0f00ff
  );
  CHECK_TRACE_CONTENTS(
      "run: operate on r/m32\n"
      "run: effective address is 0x00002000 (EBX)\n"
      "run: subop: not\n"
      "run: storing 0xf0f0ff00\n"
  );
}

//:: compare (cmp)

:(code)
void test_compare_mem_at_r32_with_r32_greater() {
  Reg[EAX].i = 0x2000;
  Reg[EBX].i = 0x0a0b0c07;
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  39     18                                    \n"  // compare *EAX with EBX
      // ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX)
      "== data 0x2000\n"
      "0d 0c 0b 0a\n"  // 0x0a0b0c0d
  );
  CHECK_TRACE_CONTENTS(
      "run: compare r/m32 with EBX\n"
      "run: effective address is 0x00002000 (EAX)\n"
      "run: SF=0; ZF=0; CF=0; OF=0\n"
  );
}

:(code)
void test_compare_mem_at_r32_with_r32_lesser() {
  Reg[EAX].i = 0x2000;
  Reg[EBX].i = 0x0a0b0c0d;
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  39     18                                    \n"  // compare *EAX with EBX
      // ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX)
      "== data 0x2000\n"
      "07 0c 0b 0a\n"  // 0x0a0b0c0d
  );
  CHECK_TRACE_CONTENTS(
      "run: compare r/m32 with EBX\n"
      "run: effective address is 0x00002000 (EAX)\n"
      "run: SF=1; ZF=0; CF=1; OF=0\n"
  );
}

:(code)
void test_compare_mem_at_r32_with_r32_equal() {
  Reg[EAX].i = 0x2000;
  Reg[EBX].i = 0x0a0b0c0d;
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  39     18                                    \n"  // compare *EAX and EBX
      // ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX)
      "== data 0x2000\n"
      "0d 0c 0b 0a\n"  // 0x0a0b0c0d
  );
  CHECK_TRACE_CONTENTS(
      "run: compare r/m32 with EBX\n"
      "run: effective address is 0x00002000 (EAX)\n"
      "run: SF=0; ZF=1; CF=0; OF=0\n"
  );
}

//:

:(before "End Initialize Op Names")
put_new(Name, "3b", "compare: set SF if r32 < rm32 (cmp)");

:(code)
void test_compare_r32_with_mem_at_r32_greater() {
  Reg[EAX].i = 0x2000;
  Reg[EBX].i = 0x0a0b0c0d;
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  3b     18                                    \n"  // compare EBX with *EAX
      // ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX)
      "== data 0x2000\n"
      "07 0c 0b 0a\n"  // 0x0a0b0c07
  );
  CHECK_TRACE_CONTENTS(
      "run: compare EBX with r/m32\n"
      "run: effective address is 0x00002000 (EAX)\n"
      "run: SF=0; ZF=0; CF=0; OF=0\n"
  );
}

:(before "End Single-Byte Opcodes")
case 0x3b: {  // set SF if r32 < r/m32
  const uint8_t modrm = next();
  const uint8_t reg1 = (modrm>>3)&0x7;
  trace(Callstack_depth+1, "run") << "compare " << rname(reg1) << " with r/m32" << end();
  const int32_t* signed_arg2 = effective_address(modrm);
  const int32_t signed_difference = Reg[reg1].i - *signed_arg2;
  SF = (signed_difference < 0);
  ZF = (signed_difference == 0);
  int64_t full_signed_difference = static_cast<int64_t>(Reg[reg1].i) - *signed_arg2;
  OF = (signed_difference != full_signed_difference);
  const uint32_t unsigned_arg2 = static_cast<uint32_t>(*signed_arg2);
  const uint32_t unsigned_difference = Reg[reg1].u - unsigned_arg2;
  const uint64_t full_unsigned_difference = static_cast<uint64_t>(Reg[reg1].u) - unsigned_arg2;
  CF = (unsigned_difference != full_unsigned_difference);
  trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
  break;
}

:(code)
void test_compare_r32_with_mem_at_r32_lesser_unsigned_and_signed() {
  Reg[EAX].i = 0x2000;
  Reg[EBX].i = 0x0a0b0c07;
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  3b     18                                    \n"  // compare EBX with *EAX
      // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX)
      "== data 0x2000\n"
      "0d 0c 0b 0a\n"  // 0x0a0b0c0d
  );
  CHECK_TRACE_CONTENTS(
      "run: compare EBX with r/m32\n"
      "run: effective address is 0x00002000 (EAX)\n"
      "run: effective address contains a0b0c0d\n"
      "run: SF=1; ZF=0; CF=1; OF=0\n"
  );
}

void test_compare_r32_with_mem_at_r32_lesser_unsigned_and_signed_due_to_overflow() {
  Reg[EAX].i = 0x2000;
  Reg[EBX].i = 0x7fffffff;  // largest positive signed integer
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  3b     18                                    \n"  // compare EBX with *EAX
      // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX)
      "== data 0x2000\n"
      "00 00 00 80\n"  // smallest negative signed integer
  );
  CHECK_TRACE_CONTENTS(
      "run: compare EBX with r/m32\n"
      "run: effective address is 0x00002000 (EAX)\n"
      "run: effective address contains 80000000\n"
      "run: SF=1; ZF=0; CF=1; OF=1\n"
  );
}

void test_compare_r32_with_mem_at_r32_lesser_signed() {
  Reg[EAX].i = 0x2000;
  Reg[EBX].i = 0xffffffff;  // -1
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  3b     18                                    \n"  // compare EBX with *EAX
      // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX)
      "== data 0x2000\n"
      "01 00 00 00\n"  // 1
  );
  CHECK_TRACE_CONTENTS(
      "run: compare EBX with r/m32\n"
      "run: effective address is 0x00002000 (EAX)\n"
      "run: effective address contains 1\n"
      "run: SF=1; ZF=0; CF=0; OF=0\n"
  );
}

void test_compare_r32_with_mem_at_r32_lesser_unsigned() {
  Reg[EAX].i = 0x2000;
  Reg[EBX].i = 0x00000001;  // 1
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  3b     18                                    \n"  // compare EBX with *EAX
      // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX)
      "== data 0x2000\n"
      "ff ff ff ff\n"  // -1
  );
  CHECK_TRACE_CONTENTS(
      "run: compare EBX with r/m32\n"
      "run: effective address is 0x00002000 (EAX)\n"
      "run: effective address contains ffffffff\n"
      "run: SF=0; ZF=0; CF=1; OF=0\n"
  );
}

void test_compare_r32_with_mem_at_r32_equal() {
  Reg[EAX].i = 0x2000;
  Reg[EBX].i = 0x0a0b0c0d;
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  3b     18                                    \n"  // compare EBX with *EAX
      // ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX)
      "== data 0x2000\n"
      "0d 0c 0b 0a\n"  // 0x0a0b0c0d
  );
  CHECK_TRACE_CONTENTS(
      "run: compare EBX with r/m32\n"
      "run: effective address is 0x00002000 (EAX)\n"
      "run: SF=0; ZF=1; CF=0; OF=0\n"
  );
}

//:: copy (mov)

void test_copy_r32_to_mem_at_r32() {
  Reg[EBX].i = 0xaf;
  Reg[EAX].i = 0x60;
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  89     18                                    \n"  // copy EBX to *EAX
      // ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX)
  );
  CHECK_TRACE_CONTENTS(
      "run: copy EBX to r/m32\n"
      "run: effective address is 0x00000060 (EAX)\n"
      "run: storing 0x000000af\n"
  );
}

//:

:(before "End Initialize Op Names")
put_new(Name, "8b", "copy rm32 to r32 (mov)");

:(code)
void test_copy_mem_at_r32_to_r32() {
  Reg[EAX].i = 0x2000;
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  8b     18                                    \n"  // copy *EAX to EBX
      "== data 0x2000\n"
      "af 00 00 00\n"  // 0x000000af
  );
  CHECK_TRACE_CONTENTS(
      "run: copy r/m32 to EBX\n"
      "run: effective address is 0x00002000 (EAX)\n"
      "run: storing 0x000000af\n"
  );
}

:(before "End Single-Byte Opcodes")
case 0x8b: {  // copy r32 to r/m32
  const uint8_t modrm = next();
  const uint8_t rdest = (modrm>>3)&0x7;
  trace(Callstack_depth+1, "run") << "copy r/m32 to " << rname(rdest) << end();
  const int32_t* src = effective_address(modrm);
  Reg[rdest].i = *src;
  trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *src << end();
  break;
}

//:: jump

:(code)
void test_jump_mem_at_r32() {
  Reg[EAX].i = 0x2000;
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  ff     20                                    \n"  // jump to *EAX
      // ModR/M in binary: 00 (indirect mode) 100 (jump to r/m32) 000 (src EAX)
      "  b8                                 00 00 00 01\n"
      "  b8                                 00 00 00 02\n"
      "== data 0x2000\n"
      "08 00 00 00\n"  // 0x00000008
  );
  CHECK_TRACE_CONTENTS(
      "run: 0x00000001 opcode: ff\n"
      "run: jump to r/m32\n"
      "run: effective address is 0x00002000 (EAX)\n"
      "run: jumping to 0x00000008\n"
      "run: 0x00000008 opcode: b8\n"
  );
  CHECK_TRACE_DOESNT_CONTAIN("run: 0x00000003 opcode: b8");
}

:(before "End Op ff Subops")
case 4: {  // jump to r/m32
  trace(Callstack_depth+1, "run") << "jump to r/m32" << end();
  const int32_t* arg2 = effective_address(modrm);
  EIP = *arg2;
  trace(Callstack_depth+1, "run") << "jumping to 0x" << HEXWORD << EIP << end();
  break;
}

//:: push

:(code)
void test_push_mem_at_r32() {
  Reg[EAX].i = 0x2000;
  Mem.push_back(vma(0xbd000000));  // manually allocate memory
  Reg[ESP].u = 0xbd000014;
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  ff     30                                    \n"  // push *EAX to stack
      "== data 0x2000\n"
      "af 00 00 00\n"  // 0x000000af
  );
  CHECK_TRACE_CONTENTS(
      "run: push r/m32\n"
      "run: effective address is 0x00002000 (EAX)\n"
      "run: decrementing ESP to 0xbd000010\n"
      "run: pushing value 0x000000af\n"
  );
}

:(before "End Op ff Subops")
case 6: {  // push r/m32 to stack
  trace(Callstack_depth+1, "run") << "push r/m32" << end();
  const int32_t* val = effective_address(modrm);
  push(*val);
  break;
}

//:: pop

:(before "End Initialize Op Names")
put_new(Name, "8f", "pop top of stack to rm32 (pop)");

:(code)
void test_pop_mem_at_r32() {
  Reg[EAX].i = 0x60;
  Mem.push_back(vma(0xbd000000));  // manually allocate memory
  Reg[ESP].u = 0xbd000000;
  write_mem_i32(0xbd000000, 0x00000030);
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  8f     00                                    \n"  // pop stack into *EAX
      // ModR/M in binary: 00 (indirect mode) 000 (pop r/m32) 000 (dest EAX)
  );
  CHECK_TRACE_CONTENTS(
      "run: pop into r/m32\n"
      "run: effective address is 0x00000060 (EAX)\n"
      "run: popping value 0x00000030\n"
      "run: incrementing ESP to 0xbd000004\n"
  );
}

:(before "End Single-Byte Opcodes")
case 0x8f: {  // pop stack into r/m32
  const uint8_t modrm = next();
  const uint8_t subop = (modrm>>3)&0x7;
  switch (subop) {
    case 0: {
      trace(Callstack_depth+1, "run") << "pop into r/m32" << end();
      int32_t* dest = effective_address(modrm);
      *dest = pop();
      break;
    }
  }
  break;
}

//:: special-case for loading address from disp32 rather than register

:(code)
void test_add_r32_to_mem_at_displacement() {
  Reg[EBX].i = 0x10;  // source
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  01     1d            00 20 00 00             \n"  // add EBX to *0x2000
      // ModR/M in binary: 00 (indirect mode) 011 (src EBX) 101 (dest in disp32)
      "== data 0x2000\n"
      "01 00 00 00\n"  // 0x00000001
  );
  CHECK_TRACE_CONTENTS(
      "run: add EBX to r/m32\n"
      "run: effective address is 0x00002000 (disp32)\n"
      "run: storing 0x00000011\n"
  );
}

:(before "End Mod 0 Special-cases(addr)")
case 5:  // exception: mod 0b00 rm 0b101 => incoming disp32
  addr = next32();
  trace(Callstack_depth+1, "run") << "effective address is 0x" << HEXWORD << addr << " (disp32)" << end();
  break;

//:

:(code)
void test_add_r32_to_mem_at_r32_plus_disp8() {
  Reg[EBX].i = 0x10;  // source
  Reg[EAX].i = 0x1ffe;  // dest
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  01     58            02                      \n"  // add EBX to *(EAX+2)
      // ModR/M in binary: 01 (indirect+disp8 mode) 011 (src EBX) 000 (dest EAX)
      "== data 0x2000\n"
      "01 00 00 00\n"  // 0x00000001
  );
  CHECK_TRACE_CONTENTS(
      "run: add EBX to r/m32\n"
      "run: effective address is initially 0x00001ffe (EAX)\n"
      "run: effective address is 0x00002000 (after adding disp8)\n"
      "run: storing 0x00000011\n"
  );
}

:(before "End Mod Special-cases(addr)")
case 1: {  // indirect + disp8 addressing
  switch (rm) {
  default:
    addr = Reg[rm].u;
    trace(Callstack_depth+1, "run") << "effective address is initially 0x" << HEXWORD << addr << " (" << rname(rm) << ")" << end();
    break;
  // End Mod 1 Special-cases(addr)
  }
  int8_t displacement = static_cast<int8_t>(next());
  if (addr > 0) {
    addr += displacement;
    trace(Callstack_depth+1, "run") << "effective address is 0x" << HEXWORD << addr << " (after adding disp8)" << end();
  }
  else {
    trace(Callstack_depth+1, "run") << "null address; skipping displacement" << end();
  }
  break;
}

:(code)
void test_add_r32_to_mem_at_r32_plus_negative_disp8() {
  Reg[EBX].i = 0x10;  // source
  Reg[EAX].i = 0x2001;  // dest
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  01     58            ff                      \n"  // add EBX to *(EAX-1)
      // ModR/M in binary: 01 (indirect+disp8 mode) 011 (src EBX) 000 (dest EAX)
      "== data 0x2000\n"
      "01 00 00 00\n"  // 0x00000001
  );
  CHECK_TRACE_CONTENTS(
      "run: add EBX to r/m32\n"
      "run: effective address is initially 0x00002001 (EAX)\n"
      "run: effective address is 0x00002000 (after adding disp8)\n"
      "run: storing 0x00000011\n"
  );
}

//:

:(code)
void test_add_r32_to_mem_at_r32_plus_disp32() {
  Reg[EBX].i = 0x10;  // source
  Reg[EAX].i = 0x1ffe;  // dest
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  01     98            02 00 00 00             \n"  // add EBX to *(EAX+2)
      // ModR/M in binary: 10 (indirect+disp32 mode) 011 (src EBX) 000 (dest EAX)
      "== data 0x2000\n"
      "01 00 00 00\n"  // 0x00000001
  );
  CHECK_TRACE_CONTENTS(
      "run: add EBX to r/m32\n"
      "run: effective address is initially 0x00001ffe (EAX)\n"
      "run: effective address is 0x00002000 (after adding disp32)\n"
      "run: storing 0x00000011\n"
  );
}

:(before "End Mod Special-cases(addr)")
case 2:  // indirect + disp32 addressing
  switch (rm) {
  default:
    addr = Reg[rm].u;
    trace(Callstack_depth+1, "run") << "effective address is initially 0x" << HEXWORD << addr << " (" << rname(rm) << ")" << end();
    break;
  // End Mod 2 Special-cases(addr)
  }
  if (addr > 0) {
    addr += next32();
    trace(Callstack_depth+1, "run") << "effective address is 0x" << HEXWORD << addr << " (after adding disp32)" << end();
  }
  break;

:(code)
void test_add_r32_to_mem_at_r32_plus_negative_disp32() {
  Reg[EBX].i = 0x10;  // source
  Reg[EAX].i = 0x2001;  // dest
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  01     98            ff ff ff ff             \n"  // add EBX to *(EAX-1)
      // ModR/M in binary: 10 (indirect+disp32 mode) 011 (src EBX) 000 (dest EAX)
      "== data 0x2000\n"
      "01 00 00 00\n"  // 0x00000001
  );
  CHECK_TRACE_CONTENTS(
      "run: add EBX to r/m32\n"
      "run: effective address is initially 0x00002001 (EAX)\n"
      "run: effective address is 0x00002000 (after adding disp32)\n"
      "run: storing 0x00000011\n"
  );
}

//:: copy address (lea)

:(before "End Initialize Op Names")
put_new(Name, "8d", "copy address in rm32 into r32 (lea)");

:(code)
void test_copy_address() {
  Reg[EAX].u = 0x2000;
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  8d     18                                    \n"  // copy address in EAX into EBX
      // ModR/M in binary: 00 (indirect mode) 011 (dest EBX) 000 (src EAX)
  );
  CHECK_TRACE_CONTENTS(
      "run: copy address into EBX\n"
      "run: effective address is 0x00002000 (EAX)\n"
  );
}

:(before "End Single-Byte Opcodes")
case 0x8d: {  // copy address of m32 to r32
  const uint8_t modrm = next();
  const uint8_t arg1 = (modrm>>3)&0x7;
  trace(Callstack_depth+1, "run") << "copy address into " << rname(arg1) << end();
  Reg[arg1].u = effective_address_number(modrm);
  break;
}