blob: 4bf7140ad41e67e2caf134edb96c2281237e2f3e (
plain) (
tree)
|
|
//: So far the recipes we define can't run each other. Let's fix that.
:(scenario calling_recipe)
recipe main [
f
]
recipe f [
3:number <- add 2, 2
]
+mem: storing 4 in location 3
:(scenario return_on_fallthrough)
recipe main [
f
1:number <- copy 0
2:number <- copy 0
3:number <- copy 0
]
recipe f [
4:number <- copy 0
5:number <- copy 0
]
+run: f
# running f
+run: 4:number <- copy 0
+run: 5:number <- copy 0
# back out to main
+run: 1:number <- copy 0
+run: 2:number <- copy 0
+run: 3:number <- copy 0
:(before "struct routine {")
// Everytime a recipe runs another, we interrupt it and start running the new
// recipe. When that finishes, we continue this one where we left off.
// This requires maintaining a 'stack' of interrupted recipes or 'calls'.
struct call {
recipe_ordinal running_recipe;
long long int running_step_index;
// End call Fields
call(recipe_ordinal r) {
running_recipe = r;
running_step_index = 0;
// End call Constructor
}
};
typedef list<call> call_stack;
:(replace{} "struct routine")
struct routine {
call_stack calls;
// End routine Fields
routine(recipe_ordinal r);
bool completed() const;
const vector<instruction>& steps() const;
};
:(code)
routine::routine(recipe_ordinal r) {
calls.push_front(call(r));
// End routine Constructor
}
//:: now update routine's helpers
:(replace{} "inline long long int& current_step_index()")
inline long long int& current_step_index() {
assert(!Current_routine->calls.empty());
return Current_routine->calls.front().running_step_index;
}
:(replace{} "inline const string& current_recipe_name()")
inline const string& current_recipe_name() {
assert(!Current_routine->calls.empty());
return Recipe[Current_routine->calls.front().running_recipe].name;
}
:(replace{} "inline const instruction& current_instruction()")
inline const instruction& current_instruction() {
assert(!Current_routine->calls.empty());
return Recipe[Current_routine->calls.front().running_recipe].steps.at(Current_routine->calls.front().running_step_index);
}
:(replace{} "default:" following "End Primitive Recipe Implementations")
default: {
// not a primitive; try to look up the book of recipes
if (Recipe.find(current_instruction().operation) == Recipe.end()) {
raise << current_recipe_name() << ": undefined operation in '" << current_instruction().to_string() << "'\n" << end();
// stop running this instruction immediately
++current_step_index();
continue;
}
Current_routine->calls.push_front(call(current_instruction().operation));
call_housekeeping:
++Callstack_depth;
assert(Callstack_depth < 9000); // 9998-101 plus cushion
continue; // not done with caller; don't increment current_step_index()
}
:(scenario calling_undefined_recipe_warns)
% Hide_warnings = true;
recipe main [
foo
]
+warn: main: undefined operation in 'foo '
:(scenario calling_undefined_recipe_handles_missing_result)
% Hide_warnings = true;
recipe main [
x:number <- foo
]
+warn: main: undefined operation in 'x:number <- foo '
//:: finally, we need to fix the termination conditions for the run loop
:(replace{} "inline bool routine::completed() const")
inline bool routine::completed() const {
return calls.empty();
}
inline const vector<instruction>& routine::steps() const {
assert(!calls.empty());
return Recipe[calls.front().running_recipe].steps;
}
:(before "Running One Instruction")
// when we reach the end of one call, we may reach the end of the one below
// it, and the one below that, and so on
while (current_step_index() >= SIZE(Current_routine->steps())) {
// Falling Through End Of Recipe
--Callstack_depth;
Current_routine->calls.pop_front();
if (Current_routine->calls.empty()) return;
// Complete Call Fallthrough
// todo: no products returned warning
++current_step_index();
}
:(before "End Includes")
#include <stack>
using std::stack;
|