blob: 5a4acb82d77aa7b842fa29722f638f059afe0d0d (
plain) (
tree)
|
|
//: So far we've been calling a fixed recipe in each instruction, but we'd
//: also like to make the recipe a variable, pass recipes to "higher-order"
//: recipes, return recipes from recipes and so on.
:(scenario call_literal_recipe)
recipe main [
1:number <- call f:recipe, 34:literal
]
recipe f [
2:number <- next-ingredient
reply 2:number
]
+mem: storing 34 in location 1
:(scenario call_variable)
recipe main [
1:recipe-ordinal <- copy f:recipe
2:number <- call 1:recipe-ordinal, 34:literal
]
recipe f [
3:number <- next-ingredient
reply 3:number
]
+mem: storing 34 in location 2
#? ?
:(before "End Mu Types Initialization")
// 'recipe' is a literal
Type_ordinal["recipe"] = 0;
// 'recipe-ordinal' is the literal that can store recipe literals
type_ordinal recipe_ordinal = Type_ordinal["recipe-ordinal"] = Next_type_ordinal++;
Type[recipe_ordinal].name = "recipe-ordinal";
:(before "End Reagent-parsing Exceptions")
if (r.properties.at(0).second.at(0) == "recipe") {
r.set_value(Recipe_ordinal[r.name]);
return;
}
:(before "End Primitive Recipe Declarations")
CALL,
:(before "End Primitive Recipe Numbers")
Recipe_ordinal["call"] = CALL;
:(before "End Primitive Recipe Implementations")
case CALL: {
assert(scalar(ingredients.at(0)));
// todo: when we start doing type checking this will be a prime point of
// attention, so we don't accidentally allow external data to a program to
// run as code.
Current_routine->calls.push_front(call(ingredients.at(0).at(0)));
ingredients.erase(ingredients.begin()); // drop the callee
goto complete_call;
}
|