blob: 99ced920be354cc3bac22d05e3678729c9b42cc3 (
plain) (
tree)
|
|
//: Run a second routine concurrently using 'start-running', without any
//: guarantees on how the operations in each are interleaved with each other.
:(scenario scheduler)
recipe f1 [
start-running f2:recipe
# wait for f2 to run
{
loop-unless 1:integer
}
]
recipe f2 [
1:integer <- copy 1:literal
]
+schedule: f1
+schedule: f2
//: first, add a deadline to run(routine)
//: these changes are ugly and brittle; just close your nose and get through the next few lines
:(replace "void run_current_routine()")
void run_current_routine(size_t time_slice)
:(replace "while (!Current_routine->completed())" following "void run_current_routine(size_t time_slice)")
size_t ninstrs = 0;
while (Current_routine->state == RUNNING && ninstrs < time_slice)
:(after "Running One Instruction")
ninstrs++;
//: now the rest of the scheduler is clean
:(before "struct routine")
enum routine_state {
RUNNING,
COMPLETED,
// End routine States
};
:(before "End routine Fields")
enum routine_state state;
:(before "End routine Constructor")
state = RUNNING;
:(before "End Globals")
vector<routine*> Routines;
index_t Current_routine_index = 0;
size_t Scheduling_interval = 500;
:(before "End Setup")
Scheduling_interval = 500;
:(replace{} "void run(recipe_number r)")
void run(recipe_number r) {
Routines.push_back(new routine(r));
Current_routine_index = 0, Current_routine = Routines.at(0);
while (!all_routines_done()) {
skip_to_next_routine();
//? cout << "scheduler: " << Current_routine_index << '\n'; //? 1
assert(Current_routine);
assert(Current_routine->state == RUNNING);
trace("schedule") << current_recipe_name();
//? trace("schedule") << Current_routine_index << ": " << current_recipe_name(); //? 1
//? trace("schedule") << Current_routine->id << " " << current_recipe_name(); //? 1
run_current_routine(Scheduling_interval);
// Scheduler State Transitions
if (Current_routine->completed())
Current_routine->state = COMPLETED;
// End Scheduler State Transitions
// Scheduler Cleanup
// End Scheduler Cleanup
}
//? cout << "done with run\n"; //? 1
}
:(code)
bool all_routines_done() {
for (index_t i = 0; i < Routines.size(); ++i) {
//? cout << "routine " << i << ' ' << Routines.at(i)->state << '\n'; //? 1
if (Routines.at(i)->state == RUNNING) {
return false;
}
}
return true;
}
// skip Current_routine_index past non-RUNNING routines
void skip_to_next_routine() {
assert(!Routines.empty());
assert(Current_routine_index < Routines.size());
for (index_t i = (Current_routine_index+1)%Routines.size(); i != Current_routine_index; i = (i+1)%Routines.size()) {
if (Routines.at(i)->state == RUNNING) {
//? cout << "switching to " << i << '\n'; //? 1
Current_routine_index = i;
Current_routine = Routines.at(i);
return;
}
}
//? cout << "all done\n"; //? 1
}
:(before "End Teardown")
for (index_t i = 0; i < Routines.size(); ++i)
delete Routines.at(i);
Routines.clear();
//:: To schedule new routines to run, call 'start-running'.
//: 'start-running' will return a unique id for the routine that was created.
:(before "End routine Fields")
index_t id;
:(before "End Globals")
index_t Next_routine_id = 1;
:(before "End Setup")
Next_routine_id = 1;
:(before "End routine Constructor")
id = Next_routine_id;
Next_routine_id++;
//: routines save the routine that spawned them
:(before "End routine Fields")
// todo: really should be routine_id, but that's less efficient.
long long int parent_index; // only < 0 if there's no parent_index
:(before "End routine Constructor")
parent_index = -1;
:(before "End Primitive Recipe Declarations")
START_RUNNING,
:(before "End Primitive Recipe Numbers")
Recipe_number["start-running"] = START_RUNNING;
:(before "End Primitive Recipe Implementations")
case START_RUNNING: {
assert(isa_literal(current_instruction().ingredients.at(0)));
assert(!current_instruction().ingredients.at(0).initialized);
routine* new_routine = new routine(Recipe_number[current_instruction().ingredients.at(0).name]);
//? cerr << new_routine->id << " -> " << Current_routine->id << '\n'; //? 1
new_routine->parent_index = Current_routine_index;
// populate ingredients
for (index_t i = 1; i < current_instruction().ingredients.size(); ++i)
new_routine->calls.top().ingredient_atoms.push_back(ingredients.at(i));
Routines.push_back(new_routine);
products.resize(1);
products.at(0).push_back(new_routine->id);
break;
}
:(scenario scheduler_runs_single_routine)
% Scheduling_interval = 1;
recipe f1 [
1:integer <- copy 0:literal
2:integer <- copy 0:literal
]
+schedule: f1
+run: instruction f1/0
+schedule: f1
+run: instruction f1/1
:(scenario scheduler_interleaves_routines)
% Scheduling_interval = 1;
recipe f1 [
start-running f2:recipe
1:integer <- copy 0:literal
2:integer <- copy 0:literal
]
recipe f2 [
3:integer <- copy 4:literal
4:integer <- copy 4:literal
]
+schedule: f1
+run: instruction f1/0
+schedule: f2
+run: instruction f2/0
+schedule: f1
+run: instruction f1/1
+schedule: f2
+run: instruction f2/1
+schedule: f1
+run: instruction f1/2
:(scenario start_running_takes_args)
recipe f1 [
start-running f2:recipe, 3:literal
# wait for f2 to run
{
loop-unless 1:integer
}
]
recipe f2 [
1:integer <- next-ingredient
2:integer <- add 1:integer, 1:literal
]
+mem: storing 4 in location 2
:(scenario start_running_returns_routine_id)
recipe f1 [
1:integer <- start-running f2:recipe
]
recipe f2 [
12:integer <- copy 44:literal
]
+mem: storing 2 in location 1
:(scenario scheduler_skips_completed_routines)
# this scenario will require some careful setup in escaped C++
# (straining our tangle capabilities to near-breaking point)
% recipe_number f1 = load("recipe f1 [\n1:integer <- copy 0:literal\n]").front();
% recipe_number f2 = load("recipe f2 [\n2:integer <- copy 0:literal\n]").front();
% Routines.push_back(new routine(f1)); // f1 meant to run
% Routines.push_back(new routine(f2));
% Routines.back()->state = COMPLETED; // f2 not meant to run
#? % Trace_stream->dump_layer = "all";
# must have at least one routine without escaping
recipe f3 [
3:integer <- copy 0:literal
]
# by interleaving '+' lines with '-' lines, we allow f1 and f3 to run in any order
+schedule: f1
+mem: storing 0 in location 1
-schedule: f2
-mem: storing 0 in location 2
+schedule: f3
+mem: storing 0 in location 3
:(scenario scheduler_starts_at_middle_of_routines)
% Routines.push_back(new routine(COPY));
% Routines.back()->state = COMPLETED;
recipe f1 [
1:integer <- copy 0:literal
2:integer <- copy 0:literal
]
+schedule: f1
-run: idle
//:: Routines are marked completed when their parent completes.
:(scenario scheduler_kills_orphans)
recipe main [
start-running f1:recipe
# f1 never actually runs because its parent completes without waiting for it
]
recipe f1 [
1:integer <- copy 0:literal
]
-schedule: f1
:(before "End Scheduler Cleanup")
//? trace("schedule") << "Before cleanup"; //? 1
//? for (index_t i = 0; i < Routines.size(); ++i) { //? 1
//? trace("schedule") << i << ": " << Routines.at(i)->id << ' ' << Routines.at(i)->state << ' ' << Routines.at(i)->parent_index << ' ' << Routines.at(i)->state; //? 1
//? } //? 1
for (index_t i = 0; i < Routines.size(); ++i) {
if (Routines.at(i)->state == COMPLETED) continue;
if (Routines.at(i)->parent_index < 0) continue; // root thread
//? trace("schedule") << "AAA " << i; //? 1
if (has_completed_parent(i)) {
//? trace("schedule") << "BBB " << i; //? 1
Routines.at(i)->state = COMPLETED;
}
}
//? trace("schedule") << "After cleanup"; //? 1
//? for (index_t i = 0; i < Routines.size(); ++i) { //? 1
//? trace("schedule") << i << ": " << Routines.at(i)->id << ' ' << Routines.at(i)->state << ' ' << Routines.at(i)->parent_index << ' ' << Routines.at(i)->state; //? 1
//? } //? 1
:(code)
bool has_completed_parent(index_t routine_index) {
//? trace("schedule") << "CCC " << routine_index << '\n'; //? 2
for (long long int j = routine_index; j >= 0; j = Routines.at(j)->parent_index) {
//? trace("schedule") << "DDD " << j << '\n'; //? 2
if (Routines.at(j)->state == COMPLETED)
return true;
}
return false;
}
//:: 'routine-state' can tell if a given routine id is running
:(scenario routine_state_test)
% Scheduling_interval = 2;
recipe f1 [
1:integer/child-id <- start-running f2:recipe
12:integer <- copy 0:literal # race condition since we don't care about location 12
# thanks to Scheduling_interval, f2's one instruction runs in between here and completes
2:integer/state <- routine-state 1:integer/child-id
]
recipe f2 [
12:integer <- copy 0:literal
# trying to run a second instruction marks routine as completed
]
# recipe f2 should be in state COMPLETED
+mem: storing 1 in location 2
:(before "End Primitive Recipe Declarations")
ROUTINE_STATE,
:(before "End Primitive Recipe Numbers")
Recipe_number["routine-state"] = ROUTINE_STATE;
:(before "End Primitive Recipe Implementations")
case ROUTINE_STATE: {
assert(ingredients.at(0).size() == 1); // routine id must be scalar
index_t id = ingredients.at(0).at(0);
long long int result = -1;
for (index_t i = 0; i < Routines.size(); ++i) {
if (Routines.at(i)->id == id) {
result = Routines.at(i)->state;
break;
}
}
products.resize(1);
products.at(0).push_back(result);
break;
}
//:: miscellaneous helpers
:(before "End Primitive Recipe Declarations")
RESTART,
:(before "End Primitive Recipe Numbers")
Recipe_number["restart"] = RESTART;
:(before "End Primitive Recipe Implementations")
case RESTART: {
assert(ingredients.at(0).size() == 1); // routine id must be scalar
index_t id = ingredients.at(0).at(0);
for (index_t i = 0; i < Routines.size(); ++i) {
if (Routines.at(i)->id == id) {
Routines.at(i)->state = RUNNING;
break;
}
}
break;
}
:(before "End Primitive Recipe Declarations")
STOP,
:(before "End Primitive Recipe Numbers")
Recipe_number["stop"] = STOP;
:(before "End Primitive Recipe Implementations")
case STOP: {
assert(ingredients.at(0).size() == 1); // routine id must be scalar
index_t id = ingredients.at(0).at(0);
for (index_t i = 0; i < Routines.size(); ++i) {
if (Routines.at(i)->id == id) {
Routines.at(i)->state = COMPLETED;
break;
}
}
break;
}
:(before "End Primitive Recipe Declarations")
_DUMP_ROUTINES,
:(before "End Primitive Recipe Numbers")
Recipe_number["$dump-routines"] = _DUMP_ROUTINES;
:(before "End Primitive Recipe Implementations")
case _DUMP_ROUTINES: {
for (index_t i = 0; i < Routines.size(); ++i) {
cerr << i << ": " << Routines.at(i)->id << ' ' << Routines.at(i)->state << ' ' << Routines.at(i)->parent_index << '\n';
}
break;
}
|