//: A simple memory allocator to create space for new variables at runtime.
:(scenarios run)
:(scenario new)
# call new two times with identical arguments; you should get back different results
recipe main [
1:address:number/raw <- new number:type
2:address:number/raw <- new number:type
3:boolean/raw <- equal 1:address:number/raw, 2:address:number/raw
]
+mem: storing 0 in location 3
:(before "End Globals")
long long int Reserved_for_tests = 1000;
long long int Memory_allocated_until = Reserved_for_tests;
long long int Initial_memory_per_routine = 100000;
:(before "End Setup")
Memory_allocated_until = Reserved_for_tests;
Initial_memory_per_routine = 100000;
:(before "End routine Fields")
long long int alloc, alloc_max;
:(before "End routine Constructor")
alloc = Memory_allocated_until;
Memory_allocated_until += Initial_memory_per_routine;
alloc_max = Memory_allocated_until;
trace(Primitive_recipe_depth, "new") << "routine allocated memory from " << alloc << " to " << alloc_max;
//:: First handle 'type' operands.
:(before "End Mu Types Initialization")
Type_number["type"] = 0;
:(after "Per-recipe Transforms")
// replace type names with type_numbers
if (inst.operation == Recipe_number["new"]) {
// End NEW Transform Special-cases
// first arg must be of type 'type'
assert(SIZE(inst.ingredients) >= 1);
assert(isa_literal(inst.ingredients.at(0)));
if (inst.ingredients.at(0).properties.at(0).second.at(0) != "type")
raise << "tried to allocate non-type " << inst.ingredients.at(0).to_string() << " in recipe " << Recipe[r].name << '\n' << die();
if (Type_number.find(inst.ingredients.at(0).name) == Type_number.end())
raise << "unknown type " << inst.ingredients.at(0).name << " in recipe " << Recipe[r].name << '\n' << die();
//? cerr << "type " << inst.ingredients.at(0).name << " => " << Type_number[inst.ingredients.at(0).name] << '\n'; //? 1
inst.ingredients.at(0).set_value(Type_number[inst.ingredients.at(0).name]);
trace(Primitive_recipe_depth, "new") << inst.ingredients.at(0).name << " -> " << inst.ingredients.at(0).value;
end_new_transform:;
}
//:: Now implement the primitive recipe.
//: todo: build 'new' in mu itself
:(before "End Primitive Recipe Declarations")
NEW,
:(before "End Primitive Recipe Numbers")
Recipe_number["new"] = NEW;
:(before "End Primitive Recipe Implementations")
case NEW: {
// compute the space we need
long long int size = 0;
long long int array_length = 0;
{
vector<type_number> type;
assert(isa_literal(current_instruction().ingredients.at(0)));
type.push_back(current_instruction().ingredients.at(0).value);
//? trace(Primitive_recipe_depth, "mem") << "type " << current_instruction().ingredients.at(0).to_string() << ' ' << type.size() << ' ' << type.back() << " has size " << size_of(type); //? 1
if (SIZE(current_instruction().ingredients) > 1) {
// array
array_length = ingredients.at(1).at(0);
trace(Primitive_recipe_depth, "mem") << "array size is " << array_length;
size = array_length*size_of(type) + /*space for length*/1;
}
else {
// scalar
size = size_of(type);
}
}
// compute the region of memory to return
// really crappy at the moment
ensure_space(size);
const long long int result = Current_routine->alloc;
trace(Primitive_recipe_depth, "mem") << "new alloc: " << result;
//? trace(Primitive_recipe_depth, "mem") << "size: " << size << " locations"; //? 1
// save result
products.resize(1);
products.at(0).push_back(result);
// initialize allocated space
for (long long int address = result; address < result+size; ++address) {
Memory[address] = 0;
}
if (SIZE(current_instruction().ingredients) > 1) {
Memory[result] = array_length;
}
// bump
Current_routine->alloc += size;
// no support for reclaiming memory
assert(Current_routine->alloc <= Current_routine->alloc_max);
break;
}
:(code)
void ensure_space(long long int size) {
assert(size <= Initial_memory_per_routine);
//? cout << Current_routine->alloc << " " << Current_routine->alloc_max << " " << size << '\n'; //? 1
if (Current_routine->alloc + size > Current_routine->alloc_max) {
// waste the remaining space and create a new chunk
Current_routine->alloc = Memory_allocated_until;
Memory_allocated_until += Initial_memory_per_routine;
Current_routine->alloc_max = Memory_allocated_until;
trace(Primitive_recipe_depth, "new") << "routine allocated memory from " << Current_routine->alloc << " to " << Current_routine->alloc_max;
}
}
:(scenario new_initializes)
% Memory_allocated_until = 10;
% Memory[Memory_allocated_until] = 1;
recipe main [
1:address:number <- new number:type
2:number <- copy 1:address:number/deref
]
+mem: storing 0 in location 2
:(scenario new_array)
recipe main [
1:address:array:number/raw <- new number:type, 5:literal
2:address:number/raw <- new number:type
3:number/raw <- subtract 2:address:number/raw, 1:address:array:number/raw
]
+run: 1:address:array:number/raw <- new number:type, 5:literal
+mem: array size is 5
# don't forget the extra location for array size
+mem: storing 6 in location 3
//: Make sure that each routine gets a different alloc to start.
:(scenario new_concurrent)
recipe f1 [
start-running f2:recipe
1:address:number/raw <- new number:type
# wait for f2 to complete
{
loop-unless 4:number/raw
}
]
recipe f2 [
2:address:number/raw <- new number:type
# hack: assumes scheduler implementation
3:boolean/raw <- equal 1:address:number/raw, 2:address:number/raw
# signal f2 complete
4:number/raw <- copy 1:literal
]
+mem: storing 0 in location 3
//: If a routine runs out of its initial allocation, it should allocate more.
:(scenario new_overflow)
% Initial_memory_per_routine = 2;
recipe main [
1:address:number/raw <- new number:type
2:address:point/raw <- new point:type # not enough room in initial page
]
+new: routine allocated memory from 1000 to 1002
+new: routine allocated memory from 1002 to 1004
//:: Next, extend 'new' to handle a unicode string literal argument.
:(scenario new_string)
recipe main [
1:address:array:character <- new [abc def]
2:character <- index 1:address:array:character/deref, 5:literal
]
# number code for 'e'
+mem: storing 101 in location 2
:(scenario new_string_handles_unicode)
recipe main [
1:address:array:character <- new [a«c]
2:number <- length 1:address:array:character/deref
3:character <- index 1:address:array:character/deref, 1:literal
]
+mem: storing 3 in location 2
# unicode for '«'
+mem: storing 171 in location 3
:(before "End NEW Transform Special-cases")
if (inst.ingredients.at(0).properties.at(0).second.at(0) == "literal-string") {
// skip transform
inst.ingredients.at(0).initialized = true;
goto end_new_transform;
}
:(after "case NEW" following "Primitive Recipe Implementations")
if (isa_literal(current_instruction().ingredients.at(0))
&& current_instruction().ingredients.at(0).properties.at(0).second.at(0) == "literal-string") {
// allocate an array just large enough for it
long long int string_length = unicode_length(current_instruction().ingredients.at(0).name);
//? cout << "string_length is " << string_length << '\n'; //? 1
ensure_space(string_length+1); // don't forget the extra location for array size
products.resize(1);
products.at(0).push_back(Current_routine->alloc);
// initialize string
//? cout << "new string literal: " << current_instruction().ingredients.at(0).name << '\n'; //? 1
Memory[Current_routine->alloc++] = string_length;
long long int curr = 0;
const string& contents = current_instruction().ingredients.at(0).name;
const char* raw_contents = contents.c_str();
for (long long int i = 0; i < string_length; ++i) {
uint32_t curr_character;
assert(curr < SIZE(contents));
tb_utf8_char_to_unicode(&curr_character, &raw_contents[curr]);
Memory[Current_routine->alloc] = curr_character;
curr += tb_utf8_char_length(raw_contents[curr]);
++Current_routine->alloc;
}
// mu strings are not null-terminated in memory
break;
}
//: Allocate more to routine when initializing a literal string
:(scenario new_string_overflow)
% Initial_memory_per_routine = 2;
recipe main [
1:address:number/raw <- new number:type
2:address:array:character/raw <- new [a] # not enough room in initial page, if you take the array size into account
]
+new: routine allocated memory from 1000 to 1002
+new: routine allocated memory from 1002 to 1004
//: helpers
:(code)
long long int unicode_length(const string& s) {
const char* in = s.c_str();
long long int result = 0;
long long int curr = 0;
while (curr < SIZE(s)) { // carefully bounds-check on the string
// before accessing its raw pointer
++result;
curr += tb_utf8_char_length(in[curr]);
}
return result;
}
:(before "End Includes")
#include"termbox/termbox.h" // for unicode primitives