//:: Like container definitions, recipes too can contain type parameters.
:(scenario shape_shifting_recipe)
def main [
10:point <- merge 14, 15
11:point <- foo 10:point
]
# non-matching variant
def foo a:number -> result:number [
local-scope
load-ingredients
result <- copy 34
]
# matching shape-shifting variant
def foo a:_t -> result:_t [
local-scope
load-ingredients
result <- copy a
]
+mem: storing 14 in location 11
+mem: storing 15 in location 12
//: Before anything else, disable transforms for shape-shifting recipes and
//: make sure we never try to actually run a shape-shifting recipe. We should
//: be rewriting such instructions to *specializations* with the type
//: ingredients filled in.
//: One exception (and this makes things very ugly): we need to expand type
//: abbreviations in shape-shifting recipes because we need them types for
//: deciding which variant to specialize.
:(before "End Transform Checks")
r.transformed_until = t;
if (Transform.at(t) != static_cast<transform_fn>(expand_type_abbreviations) && any_type_ingredient_in_header(/*recipe_ordinal*/p->first)) continue;
:(after "Running One Instruction")
if (Current_routine->calls.front().running_step_index == 0
&& any_type_ingredient_in_header(Current_routine->calls.front().running_recipe)) {
//? DUMP("");
raise << "ran into unspecialized shape-shifting recipe " << current_recipe_name() << '\n' << end();
//? exit(0);
}
//: Make sure we don't match up literals with type ingredients without
//: specialization.
:(before "End Matching Types For Literal(to)")
if (contains_type_ingredient_name(to)) return false;
//: save original name of specialized recipes
:(before "End recipe Fields")
string original_name;
//: original name is only set during load
:(before "End Load Recipe Name")
result.original_name = result.name;
:(after "Static Dispatch Phase 3")
candidates = strictly_matching_shape_shifting_variants(inst, variants);
if (!candidates.empty()) {
recipe_ordinal exemplar = best_shape_shifting_variant(inst, candidates);
trace(9992, "transform") << "found variant to specialize: " << exemplar << ' ' << get(Recipe, exemplar).name << end();
recipe_ordinal new_recipe_ordinal = new_variant(exemplar, inst, caller_recipe);
if (new_recipe_ordinal == 0) goto skip_shape_shifting_variants;
variants.push_back(new_recipe_ordinal); // side-effect
recipe& variant = get(Recipe, new_recipe_ordinal);
// perform all transforms on the new specialization
if (!variant.steps.empty()) {
trace(9992, "transform") << "transforming new specialization: " << variant.name << end();
for (int t = 0; t < SIZE(Transform); ++t) {
// one exception: skip tangle, which would have already occurred inside new_variant above
if (Transform.at(t) == /*disambiguate overloading*/static_cast<transform_fn>(insert_fragments))
continue;
(*Transform.at(t))(new_recipe_ordinal);
}
}
variant.transformed_until = SIZE(Transform)-1;
trace(9992, "transform") << "new specialization: " << variant.name << end();
return variant.name;
}
skip_shape_shifting_variants:;
//: make sure we have no unspecialized shape-shifting recipes being called
//: before running mu programs
:(before "End Instruction Operation Checks")
if (contains_key(Recipe, inst.operation) && inst.operation >= MAX_PRIMITIVE_RECIPES
&& any_type_ingredient_in_header(inst.operation)) {
raise << maybe(caller.name) << "instruction '" << inst.name << "' has no valid specialization\n" << end();
return;
}
:(replace{} "bool types_strictly_match_except_literal_zero_against_address(const reagent& to, const reagent& from)")
bool types_strictly_match_except_literal_zero_against_address(const reagent& to, const reagent& from) {
if (is_literal(from) && is_mu_address(to))
return from.name == "0" && !contains_type_ingredient_name(to);
return types_strictly_match(to, from);
}
:(code)
// phase 2 of static dispatch
vector<recipe_ordinal> strictly_matching_shape_shifting_variants(const instruction& inst, vector<recipe_ordinal>& variants) {
vector<recipe_ordinal> result;
for (int i = 0; i < SIZE(variants); ++i) {
if (variants.at(i) == -1) continue;
if (!any_type_ingredient_in_header(variants.at(i))) continue;
if (!all_concrete_header_reagents_strictly_match(inst, get(Recipe, variants.at(i)))) continue;
result.push_back(variants.at(i));
}
return result;
}
bool all_concrete_header_reagents_strictly_match(const instruction& inst, const recipe& variant) {
if (SIZE(inst.ingredients) < SIZE(variant.ingredients)) {
trace(9993, "transform") << "too few ingredients" << end();
return false;
}
if (SIZE(variant.products) < SIZE(inst.products)) {
trace(9993, "transform") << "too few products" << end();
return false;
}
for (int i = 0; i < SIZE(variant.ingredients); ++i) {
if (!concrete_type_names_strictly_match(variant.ingredients.at(i), inst.ingredients.at(i))) {
trace(9993, "transform") << "concrete-type match failed: ingredient " << i << end();
return false;
}
}
for (int i = 0; i < SIZE(inst.products); ++i) {
if (is_dummy(inst.products.at(i))) continue;
if (!concrete_type_names_strictly_match(variant.products.at(i), inst.products.at(i))) {
trace(9993, "transform") << "strict match failed: product " << i << end();
return false;
}
}
return true;
}
// tie-breaker for phase 2
recipe_ordinal best_shape_shifting_variant(const instruction& inst, vector<recipe_ordinal>& candidates) {
assert(!candidates.empty());
// primary score
int max_score = -1;
for (int i = 0; i < SIZE(candidates); ++i) {
int score = number_of_concrete_type_names(candidates.at(i));
assert(score > -1);
if (score > max_score) max_score = score;
}
// break any ties at max_score by a secondary score
int min_score2 = 999;
int best_index = 0;
for (int i = 0; i < SIZE(candidates); ++i) {
int score1 = number_of_concrete_type_names(candidates.at(i));
assert(score1 <= max_score);
if (score1 != max_score) continue;
const recipe& candidate = get(Recipe, candidates.at(i));
int score2 = (SIZE(candidate.products)-SIZE(inst.products))
+ (SIZE(inst.ingredients)-SIZE(candidate.ingredients));
assert(score2 < 999);
if (score2 < min_score2) {
min_score2 = score2;
best_index = i;
}
}
return candidates.at(best_index);
}
bool any_type_ingredient_in_header(recipe_ordinal variant) {
const recipe& caller = get(Recipe, variant);
for (int i = 0; i < SIZE(caller.ingredients); ++i) {
if (contains_type_ingredient_name(caller.ingredients.at(i)))
return true;
}
for (int i = 0; i < SIZE(caller.products); ++i) {
if (contains_type_ingredient_name(caller.products.at(i)))
return true;
}
return false;
}
bool concrete_type_names_strictly_match(reagent/*copy*/ to, reagent/*copy*/ from) {
canonize_type(to);
canonize_type(from);
return concrete_type_names_strictly_match(to.type, from.type, from);
}
int number_of_concrete_type_names(recipe_ordinal r) {
const recipe& caller = get(Recipe, r);
int result = 0;
for (int i = 0; i < SIZE(caller.ingredients); ++i)
result += number_of_concrete_type_names(caller.ingredients.at(i));
for (int i = 0; i < SIZE(caller.products); ++i)
result += number_of_concrete_type_names(caller.products.at(i));
return result;
}
int number_of_concrete_type_names(const reagent& r) {
return number_of_concrete_type_names(r.type);
}
int number_of_concrete_type_names(const type_tree* type) {
if (!type) return 0;
if (type->atom)
return is_type_ingredient_name(type->name) ? 0 : 1;
return number_of_concrete_type_names(type->left)
+ number_of_concrete_type_names(type->right);
}
bool concrete_type_names_strictly_match(const type_tree* to, const type_tree* from, const reagent& rhs_reagent) {
if (!to) return !from;
if (!from) return !to;
if (to->atom && is_type_ingredient_name(to->name)) return true; // type ingredient matches anything
if (from->atom && is_mu_address(to))
return from->name == "literal" && rhs_reagent.name == "0";
if (!from->atom && !to->atom)
return concrete_type_names_strictly_match(to->left, from->left, rhs_reagent)
&& concrete_type_names_strictly_match(to->right, from->right, rhs_reagent);
if (from->atom != to->atom) return false;
// both from and to are atoms
if (from->name == "literal")
return Literal_type_names.find(to->name) != Literal_type_names.end();
if (to->name == "literal")
return Literal_type_names.find(from->name) != Literal_type_names.end();
return to->name == from->name;
}
bool contains_type_ingredient_name(const reagent& x) {
return contains_type_ingredient_name(x.type);
}
bool contains_type_ingredient_name(const type_tree* type) {
if (!type) return false;
if (is_type_ingredient_name(type->name)) return true;
return contains_type_ingredient_name(type->left) || contains_type_ingredient_name(type->right);
}
recipe_ordinal new_variant(recipe_ordinal exemplar, const instruction& inst, const recipe& caller_recipe) {
string new_name = next_unused_recipe_name(inst.name);
assert(!contains_key(Recipe_ordinal, new_name));
recipe_ordinal new_recipe_ordinal = put(Recipe_ordinal, new_name, Next_recipe_ordinal++);
// make a copy
assert(contains_key(Recipe, exemplar));
assert(!contains_key(Recipe, new_recipe_ordinal));
recipe new_recipe = get(Recipe, exemplar);
new_recipe.name = new_name;
new_recipe.is_autogenerated = true;
trace(9993, "transform") << "switching " << inst.name << " to specialized " << header_label(new_recipe) << end();
// Replace type ingredients with concrete types in new_recipe.
//
// preprocessing: micro-manage a couple of transforms
// a) perform tangle *before* replacing type ingredients, just in case
// inserted code involves type ingredients
insert_fragments(new_recipe);
// b) do the work of check_types_by_name while supporting type-ingredients
compute_type_names(new_recipe);
// that gives enough information to replace type-ingredients with concrete types
{
map<string, const type_tree*> mappings;
bool error = false;
compute_type_ingredient_mappings(get(Recipe, exemplar), inst, mappings, caller_recipe, &error);
if (!error) error = (SIZE(mappings) != type_ingredient_count_in_header(exemplar));
if (!error) replace_type_ingredients(new_recipe, mappings);
for (map<string, const type_tree*>::iterator p = mappings.begin(); p != mappings.end(); ++p)
delete p->second;
if (error) return 0;
}
ensure_all_concrete_types(new_recipe, get(Recipe, exemplar));
put(Recipe, new_recipe_ordinal, new_recipe);
return new_recipe_ordinal;
}
void compute_type_names(recipe& variant) {
trace(9993, "transform") << "compute type names: " << variant.name << end();
map<string, type_tree*> type_names;
for (int i = 0; i < SIZE(variant.ingredients); ++i)
save_or_deduce_type_name(variant.ingredients.at(i), type_names, variant, "");
for (int i = 0; i < SIZE(variant.products); ++i)
save_or_deduce_type_name(variant.products.at(i), type_names, variant, "");
for (int i = 0; i < SIZE(variant.steps); ++i) {
instruction& inst = variant.steps.at(i);
trace(9993, "transform") << " instruction: " << to_string(inst) << end();
for (int in = 0; in < SIZE(inst.ingredients); ++in)
save_or_deduce_type_name(inst.ingredients.at(in), type_names, variant, " in '" + inst.original_string + "'");
for (int out = 0; out < SIZE(inst.products); ++out)
save_or_deduce_type_name(inst.products.at(out), type_names, variant, " in '" + inst.original_string + "'");
}
}
void save_or_deduce_type_name(reagent& x, map<string, type_tree*>& type, const recipe& variant, const string& context) {
trace(9994, "transform") << " checking " << to_string(x) << ": " << names_to_string(x.type) << end();
if (!x.type && contains_key(type, x.name)) {
x.type = new type_tree(*get(type, x.name));
trace(9994, "transform") << " deducing type to " << names_to_string(x.type) << end();
return;
}
if (!x.type) {
raise << maybe(variant.original_name) << "unknown type for '" << x.original_string << "'" << context << " (check the name for typos)\n" << end();
return;
}
if (contains_key(type, x.name)) return;
if (x.type->name == "offset" || x.type->name == "variant") return; // special-case for container-access instructions
put(type, x.name, x.type);
trace(9993, "transform") << "type of '" << x.name << "' is " << names_to_string(x.type) << end();
}
void compute_type_ingredient_mappings(const recipe& exemplar, const instruction& inst, map<string, const type_tree*>& mappings, const recipe& caller_recipe, bool* error) {
int limit = min(SIZE(inst.ingredients), SIZE(exemplar.ingredients));
for (int i = 0; i < limit; ++i) {
const reagent& exemplar_reagent = exemplar.ingredients.at(i);
reagent/*copy*/ ingredient = inst.ingredients.at(i);
canonize_type(ingredient);
if (is_mu_address(exemplar_reagent) && ingredient.name == "0") continue; // assume it matches
accumulate_type_ingredients(exemplar_reagent, ingredient, mappings, exemplar, inst, caller_recipe, error);
}
limit = min(SIZE(inst.products), SIZE(exemplar.products));
for (int i = 0; i < limit; ++i) {
const reagent& exemplar_reagent = exemplar.products.at(i);
reagent/*copy*/ product = inst.products.at(i);
if (is_dummy(product)) continue;
canonize_type(product);
accumulate_type_ingredients(exemplar_reagent, product, mappings, exemplar, inst, caller_recipe, error);
}
}
int min(int a, int b) {
return (a < b) ? a : b;
}
void accumulate_type_ingredients(const reagent& exemplar_reagent, reagent& refinement, map<string, const type_tree*>& mappings, const recipe& exemplar, const instruction& call_instruction, const recipe& caller_recipe, bool* error) {
assert(refinement.type);
accumulate_type_ingredients(exemplar_reagent.type, refinement.type, mappings, exemplar, exemplar_reagent, call_instruction, caller_recipe, error);
}
void accumulate_type_ingredients(const type_tree* exemplar_type, const type_tree* refinement_type, map<string, const type_tree*>& mappings, const recipe& exemplar, const reagent& exemplar_reagent, const instruction& call_instruction, const recipe& caller_recipe, bool* error) {
if (!exemplar_type) return;
if (!refinement_type) {
// todo: make this smarter; only flag an error if exemplar_type contains some *new* type ingredient
raise << maybe(exemplar.name) << "missing type ingredient for " << exemplar_reagent.original_string << '\n' << end();
raise << " (called from '" << to_original_string(call_instruction) << "')\n" << end();
return;
}
if (is_type_ingredient_name(exemplar_type->name)) {
const type_tree* curr_refinement_type = NULL; // temporary heap allocation; must always be deleted before it goes out of scope
if (exemplar_type->atom)
curr_refinement_type = new type_tree(*refinement_type);
else {
assert(!refinement_type->atom);
curr_refinement_type = new type_tree(*refinement_type->left);
}
if (!contains_key(mappings, exemplar_type->name)) {
trace(9993, "transform") << "adding mapping from " << exemplar_type->name << " to " << to_string(curr_refinement_type) << end();
put(mappings, exemplar_type->name, new type_tree(*curr_refinement_type));
}
else {
if (!deeply_equal_type_names(get(mappings, exemplar_type->name), curr_refinement_type)) {
raise << maybe(caller_recipe.name) << "no call found for '" << to_original_string(call_instruction) << "'\n" << end();
*error = true;
delete curr_refinement_type;
return;
}
if (get(mappings, exemplar_type->name)->name == "literal") {
delete get(mappings, exemplar_type->name);
put(mappings, exemplar_type->name, new type_tree(*curr_refinement_type));
}
}
delete curr_refinement_type;
}
else {
accumulate_type_ingredients(exemplar_type->left, refinement_type->left, mappings, exemplar, exemplar_reagent, call_instruction, caller_recipe, error);
}
accumulate_type_ingredients(exemplar_type->right, refinement_type->right, mappings, exemplar, exemplar_reagent, call_instruction, caller_recipe, error);
}
void replace_type_ingredients(recipe& new_recipe, const map<string, const type_tree*>& mappings) {
// update its header
if (mappings.empty()) return;
trace(9993, "transform") << "replacing in recipe header ingredients" << end();
for (int i = 0; i < SIZE(new_recipe.ingredients); ++i)
replace_type_ingredients(new_recipe.ingredients.at(i), mappings, new_recipe);
trace(9993, "transform") << "replacing in recipe header products" << end();
for (int i = 0; i < SIZE(new_recipe.products); ++i)
replace_type_ingredients(new_recipe.products.at(i), mappings, new_recipe);
// update its body
for (int i = 0; i < SIZE(new_recipe.steps); ++i) {
instruction& inst = new_recipe.steps.at(i);
trace(9993, "transform") << "replacing in instruction '" << to_string(inst) << "'" << end();
for (int j = 0; j < SIZE(inst.ingredients); ++j)
replace_type_ingredients(inst.ingredients.at(j), mappings, new_recipe);
for (int j = 0; j < SIZE(inst.products); ++j)
replace_type_ingredients(inst.products.at(j), mappings, new_recipe);
// special-case for new: replace type ingredient in first ingredient *value*
if (inst.name == "new" && inst.ingredients.at(0).type->name != "literal-string") {
type_tree* type = parse_type_tree(inst.ingredients.at(0).name);
replace_type_ingredients(type, mappings);
inst.ingredients.at(0).name = inspect(type);
delete type;
}
}
}
void replace_type_ingredients(reagent& x, const map<string, const type_tree*>& mappings, const recipe& caller) {
string before = to_string(x);
trace(9993, "transform") << "replacing in ingredient " << x.original_string << end();
if (!x.type) {
raise << "specializing " << caller.original_name << ": missing type for '" << x.original_string << "'\n" << end();
return;
}
replace_type_ingredients(x.type, mappings);
}
void replace_type_ingredients(type_tree* type, const map<string, const type_tree*>& mappings) {
if (!type) return;
if (!type->atom) {
replace_type_ingredients(type->left, mappings);
replace_type_ingredients(type->right, mappings);
return;
}
if (contains_key(Type_ordinal, type->name)) // todo: ugly side effect
type->value = get(Type_ordinal, type->name);
if (!contains_key(mappings, type->name))
return;
const type_tree* replacement = get(mappings, type->name);
trace(9993, "transform") << type->name << " => " << names_to_string(replacement) << end();
if (replacement->atom) {
if (!contains_key(Type_ordinal, replacement->name)) {
// error in program; should be reported elsewhere
return;
}
type->name = (replacement->name == "literal") ? "number" : replacement->name;
type->value = get(Type_ordinal, type->name);
}
else {
*type = *replacement;
}
}
int type_ingredient_count_in_header(recipe_ordinal variant) {
const recipe& caller = get(Recipe, variant);
set<string> type_ingredients;
for (int i = 0; i < SIZE(caller.ingredients); ++i)
accumulate_type_ingredients(caller.ingredients.at(i).type, type_ingredients);
for (int i = 0; i < SIZE(caller.products); ++i)
accumulate_type_ingredients(caller.products.at(i).type, type_ingredients);
return SIZE(type_ingredients);
}
void accumulate_type_ingredients(const type_tree* type, set<string>& out) {
if (!type) return;
if (is_type_ingredient_name(type->name)) out.insert(type->name);
accumulate_type_ingredients(type->left, out);
accumulate_type_ingredients(type->right, out);
}
type_tree* parse_type_tree(const string& s) {
string_tree* s2 = parse_string_tree(s);
type_tree* result = new_type_tree(s2);
delete s2;
return result;
}
string inspect(const type_tree* x) {
ostringstream out;
dump_inspect(x, out);
return out.str();
}
void dump_inspect(const type_tree* x, ostream& out) {
if (!x->left && !x->right) {
out << x->name;
return;
}
out << '(';
for (const type_tree* curr = x; curr; curr = curr->right) {
if (curr != x) out << ' ';
if (curr->left)
dump_inspect(curr->left, out);
else
out << curr->name;
}
out << ')';
}
void ensure_all_concrete_types(/*const*/ recipe& new_recipe, const recipe& exemplar) {
for (int i = 0; i < SIZE(new_recipe.ingredients); ++i)
ensure_all_concrete_types(new_recipe.ingredients.at(i), exemplar);
for (int i = 0; i < SIZE(new_recipe.products); ++i)
ensure_all_concrete_types(new_recipe.products.at(i), exemplar);
for (int i = 0; i < SIZE(new_recipe.steps); ++i) {
instruction& inst = new_recipe.steps.at(i);
for (int j = 0; j < SIZE(inst.ingredients); ++j)
ensure_all_concrete_types(inst.ingredients.at(j), exemplar);
for (int j = 0; j < SIZE(inst.products); ++j)
ensure_all_concrete_types(inst.products.at(j), exemplar);
}
}
void ensure_all_concrete_types(/*const*/ reagent& x, const recipe& exemplar) {
if (!x.type || contains_type_ingredient_name(x.type)) {
raise << maybe(exemplar.name) << "failed to map a type to " << x.original_string << '\n' << end();
if (!x.type) x.type = new type_tree("", 0); // just to prevent crashes later
return;
}
if (x.type->value == -1) {
raise << maybe(exemplar.name) << "failed to map a type to the unknown " << x.original_string << '\n' << end();
return;
}
}
:(scenario shape_shifting_recipe_2)
def main [
10:point <- merge 14, 15
11:point <- foo 10:point
]
# non-matching shape-shifting variant
def foo a:_t, b:_t -> result:number [
local-scope
load-ingredients
result <- copy 34
]
# matching shape-shifting variant
def foo a:_t -> result:_t [
local-scope
load-ingredients
result <- copy a
]
+mem: storing 14 in location 11
+mem: storing 15 in location 12
:(scenario shape_shifting_recipe_nonroot)
def main [
10:foo:point <- merge 14, 15, 16
20:point/raw <- bar 10:foo:point
]
# shape-shifting recipe with type ingredient following some other type
def bar a:foo:_t -> result:_t [
local-scope
load-ingredients
result <- get a, x:offset
]
container foo:_t [
x:_t
y:number
]
+mem: storing 14 in location 20
+mem: storing 15 in location 21
:(scenario shape_shifting_recipe_nested)
container c:_a:_b [
a:_a
b:_b
]
def main [
s:address:array:character <- new [abc]
{x: (c (address array character) number)} <- merge s, 34
foo x
]
def foo x:c:_bar:_baz [
local-scope
load-ingredients
]
# no errors
:(scenario shape_shifting_recipe_type_deduction_ignores_offsets)
def main [
10:foo:point <- merge 14, 15, 16
20:point/raw <- bar 10:foo:point
]
def bar a:foo:_t -> result:_t [
local-scope
load-ingredients
x:number <- copy 1
result <- get a, x:offset # shouldn't collide with other variable
]
container foo:_t [
x:_t
y:number
]
+mem: storing 14 in location 20
+mem: storing 15 in location 21
:(scenario shape_shifting_recipe_empty)
def main [
foo 1
]
# shape-shifting recipe with no body
def foo a:_t [
]
# shouldn't crash
:(scenario shape_shifting_recipe_handles_shape_shifting_new_ingredient)
def main [
1:address:foo:point <- bar 3
11:foo:point <- copy *1:address:foo:point
]
container foo:_t [
x:_t
y:number
]
def bar x:number -> result:address:foo:_t [
local-scope
load-ingredients
# new refers to _t in its ingredient *value*
result <- new {(foo _t) : type}
]
+mem: storing 0 in location 11
+mem: storing 0 in location 12
+mem: storing 0 in location 13
:(scenario shape_shifting_recipe_handles_shape_shifting_new_ingredient_2)
def main [
1:address:foo:point <- bar 3
11:foo:point <- copy *1:address:foo:point
]
def bar x:number -> result:address:foo:_t [
local-scope
load-ingredients
# new refers to _t in its ingredient *value*
result <- new {(foo _t) : type}
]
# container defined after use
container foo:_t [
x:_t
y:number
]
+mem: storing 0 in location 11
+mem: storing 0 in location 12
+mem: storing 0 in location 13
:(scenario shape_shifting_recipe_called_with_dummy)
def main [
_ <- bar 34
]
def bar x:_t -> result:address:_t [
local-scope
load-ingredients
result <- copy 0
]
$error: 0
:(code)
// this one needs a little more fine-grained control
void test_shape_shifting_new_ingredient_does_not_pollute_global_namespace() {
// if you specialize a shape-shifting recipe that allocates a type-ingredient..
transform("def barz x:_elem [\n"
" local-scope\n"
" load-ingredients\n"
" y:address:number <- new _elem:type\n"
"]\n"
"def fooz [\n"
" local-scope\n"
" barz 34\n"
"]\n");
// ..and if you then try to load a new shape-shifting container with that
// type-ingredient
run("container foo:_elem [\n"
" x:_elem\n"
" y:number\n"
"]\n");
// then it should work as usual
reagent callsite("x:foo:point");
reagent element = element_type(callsite.type, 0);
CHECK_EQ(element.name, "x");
CHECK_EQ(element.type->name, "point");
CHECK(!element.type->right);
}
:(scenario shape_shifting_recipe_supports_compound_types)
def main [
1:address:point <- new point:type
*1:address:point <- put *1:address:point, y:offset, 34
3:address:point <- bar 1:address:point # specialize _t to address:point
4:point <- copy *3:address:point
]
def bar a:_t -> result:_t [
local-scope
load-ingredients
result <- copy a
]
+mem: storing 34 in location 5
:(scenario shape_shifting_recipe_error)
% Hide_errors = true;
def main [
a:number <- copy 3
b:address:number <- foo a
]
def foo a:_t -> b:_t [
load-ingredients
b <- copy a
]
+error: main: no call found for 'b:address:number <- foo a'
:(scenario specialize_inside_recipe_without_header)
def main [
foo 3
]
def foo [
local-scope
x:number <- next-ingredient # ensure no header
1:number/raw <- bar x # call a shape-shifting recipe
]
def bar x:_elem -> y:_elem [
local-scope
load-ingredients
y <- add x, 1
]
+mem: storing 4 in location 1
:(scenario specialize_with_literal)
def main [
local-scope
# permit literal to map to number
1:number/raw <- foo 3
]
def foo x:_elem -> y:_elem [
local-scope
load-ingredients
y <- add x, 1
]
+mem: storing 4 in location 1
:(scenario specialize_with_literal_2)
def main [
local-scope
# permit literal to map to character
1:character/raw <- foo 3
]
def foo x:_elem -> y:_elem [
local-scope
load-ingredients
y <- add x, 1
]
+mem: storing 4 in location 1
:(scenario specialize_with_literal_3)
def main [
local-scope
# permit '0' to map to address to shape-shifting type-ingredient
1:address:character/raw <- foo 0
]
def foo x:address:_elem -> y:address:_elem [
local-scope
load-ingredients
y <- copy x
]
+mem: storing 0 in location 1
$error: 0
:(scenario specialize_with_literal_4)
% Hide_errors = true;
def main [
local-scope
# ambiguous call: what's the type of its ingredient?!
foo 0
]
def foo x:address:_elem -> y:address:_elem [
local-scope
load-ingredients
y <- copy x
]
+error: main: instruction 'foo' has no valid specialization
:(scenario specialize_with_literal_5)
def main [
foo 3, 4 # recipe mapping two variables to literals
]
def foo x:_elem, y:_elem [
local-scope
load-ingredients
1:number/raw <- add x, y
]
+mem: storing 7 in location 1
:(scenario multiple_shape_shifting_variants)
# try to call two different shape-shifting recipes with the same name
def main [
e1:d1:number <- merge 3
e2:d2:number <- merge 4, 5
1:number/raw <- foo e1
2:number/raw <- foo e2
]
# the two shape-shifting definitions
def foo a:d1:_elem -> b:number [
local-scope
load-ingredients
return 34
]
def foo a:d2:_elem -> b:number [
local-scope
load-ingredients
return 35
]
# the shape-shifting containers they use
container d1:_elem [
x:_elem
]
container d2:_elem [
x:number
y:_elem
]
+mem: storing 34 in location 1
+mem: storing 35 in location 2
:(scenario multiple_shape_shifting_variants_2)
# static dispatch between shape-shifting variants, _including pointer lookups_
def main [
e1:d1:number <- merge 3
e2:address:d2:number <- new {(d2 number): type}
1:number/raw <- foo e1
2:number/raw <- foo *e2 # different from previous scenario
]
def foo a:d1:_elem -> b:number [
local-scope
load-ingredients
return 34
]
def foo a:d2:_elem -> b:number [
local-scope
load-ingredients
return 35
]
container d1:_elem [
x:_elem
]
container d2:_elem [
x:number
y:_elem
]
+mem: storing 34 in location 1
+mem: storing 35 in location 2
:(scenario missing_type_in_shape_shifting_recipe)
% Hide_errors = true;
def main [
a:d1:number <- merge 3
foo a
]
def foo a:d1:_elem -> b:number [
local-scope
load-ingredients
copy e # no such variable
return 34
]
container d1:_elem [
x:_elem
]
+error: foo: unknown type for 'e' in 'copy e' (check the name for typos)
+error: specializing foo: missing type for 'e'
# and it doesn't crash
:(scenario missing_type_in_shape_shifting_recipe_2)
% Hide_errors = true;
def main [
a:d1:number <- merge 3
foo a
]
def foo a:d1:_elem -> b:number [
local-scope
load-ingredients
get e, x:offset # unknown variable in a 'get', which does some extra checking
return 34
]
container d1:_elem [
x:_elem
]
+error: foo: unknown type for 'e' in 'get e, x:offset' (check the name for typos)
+error: specializing foo: missing type for 'e'
# and it doesn't crash
:(scenarios transform)
:(scenario specialize_recursive_shape_shifting_recipe)
def main [
1:number <- copy 34
2:number <- foo 1:number
]
def foo x:_elem -> y:number [
local-scope
load-ingredients
{
break
y:number <- foo x
}
return y
]
+transform: new specialization: foo_2
# transform terminates
:(scenarios run)
:(scenario specialize_most_similar_variant)
def main [
1:address:number <- new number:type
2:number <- foo 1:address:number
]
def foo x:_elem -> y:number [
local-scope
load-ingredients
return 34
]
def foo x:address:_elem -> y:number [
local-scope
load-ingredients
return 35
]
+mem: storing 35 in location 2
:(scenario specialize_most_similar_variant_2)
# version with headers padded with lots of unrelated concrete types
def main [
1:number <- copy 23
2:address:array:number <- copy 0
3:number <- foo 2:address:array:number, 1:number
]
# variant with concrete type
def foo dummy:address:array:number, x:number -> y:number, dummy:address:array:number [
local-scope
load-ingredients
return 34
]
# shape-shifting variant
def foo dummy:address:array:number, x:_elem -> y:number, dummy:address:array:number [
local-scope
load-ingredients
return 35
]
# prefer the concrete variant
+mem: storing 34 in location 3
:(scenario specialize_most_similar_variant_3)
def main [
1:address:array:character <- new [abc]
foo 1:address:array:character
]
def foo x:address:array:character [
2:number <- copy 34
]
def foo x:address:_elem [
2:number <- copy 35
]
# make sure the more precise version was used
+mem: storing 34 in location 2
:(scenario specialize_literal_as_number)
def main [
1:number <- foo 23
]
def foo x:_elem -> y:number [
local-scope
load-ingredients
return 34
]
def foo x:character -> y:number [
local-scope
load-ingredients
return 35
]
+mem: storing 34 in location 1
:(scenario specialize_literal_as_number_2)
# version calling with literal
def main [
1:number <- foo 0
]
# variant with concrete type
def foo x:number -> y:number [
local-scope
load-ingredients
return 34
]
# shape-shifting variant
def foo x:address:_elem -> y:number [
local-scope
load-ingredients
return 35
]
# prefer the concrete variant, ignore concrete types in scoring the shape-shifting variant
+mem: storing 34 in location 1
:(scenario specialize_literal_as_address)
def main [
1:number <- foo 0
]
# variant with concrete address type
def foo x:address:number -> y:number [
local-scope
load-ingredients
return 34
]
# shape-shifting variant
def foo x:address:_elem -> y:number [
local-scope
load-ingredients
return 35
]
# prefer the concrete variant, ignore concrete types in scoring the shape-shifting variant
+mem: storing 34 in location 1
:(scenario missing_type_during_specialization)
% Hide_errors = true;
# define a shape-shifting recipe
def foo a:_elem [
]
# define a container with field 'z'
container foo2 [
z:number
]
def main [
local-scope
x:foo2 <- merge 34
y:number <- get x, z:offse # typo in 'offset'
# define a variable with the same name 'z'
z:number <- copy 34
# trigger specialization of the shape-shifting recipe
foo z
]
# shouldn't crash
:(scenario missing_type_during_specialization2)
% Hide_errors = true;
# define a shape-shifting recipe
def foo a:_elem [
]
# define a container with field 'z'
container foo2 [
z:number
]
def main [
local-scope
x:foo2 <- merge 34
y:number <- get x, z:offse # typo in 'offset'
# define a variable with the same name 'z'
z:address:number <- copy 34
# trigger specialization of the shape-shifting recipe
foo *z
]
# shouldn't crash
:(scenario tangle_shape_shifting_recipe)
# shape-shifting recipe
def foo a:_elem [
local-scope
load-ingredients
<label1>
]
# tangle some code that refers to the type ingredient
after <label1> [
b:_elem <- copy a
]
# trigger specialization
def main [
local-scope
foo 34
]
$error: 0
:(scenario shape_shifting_recipe_coexists_with_primitive)
# recipe overloading a primitive with a generic type
def add a:address:foo:_elem [
assert 0, [should not get here]
]
def main [
# call primitive add with literal 0
add 0, 0
]
$error: 0