//: Run a second routine concurrently using 'start-running', without any
//: guarantees on how the operations in each are interleaved with each other.
:(scenario scheduler)
def f1 [
start-running f2
# wait for f2 to run
{
jump-unless 1:num, -1
}
]
def f2 [
1:num <- copy 1
]
+schedule: f1
+schedule: f2
//: first, add a deadline to run(routine)
:(before "End Globals")
int Scheduling_interval = 500;
:(before "End routine Fields")
int instructions_run_this_scheduling_slice;
:(before "End routine Constructor")
instructions_run_this_scheduling_slice = 0;
:(before "Running One Instruction")
++Current_routine->instructions_run_this_scheduling_slice;
:(replace{} "bool should_continue_running(const routine* current_routine)")
bool should_continue_running(const routine* current_routine) {
assert(current_routine == Current_routine); // argument passed in just to make caller readable above
return Current_routine->state == RUNNING
&& Current_routine->instructions_run_this_scheduling_slice < Scheduling_interval;
}
:(after "stop_running_current_routine:")
// Reset instructions_run_this_scheduling_slice
Current_routine->instructions_run_this_scheduling_slice = 0;
//: now the rest of the scheduler is clean
:(before "struct routine")
enum routine_state {
RUNNING,
COMPLETED,
// End routine States
};
:(before "End routine Fields")
enum routine_state state;
:(before "End routine Constructor")
state = RUNNING;
:(before "End Globals")
vector<routine*> Routines;
int Current_routine_index = 0;
:(before "End Setup")
Scheduling_interval = 500;
Routines.clear();
:(replace{} "void run(const recipe_ordinal r)")
void run(const recipe_ordinal r) {
run(new routine(r));
}
:(code)
void run(routine* rr) {
Routines.push_back(rr);
Current_routine_index = 0, Current_routine = Routines.at(0);
while (!all_routines_done()) {
skip_to_next_routine();
assert(Current_routine);
assert(Current_routine->state == RUNNING);
trace(9990, "schedule") << current_routine_label() << end();
run_current_routine();
// Scheduler State Transitions
if (Current_routine->completed())
Current_routine->state = COMPLETED;
// End Scheduler State Transitions
// Scheduler Cleanup
// End Scheduler Cleanup
}
// End Run Routine
}
bool all_routines_done() {
for (int i = 0; i < SIZE(Routines); ++i) {
if (Routines.at(i)->state == RUNNING)
return false;
}
return true;
}
// skip Current_routine_index past non-RUNNING routines
void skip_to_next_routine() {
assert(!Routines.empty());
assert(Current_routine_index < SIZE(Routines));
for (int i = (Current_routine_index+1)%SIZE(Routines); i != Current_routine_index; i = (i+1)%SIZE(Routines)) {
if (Routines.at(i)->state == RUNNING) {
Current_routine_index = i;
Current_routine = Routines.at(i);
return;
}
}
}
string current_routine_label() {
return routine_label(Current_routine);
}
string routine_label(routine* r) {
ostringstream result;
const call_stack& calls = r->calls;
for (call_stack::const_iterator p = calls.begin(); p != calls.end(); ++p) {
if (p != calls.begin()) result << '/';
result << get(Recipe, p->running_recipe).name;
}
return result.str();
}
:(before "End Teardown")
for (int i = 0; i < SIZE(Routines); ++i)
delete Routines.at(i);
Routines.clear();
Current_routine = NULL;
//: special case for the very first routine
:(replace{} "void run_main(int argc, char* argv[])")
void run_main(int argc, char* argv[]) {
recipe_ordinal r = get(Recipe_ordinal, "main");
assert(r);
routine* main_routine = new routine(r);
// pass in commandline args as ingredients to main
// todo: test this
Current_routine = main_routine;
for (int i = 1; i < argc; ++i) {
vector<double> arg;
arg.push_back(new_mu_text(argv[i]));
assert(get(Memory, arg.back()) == 0);
put(Memory, arg.back(), 1); // update refcount
current_call().ingredient_atoms.push_back(arg);
}
run(main_routine);
}
//:: To schedule new routines to run, call 'start-running'.
//: 'start-running' will return a unique id for the routine that was created.
//: routine id is a number, but don't do any arithmetic on it
:(before "End routine Fields")
int id;
:(before "End Globals")
int Next_routine_id = 1;
:(before "End Setup")
Next_routine_id = 1;
:(before "End routine Constructor")
id = Next_routine_id;
++Next_routine_id;
//: routines save the routine that spawned them
:(before "End routine Fields")
// todo: really should be routine_id, but that's less efficient.
int parent_index; // only < 0 if there's no parent_index
:(before "End routine Constructor")
parent_index = -1;
:(before "End Primitive Recipe Declarations")
START_RUNNING,
:(before "End Primitive Recipe Numbers")
put(Recipe_ordinal, "start-running", START_RUNNING);
:(before "End Primitive Recipe Checks")
case START_RUNNING: {
if (inst.ingredients.empty()) {
raise << maybe(get(Recipe, r).name) << "'start-running' requires at least one ingredient: the recipe to start running\n" << end();
break;
}
if (!is_mu_recipe(inst.ingredients.at(0))) {
raise << maybe(get(Recipe, r).name) << "first ingredient of 'start-running' should be a recipe, but got '" << to_string(inst.ingredients.at(0)) << "'\n" << end();
break;
}
break;
}
:(before "End Primitive Recipe Implementations")
case START_RUNNING: {
routine* new_routine = new routine(ingredients.at(0).at(0));
new_routine->parent_index = Current_routine_index;
// populate ingredients
for (int i = 1; i < SIZE(current_instruction().ingredients); ++i) {
new_routine->calls.front().ingredient_atoms.push_back(ingredients.at(i));
reagent/*copy*/ ingredient = current_instruction().ingredients.at(i);
canonize_type(ingredient);
new_routine->calls.front().ingredients.push_back(ingredient);
// End Populate start-running Ingredient
}
Routines.push_back(new_routine);
products.resize(1);
products.at(0).push_back(new_routine->id);
break;
}
:(scenario scheduler_runs_single_routine)
% Scheduling_interval = 1;
def f1 [
1:num <- copy 0
2:num <- copy 0
]
+schedule: f1
+run: {1: "number"} <- copy {0: "literal"}
+schedule: f1
+run: {2: "number"} <- copy {0: "literal"}
:(scenario scheduler_interleaves_routines)
% Scheduling_interval = 1;
def f1 [
start-running f2
1:num <- copy 0
2:num <- copy 0
]
def f2 [
3:num <- copy 0
4:num <- copy 0
]
+schedule: f1
+run: start-running {f2: "recipe-literal"}
+schedule: f2
+run: {3: "number"} <- copy {0: "literal"}
+schedule: f1
+run: {1: "number"} <- copy {0: "literal"}
+schedule: f2
+run: {4: "number"} <- copy {0: "literal"}
+schedule: f1
+run: {2: "number"} <- copy {0: "literal"}
:(scenario start_running_takes_ingredients)
def f1 [
start-running f2, 3
# wait for f2 to run
{
jump-unless 1:num, -1
}
]
def f2 [
1:num <- next-ingredient
2:num <- add 1:num, 1
]
+mem: storing 4 in location 2
//: type-checking for 'start-running'
:(scenario start_running_checks_types)
% Hide_errors = true;
def f1 [
start-running f2, 3
]
def f2 n:&:num [
]
+error: f1: ingredient 0 has the wrong type at 'start-running f2, 3'
// 'start-running' only uses the ingredients of the callee, not its products
:(before "End is_indirect_call_with_ingredients Special-cases")
if (r == START_RUNNING) return true;
//: more complex: refcounting management when starting up new routines
:(scenario start_running_immediately_updates_refcounts_of_ingredients)
% Scheduling_interval = 1;
def main [
local-scope
create-new-routine
# padding to make sure we run new-routine before returning
dummy:num <- copy 0
dummy:num <- copy 0
]
def create-new-routine [
local-scope
n:&:num <- new number:type
*n <- copy 34
start-running new-routine, n
# refcount of n decremented
]
def new-routine n:&:num [
local-scope
load-ingredients
1:num/raw <- copy *n
]
# check that n wasn't reclaimed when create-new-routine returned
+mem: storing 34 in location 1
//: to support the previous scenario we'll increment refcounts for all call
//: ingredients right at call time, and stop incrementing refcounts inside
//: next-ingredient
:(before "End Populate Call Ingredient")
increment_any_refcounts(ingredient, ingredients.at(i));
:(before "End Populate start-running Ingredient")
increment_any_refcounts(ingredient, ingredients.at(i));
:(before "End should_update_refcounts_in_write_memory Special-cases For Primitives")
if (inst.operation == NEXT_INGREDIENT || inst.operation == NEXT_INGREDIENT_WITHOUT_TYPECHECKING) {
if (space_index(inst.products.at(0)) > 0) return true;
if (has_property(inst.products.at(0), "raw")) return true;
return false;
}
// ensure this works with indirect calls using 'call' as well
:(scenario start_running_immediately_updates_refcounts_of_ingredients_of_indirect_calls)
% Scheduling_interval = 1;
def main [
local-scope
n:&:num <- new number:type
*n <- copy 34
call f1, n
1:num/raw <- copy *n
]
def f1 n:&:num [
local-scope
load-ingredients
]
# check that n wasn't reclaimed when f1 returned
+mem: storing 34 in location 1
:(scenario next_ingredient_never_leaks_refcounts)
def create-space n:&:num -> default-space:space [
default-space <- new location:type, 2
load-ingredients
]
def use-space [
local-scope
0:space/names:create-space <- next-ingredient
n:&:num/space:1 <- next-ingredient # should decrement refcount
*n/space:1 <- copy 34
n2:num <- add *n/space:1, 1
reply n2
]
def main [
local-scope
n:&:num <- copy 12000/unsafe # pretend allocation with a known address
*n <- copy 23
space:space <- create-space n
n2:&:num <- copy 13000/unsafe
n3:num <- use-space space, n2
]
+run: {n: ("address" "number"), "space": "1"} <- next-ingredient
+mem: decrementing refcount of 12000: 2 -> 1
+run: {n: ("address" "number"), "space": "1", "lookup": ()} <- copy {34: "literal"}
//: back to testing 'start-running'
:(scenario start_running_returns_routine_id)
def f1 [
1:num <- start-running f2
]
def f2 [
12:num <- copy 44
]
+mem: storing 2 in location 1
//: this scenario will require some careful setup in escaped C++
//: (straining our tangle capabilities to near-breaking point)
:(scenario scheduler_skips_completed_routines)
% recipe_ordinal f1 = load("recipe f1 [\n1:num <- copy 0\n]\n").front();
% recipe_ordinal f2 = load("recipe f2 [\n2:num <- copy 0\n]\n").front();
% Routines.push_back(new routine(f1)); // f1 meant to run
% Routines.push_back(new routine(f2));
% Routines.back()->state = COMPLETED; // f2 not meant to run
# must have at least one routine without escaping
def f3 [
3:num <- copy 0
]
# by interleaving '+' lines with '-' lines, we allow f1 and f3 to run in any order
+schedule: f1
+mem: storing 0 in location 1
-schedule: f2
-mem: storing 0 in location 2
+schedule: f3
+mem: storing 0 in location 3
:(scenario scheduler_starts_at_middle_of_routines)
% Routines.push_back(new routine(COPY));
% Routines.back()->state = COMPLETED;
def f1 [
1:num <- copy 0
2:num <- copy 0
]
+schedule: f1
-run: idle
//:: Errors in a routine cause it to terminate.
:(scenario scheduler_terminates_routines_after_errors)
% Hide_errors = true;
% Scheduling_interval = 2;
def f1 [
start-running f2
1:num <- copy 0
2:num <- copy 0
]
def f2 [
# divide by 0 twice
3:num <- divide-with-remainder 4, 0
4:num <- divide-with-remainder 4, 0
]
# f2 should stop after first divide by 0
+error: f2: divide by zero in '3:num <- divide-with-remainder 4, 0'
-error: f2: divide by zero in '4:num <- divide-with-remainder 4, 0'
:(after "operator<<(ostream& os, unused end)")
if (Trace_stream && Trace_stream->curr_label == "error" && Current_routine) {
Current_routine->state = COMPLETED;
}
//:: Routines are marked completed when their parent completes.
:(scenario scheduler_kills_orphans)
def main [
start-running f1
# f1 never actually runs because its parent completes without waiting for it
]
def f1 [
1:num <- copy 0
]
-schedule: f1
:(before "End Scheduler Cleanup")
for (int i = 0; i < SIZE(Routines); ++i) {
if (Routines.at(i)->state == COMPLETED) continue;
if (Routines.at(i)->parent_index < 0) continue; // root thread
// structured concurrency: http://250bpm.com/blog:71
if (has_completed_parent(i)) {
Routines.at(i)->state = COMPLETED;
}
}
:(code)
bool has_completed_parent(int routine_index) {
for (int j = routine_index; j >= 0; j = Routines.at(j)->parent_index) {
if (Routines.at(j)->state == COMPLETED)
return true;
}
return false;
}
//:: 'routine-state' can tell if a given routine id is running
:(scenario routine_state_test)
% Scheduling_interval = 2;
def f1 [
1:num/child-id <- start-running f2
12:num <- copy 0 # race condition since we don't care about location 12
# thanks to Scheduling_interval, f2's one instruction runs in between here and completes
2:num/state <- routine-state 1:num/child-id
]
def f2 [
12:num <- copy 0
# trying to run a second instruction marks routine as completed
]
# recipe f2 should be in state COMPLETED
+mem: storing 1 in location 2
:(before "End Primitive Recipe Declarations")
ROUTINE_STATE,
:(before "End Primitive Recipe Numbers")
put(Recipe_ordinal, "routine-state", ROUTINE_STATE);
:(before "End Primitive Recipe Checks")
case ROUTINE_STATE: {
if (SIZE(inst.ingredients) != 1) {
raise << maybe(get(Recipe, r).name) << "'routine-state' requires exactly one ingredient, but got '" << inst.original_string << "'\n" << end();
break;
}
if (!is_mu_number(inst.ingredients.at(0))) {
raise << maybe(get(Recipe, r).name) << "first ingredient of 'routine-state' should be a routine id generated by 'start-running', but got '" << inst.ingredients.at(0).original_string << "'\n" << end();
break;
}
break;
}
:(before "End Primitive Recipe Implementations")
case ROUTINE_STATE: {
int id = ingredients.at(0).at(0);
int result = -1;
for (int i = 0; i < SIZE(Routines); ++i) {
if (Routines.at(i)->id == id) {
result = Routines.at(i)->state;
break;
}
}
products.resize(1);
products.at(0).push_back(result);
break;
}
//:: miscellaneous helpers
:(before "End Primitive Recipe Declarations")
STOP,
:(before "End Primitive Recipe Numbers")
put(Recipe_ordinal, "stop", STOP);
:(before "End Primitive Recipe Checks")
case STOP: {
if (SIZE(inst.ingredients) != 1) {
raise << maybe(get(Recipe, r).name) << "'stop' requires exactly one ingredient, but got '" << inst.original_string << "'\n" << end();
break;
}
if (!is_mu_number(inst.ingredients.at(0))) {
raise << maybe(get(Recipe, r).name) << "first ingredient of 'stop' should be a routine id generated by 'start-running', but got '" << inst.ingredients.at(0).original_string << "'\n" << end();
break;
}
break;
}
:(before "End Primitive Recipe Implementations")
case STOP: {
int id = ingredients.at(0).at(0);
for (int i = 0; i < SIZE(Routines); ++i) {
if (Routines.at(i)->id == id) {
Routines.at(i)->state = COMPLETED;
break;
}
}
break;
}
:(before "End Primitive Recipe Declarations")
_DUMP_ROUTINES,
:(before "End Primitive Recipe Numbers")
put(Recipe_ordinal, "$dump-routines", _DUMP_ROUTINES);
:(before "End Primitive Recipe Checks")
case _DUMP_ROUTINES: {
break;
}
:(before "End Primitive Recipe Implementations")
case _DUMP_ROUTINES: {
for (int i = 0; i < SIZE(Routines); ++i) {
cerr << i << ": " << Routines.at(i)->id << ' ' << Routines.at(i)->state << ' ' << Routines.at(i)->parent_index << '\n';
}
break;
}
//: support for stopping routines after some number of cycles
:(scenario routine_discontinues_past_limit)
% Scheduling_interval = 2;
def f1 [
1:num/child-id <- start-running f2
limit-time 1:num/child-id, 10
# padding loop just to make sure f2 has time to completed
2:num <- copy 20
2:num <- subtract 2:num, 1
jump-if 2:num, -2:offset
]
def f2 [
jump -1:offset # run forever
$print [should never get here], 10/newline
]
# f2 terminates
+schedule: discontinuing routine 2
:(before "End routine States")
DISCONTINUED,
:(before "End Scheduler State Transitions")
if (Current_routine->limit >= 0) {
if (Current_routine->limit <= Scheduling_interval) {
trace(9999, "schedule") << "discontinuing routine " << Current_routine->id << end();
Current_routine->state = DISCONTINUED;
Current_routine->limit = 0;
}
else {
Current_routine->limit -= Scheduling_interval;
}
}
:(before "End Test Teardown")
if (Passed && any_routines_with_error())
raise << "some routines died with errors\n" << end();
:(before "End Mu Test Teardown")
if (Passed && any_routines_with_error())
raise << Current_scenario->name << ": some routines died with errors\n" << end();
:(code)
bool any_routines_with_error() {
for (int i = 0; i < SIZE(Routines); ++i) {
if (Routines.at(i)->state == DISCONTINUED)
return true;
}
return false;
}
:(before "End routine Fields")
int limit;
:(before "End routine Constructor")
limit = -1; /* no limit */
:(before "End Primitive Recipe Declarations")
LIMIT_TIME,
:(before "End Primitive Recipe Numbers")
put(Recipe_ordinal, "limit-time", LIMIT_TIME);
:(before "End Primitive Recipe Checks")
case LIMIT_TIME: {
if (SIZE(inst.ingredients) != 2) {
raise << maybe(get(Recipe, r).name) << "'limit-time' requires exactly two ingredient, but got '" << inst.original_string << "'\n" << end();
break;
}
if (!is_mu_number(inst.ingredients.at(0))) {
raise << maybe(get(Recipe, r).name) << "first ingredient of 'limit-time' should be a routine id generated by 'start-running', but got '" << inst.ingredients.at(0).original_string << "'\n" << end();
break;
}
if (!is_mu_number(inst.ingredients.at(1))) {
raise << maybe(get(Recipe, r).name) << "second ingredient of 'limit-time' should be a number (of instructions to run for), but got '" << inst.ingredients.at(1).original_string << "'\n" << end();
break;
}
break;
}
:(before "End Primitive Recipe Implementations")
case LIMIT_TIME: {
int id = ingredients.at(0).at(0);
for (int i = 0; i < SIZE(Routines); ++i) {
if (Routines.at(i)->id == id) {
Routines.at(i)->limit = ingredients.at(1).at(0);
break;
}
}
break;
}
:(before "End routine Fields")
int instructions_run;
:(before "End routine Constructor")
instructions_run = 0;
:(before "Reset instructions_run_this_scheduling_slice")
Current_routine->instructions_run += Current_routine->instructions_run_this_scheduling_slice;
:(before "End Primitive Recipe Declarations")
NUMBER_OF_INSTRUCTIONS,
:(before "End Primitive Recipe Numbers")
put(Recipe_ordinal, "number-of-instructions", NUMBER_OF_INSTRUCTIONS);
:(before "End Primitive Recipe Checks")
case NUMBER_OF_INSTRUCTIONS: {
if (SIZE(inst.ingredients) != 1) {
raise << maybe(get(Recipe, r).name) << "'number-of-instructions' requires exactly one ingredient, but got '" << inst.original_string << "'\n" << end();
break;
}
if (!is_mu_number(inst.ingredients.at(0))) {
raise << maybe(get(Recipe, r).name) << "first ingredient of 'number-of-instructions' should be a routine id generated by 'start-running', but got '" << inst.ingredients.at(0).original_string << "'\n" << end();
break;
}
break;
}
:(before "End Primitive Recipe Implementations")
case NUMBER_OF_INSTRUCTIONS: {
int id = ingredients.at(0).at(0);
int result = -1;
for (int i = 0; i < SIZE(Routines); ++i) {
if (Routines.at(i)->id == id) {
result = Routines.at(i)->instructions_run;
break;
}
}
products.resize(1);
products.at(0).push_back(result);
break;
}
:(scenario number_of_instructions)
def f1 [
10:num/child-id <- start-running f2
{
loop-unless 20:num
}
11:num <- number-of-instructions 10:num
]
def f2 [
# 2 instructions worth of work
1:num <- copy 34
20:num <- copy 1
]
# f2 runs an extra instruction for the implicit return added by the
# fill_in_reply_ingredients transform
+mem: storing 3 in location 11
:(scenario number_of_instructions_across_multiple_scheduling_intervals)
% Scheduling_interval = 1;
def f1 [
10:num/child-id <- start-running f2
{
loop-unless 20:num
}
11:num <- number-of-instructions 10:num
]
def f2 [
# 4 instructions worth of work
1:num <- copy 34
2:num <- copy 1
2:num <- copy 3
20:num <- copy 1
]
# f2 runs an extra instruction for the implicit return added by the
# fill_in_reply_ingredients transform
+mem: storing 5 in location 11
//:: make sure that each routine gets a different alloc to start
:(scenario new_concurrent)
def f1 [
start-running f2
1:&:num/raw <- new number:type
# wait for f2 to complete
{
loop-unless 4:num/raw
}
]
def f2 [
2:&:num/raw <- new number:type
# hack: assumes scheduler implementation
3:bool/raw <- equal 1:&:num/raw, 2:&:num/raw
# signal f2 complete
4:num/raw <- copy 1
]
+mem: storing 0 in location 3