about summary refs log blame commit diff stats
path: root/arc/.traces/string-split-first-at-substring
blob: 1b9b0fcf0ff24b5076349b24ce9ea8e06fe44b02 (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
















































































































































































































































































































































































































































































































































































































                                                                                                                                             
c{0: 0 (((1 string-address)) <- ((new)) a//b) -- nil
c{0: 1 (((2 string-address)) <- ((new)) //) -- nil
c{0: 2 (((3 string-address)) ((4 string-address)) <- ((split-first-at-substring)) ((1 string-address)) ((2 string-address))) -- nil
c{1: 0 ✓ (((1 string-address)) <- ((new)) a//b)
c{1: 1 ✓ (((2 string-address)) <- ((new)) //)
c{1: 2 ✓ (((3 string-address)) ((4 string-address)) <- ((split-first-at-substring)) ((1 string-address)) ((2 string-address)))
cn0: convert-names in main
cn0: (((1 string-address)) <- ((new)) a//b) nil nil
cn0: checking arg a//b
cn0: checking oarg ((1 string-address))
maybe-add: ((1 string-address))
cn0: (((2 string-address)) <- ((new)) //) nil nil
cn0: checking arg //
cn0: checking oarg ((2 string-address))
maybe-add: ((2 string-address))
cn0: (((3 string-address)) ((4 string-address)) <- ((split-first-at-substring)) ((1 string-address)) ((2 string-address))) nil nil
cn0: checking arg ((1 string-address))
maybe-add: ((1 string-address))
cn0: checking arg ((2 string-address))
maybe-add: ((2 string-address))
cn0: checking oarg ((3 string-address))
maybe-add: ((3 string-address))
cn0: checking oarg ((4 string-address))
maybe-add: ((4 string-address))
cn1: (((1 string-address)) <- ((new)) a//b)
cn1: (((2 string-address)) <- ((new)) //)
cn1: (((3 string-address)) ((4 string-address)) <- ((split-first-at-substring)) ((1 string-address)) ((2 string-address)))
schedule: main
run: main 0: (((1 string-address)) <- ((new)) a//b)
run: main 0: 1000 => ((1 string-address))
mem: ((1 string-address)): 1 <= 1000
run: main 1: (((2 string-address)) <- ((new)) //)
run: main 1: 1005 => ((2 string-address))
mem: ((2 string-address)): 2 <= 1005
run: main 2: (((3 string-address)) ((4 string-address)) <- ((split-first-at-substring)) ((1 string-address)) ((2 string-address)))
mem: ((1 string-address)) => 1000
mem: ((2 string-address)) => 1005
run: split-first-at-substring/main 0: (((default-space space-address)) <- ((new)) ((space literal)) ((30 literal)))
run: split-first-at-substring/main 0: 1008 => ((default-space space-address))
run: split-first-at-substring/main 1: (((1 string-address)) <- ((next-input)))
arg: nil 0 (1000 1005)
run: split-first-at-substring/main 1: 1000 => ((1 string-address))
mem: ((1 string-address)): 1010 <= 1000
run: split-first-at-substring/main 2: (((2 string-address)) <- ((next-input)))
arg: nil 1 (1000 1005)
run: split-first-at-substring/main 2: 1005 => ((2 string-address))
mem: ((2 string-address)): 1011 <= 1005
run: split-first-at-substring/main 3: (((3 integer)) <- ((length)) ((1 string-address) (deref)))
array-len: ((1 string-address) (deref))
mem: ((1000 integer) (raw)) => 4
run: split-first-at-substring/main 3: 4 => ((3 integer))
mem: ((3 integer)): 1012 <= 4
run: split-first-at-substring/main 4: (((4 boolean)) <- ((equal)) ((3 integer)) ((0 literal)))
mem: ((3 integer)) => 4
run: split-first-at-substring/main 4: nil => ((4 boolean))
mem: ((4 boolean)): 1013 <= nil
run: split-first-at-substring/main 5: (((jump-unless)) ((4 boolean)) ((3 offset)))
mem: ((4 boolean)) => nil
run: split-first-at-substring/main 9: (((7 integer)) <- ((find-substring)) ((1 string-address)) ((2 string-address)) ((0 literal)))
mem: ((1 string-address)) => 1000
mem: ((2 string-address)) => 1005
run: find-substring/split-first-at-substring/main 0: (((default-space space-address)) <- ((new)) ((space literal)) ((30 literal)))
run: find-substring/split-first-at-substring/main 0: 1039 => ((default-space space-address))
run: find-substring/split-first-at-substring/main 1: (((1 string-address)) <- ((next-input)))
arg: nil 0 (1000 1005 0)
run: find-substring/split-first-at-substring/main 1: 1000 => ((1 string-address))
mem: ((1 string-address)): 1041 <= 1000
run: find-substring/split-first-at-substring/main 2: (((2 string-address)) <- ((next-input)))
arg: nil 1 (1000 1005 0)
run: find-substring/split-first-at-substring/main 2: 1005 => ((2 string-address))
mem: ((2 string-address)): 1042 <= 1005
run: find-substring/split-first-at-substring/main 3: (((3 integer)) <- ((next-input)))
arg: nil 2 (1000 1005 0)
run: find-substring/split-first-at-substring/main 3: 0 => ((3 integer))
mem: ((3 integer)): 1043 <= 0
run: find-substring/split-first-at-substring/main 4: (((4 character)) <- ((index)) ((2 string-address) (deref)) ((0 literal)))
array-len: ((1005 string) (raw))
mem: ((1005 integer) (raw)) => 2
mem: ((1006 byte) (raw)) => /
run: find-substring/split-first-at-substring/main 4: #\/ => ((4 character))
mem: ((4 character)): 1044 <= #\/
run: find-substring/split-first-at-substring/main 5: (((5 integer)) <- ((length)) ((1 string-address) (deref)))
array-len: ((1 string-address) (deref))
mem: ((1000 integer) (raw)) => 4
run: find-substring/split-first-at-substring/main 5: 4 => ((5 integer))
mem: ((5 integer)): 1045 <= 4
run: find-substring/split-first-at-substring/main 6: (((6 boolean)) <- ((greater-or-equal)) ((3 integer)) ((5 integer)))
mem: ((3 integer)) => 0
mem: ((5 integer)) => 4
run: find-substring/split-first-at-substring/main 6: nil => ((6 boolean))
mem: ((6 boolean)): 1046 <= nil
run: find-substring/split-first-at-substring/main 7: (((jump-if)) ((6 boolean)) ((5 offset)))
mem: ((6 boolean)) => nil
run: find-substring/split-first-at-substring/main 8: (((7 boolean)) <- ((match-at)) ((1 string-address)) ((2 string-address)) ((3 integer)))
mem: ((1 string-address)) => 1000
mem: ((2 string-address)) => 1005
mem: ((3 integer)) => 0
run: match-at/find-substring/split-first-at-substring/main 0: (((default-space space-address)) <- ((new)) ((space literal)) ((30 literal)))
run: match-at/find-substring/split-first-at-substring/main 0: 1070 => ((default-space space-address))
run: match-at/find-substring/split-first-at-substring/main 1: (((1 string-address)) <- ((next-input)))
arg: nil 0 (1000 1005 0)
run: match-at/find-substring/split-first-at-substring/main 1: 1000 => ((1 string-address))
mem: ((1 string-address)): 1072 <= 1000
run: match-at/find-substring/split-first-at-substring/main 2: (((2 string-address)) <- ((next-input)))
arg: nil 1 (1000 1005 0)
run: match-at/find-substring/split-first-at-substring/main 2: 1005 => ((2 string-address))
mem: ((2 string-address)): 1073 <= 1005
run: match-at/find-substring/split-first-at-substring/main 3: (((3 integer)) <- ((next-input)))
arg: nil 2 (1000 1005 0)
run: match-at/find-substring/split-first-at-substring/main 3: 0 => ((3 integer))
mem: ((3 integer)): 1074 <= 0
run: match-at/find-substring/split-first-at-substring/main 4: (((4 integer)) <- ((length)) ((2 string-address) (deref)))
array-len: ((2 string-address) (deref))
mem: ((1005 integer) (raw)) => 2
run: match-at/find-substring/split-first-at-substring/main 4: 2 => ((4 integer))
mem: ((4 integer)): 1075 <= 2
run: match-at/find-substring/split-first-at-substring/main 5: (((5 integer)) <- ((length)) ((1 string-address) (deref)))
array-len: ((1 string-address) (deref))
mem: ((1000 integer) (raw)) => 4
run: match-at/find-substring/split-first-at-substring/main 5: 4 => ((5 integer))
mem: ((5 integer)): 1076 <= 4
run: match-at/find-substring/split-first-at-substring/main 6: (((5 integer)) <- ((subtract)) ((5 integer)) ((4 integer)))
mem: ((5 integer)) => 4
mem: ((4 integer)) => 2
run: match-at/find-substring/split-first-at-substring/main 6: 2 => ((5 integer))
mem: ((5 integer)): 1076 <= 2
run: match-at/find-substring/split-first-at-substring/main 7: (((6 boolean)) <- ((lesser-or-equal)) ((3 integer)) ((5 integer)))
mem: ((3 integer)) => 0
mem: ((5 integer)) => 2
run: match-at/find-substring/split-first-at-substring/main 7: t => ((6 boolean))
mem: ((6 boolean)): 1077 <= t
run: match-at/find-substring/split-first-at-substring/main 8: (((jump-if)) ((6 boolean)) ((1 offset)))
mem: ((6 boolean)) => t
run: match-at/find-substring/split-first-at-substring/main 10: (((7 integer)) <- ((copy)) ((0 literal)))
run: match-at/find-substring/split-first-at-substring/main 10: 0 => ((7 integer))
mem: ((7 integer)): 1078 <= 0
run: match-at/find-substring/split-first-at-substring/main 11: (((8 boolean)) <- ((greater-or-equal)) ((7 integer)) ((4 integer)))
mem: ((7 integer)) => 0
mem: ((4 integer)) => 2
run: match-at/find-substring/split-first-at-substring/main 11: nil => ((8 boolean))
mem: ((8 boolean)): 1079 <= nil
run: match-at/find-substring/split-first-at-substring/main 12: (((jump-if)) ((8 boolean)) ((8 offset)))
mem: ((8 boolean)) => nil
run: match-at/find-substring/split-first-at-substring/main 13: (((9 character)) <- ((index)) ((1 string-address) (deref)) ((3 integer)))
mem: ((3 integer)) => 0
array-len: ((1000 string) (raw))
mem: ((1000 integer) (raw)) => 4
mem: ((1001 byte) (raw)) => a
run: match-at/find-substring/split-first-at-substring/main 13: #\a => ((9 character))
mem: ((9 character)): 1080 <= #\a
run: match-at/find-substring/split-first-at-substring/main 14: (((10 character)) <- ((index)) ((2 string-address) (deref)) ((7 integer)))
mem: ((7 integer)) => 0
array-len: ((1005 string) (raw))
mem: ((1005 integer) (raw)) => 2
mem: ((1006 byte) (raw)) => /
run: match-at/find-substring/split-first-at-substring/main 14: #\/ => ((10 character))
mem: ((10 character)): 1081 <= #\/
run: match-at/find-substring/split-first-at-substring/main 15: (((11 boolean)) <- ((equal)) ((9 character)) ((10 character)))
mem: ((9 character)) => a
mem: ((10 character)) => /
run: match-at/find-substring/split-first-at-substring/main 15: nil => ((11 boolean))
mem: ((11 boolean)): 1082 <= nil
run: match-at/find-substring/split-first-at-substring/main 16: (((jump-if)) ((11 boolean)) ((1 offset)))
mem: ((11 boolean)) => nil
run: match-at/find-substring/split-first-at-substring/main 17: (((reply)) ((nil literal)))
run: find-substring/split-first-at-substring/main 8: nil => ((7 boolean))
mem: ((7 boolean)): 1047 <= nil
run: find-substring/split-first-at-substring/main 9: (((jump-if)) ((7 boolean)) ((3 offset)))
mem: ((7 boolean)) => nil
run: find-substring/split-first-at-substring/main 10: (((3 integer)) <- ((add)) ((3 integer)) ((1 literal)))
mem: ((3 integer)) => 0
run: find-substring/split-first-at-substring/main 10: 1 => ((3 integer))
mem: ((3 integer)): 1043 <= 1
run: find-substring/split-first-at-substring/main 11: (((3 integer)) <- ((find-next)) ((1 string-address)) ((4 character)) ((3 integer)))
mem: ((1 string-address)) => 1000
mem: ((4 character)) => /
mem: ((3 integer)) => 1
run: find-next/find-substring/split-first-at-substring/main 0: (((default-space space-address)) <- ((new)) ((space literal)) ((30 literal)))
run: find-next/find-substring/split-first-at-substring/main 0: 1101 => ((default-space space-address))
run: find-next/find-substring/split-first-at-substring/main 1: (((1 string-address)) <- ((next-input)))
arg: nil 0 (1000 #\/ 1)
run: find-next/find-substring/split-first-at-substring/main 1: 1000 => ((1 string-address))
mem: ((1 string-address)): 1103 <= 1000
run: find-next/find-substring/split-first-at-substring/main 2: (((2 character)) <- ((next-input)))
arg: nil 1 (1000 #\/ 1)
run: find-next/find-substring/split-first-at-substring/main 2: #\/ => ((2 character))
mem: ((2 character)): 1104 <= #\/
run: find-next/find-substring/split-first-at-substring/main 3: (((3 integer)) <- ((next-input)))
arg: nil 2 (1000 #\/ 1)
run: find-next/find-substring/split-first-at-substring/main 3: 1 => ((3 integer))
mem: ((3 integer)): 1105 <= 1
run: find-next/find-substring/split-first-at-substring/main 4: (((4 integer)) <- ((length)) ((1 string-address) (deref)))
array-len: ((1 string-address) (deref))
mem: ((1000 integer) (raw)) => 4
run: find-next/find-substring/split-first-at-substring/main 4: 4 => ((4 integer))
mem: ((4 integer)): 1106 <= 4
run: find-next/find-substring/split-first-at-substring/main 5: (((5 boolean)) <- ((greater-or-equal)) ((3 integer)) ((4 integer)))
mem: ((3 integer)) => 1
mem: ((4 integer)) => 4
run: find-next/find-substring/split-first-at-substring/main 5: nil => ((5 boolean))
mem: ((5 boolean)): 1107 <= nil
run: find-next/find-substring/split-first-at-substring/main 6: (((jump-if)) ((5 boolean)) ((5 offset)))
mem: ((5 boolean)) => nil
run: find-next/find-substring/split-first-at-substring/main 7: (((6 byte)) <- ((index)) ((1 string-address) (deref)) ((3 integer)))
mem: ((3 integer)) => 1
array-len: ((1000 string) (raw))
mem: ((1000 integer) (raw)) => 4
mem: ((1002 byte) (raw)) => /
run: find-next/find-substring/split-first-at-substring/main 7: #\/ => ((6 byte))
mem: ((6 byte)): 1108 <= #\/
run: find-next/find-substring/split-first-at-substring/main 8: (((7 boolean)) <- ((equal)) ((6 byte)) ((2 character)))
mem: ((6 byte)) => /
mem: ((2 character)) => /
run: find-next/find-substring/split-first-at-substring/main 8: t => ((7 boolean))
mem: ((7 boolean)): 1109 <= t
run: find-next/find-substring/split-first-at-substring/main 9: (((jump-if)) ((7 boolean)) ((2 offset)))
mem: ((7 boolean)) => t
run: find-next/find-substring/split-first-at-substring/main 12: (((reply)) ((3 integer)))
mem: ((3 integer)) => 1
run: find-substring/split-first-at-substring/main 11: 1 => ((3 integer))
mem: ((3 integer)): 1043 <= 1
run: find-substring/split-first-at-substring/main 12: (((jump)) ((-7 offset)))
run: find-substring/split-first-at-substring/main 6: (((6 boolean)) <- ((greater-or-equal)) ((3 integer)) ((5 integer)))
mem: ((3 integer)) => 1
mem: ((5 integer)) => 4
run: find-substring/split-first-at-substring/main 6: nil => ((6 boolean))
mem: ((6 boolean)): 1046 <= nil
run: find-substring/split-first-at-substring/main 7: (((jump-if)) ((6 boolean)) ((5 offset)))
mem: ((6 boolean)) => nil
run: find-substring/split-first-at-substring/main 8: (((7 boolean)) <- ((match-at)) ((1 string-address)) ((2 string-address)) ((3 integer)))
mem: ((1 string-address)) => 1000
mem: ((2 string-address)) => 1005
mem: ((3 integer)) => 1
run: match-at/find-substring/split-first-at-substring/main 0: (((default-space space-address)) <- ((new)) ((space literal)) ((30 literal)))
run: match-at/find-substring/split-first-at-substring/main 0: 1132 => ((default-space space-address))
run: match-at/find-substring/split-first-at-substring/main 1: (((1 string-address)) <- ((next-input)))
arg: nil 0 (1000 1005 1)
run: match-at/find-substring/split-first-at-substring/main 1: 1000 => ((1 string-address))
mem: ((1 string-address)): 1134 <= 1000
run: match-at/find-substring/split-first-at-substring/main 2: (((2 string-address)) <- ((next-input)))
arg: nil 1 (1000 1005 1)
run: match-at/find-substring/split-first-at-substring/main 2: 1005 => ((2 string-address))
mem: ((2 string-address)): 1135 <= 1005
run: match-at/find-substring/split-first-at-substring/main 3: (((3 integer)) <- ((next-input)))
arg: nil 2 (1000 1005 1)
run: match-at/find-substring/split-first-at-substring/main 3: 1 => ((3 integer))
mem: ((3 integer)): 1136 <= 1
run: match-at/find-substring/split-first-at-substring/main 4: (((4 integer)) <- ((length)) ((2 string-address) (deref)))
array-len: ((2 string-address) (deref))
mem: ((1005 integer) (raw)) => 2
run: match-at/find-substring/split-first-at-substring/main 4: 2 => ((4 integer))
mem: ((4 integer)): 1137 <= 2
run: match-at/find-substring/split-first-at-substring/main 5: (((5 integer)) <- ((length)) ((1 string-address) (deref)))
array-len: ((1 string-address) (deref))
mem: ((1000 integer) (raw)) => 4
run: match-at/find-substring/split-first-at-substring/main 5: 4 => ((5 integer))
mem: ((5 integer)): 1138 <= 4
run: match-at/find-substring/split-first-at-substring/main 6: (((5 integer)) <- ((subtract)) ((5 integer)) ((4 integer)))
mem: ((5 integer)) => 4
mem: ((4 integer)) => 2
run: match-at/find-substring/split-first-at-substring/main 6: 2 => ((5 integer))
mem: ((5 integer)): 1138 <= 2
run: match-at/find-substring/split-first-at-substring/main 7: (((6 boolean)) <- ((lesser-or-equal)) ((3 integer)) ((5 integer)))
mem: ((3 integer)) => 1
mem: ((5 integer)) => 2
run: match-at/find-substring/split-first-at-substring/main 7: t => ((6 boolean))
mem: ((6 boolean)): 1139 <= t
run: match-at/find-substring/split-first-at-substring/main 8: (((jump-if)) ((6 boolean)) ((1 offset)))
mem: ((6 boolean)) => t
run: match-at/find-substring/split-first-at-substring/main 10: (((7 integer)) <- ((copy)) ((0 literal)))
run: match-at/find-substring/split-first-at-substring/main 10: 0 => ((7 integer))
mem: ((7 integer)): 1140 <= 0
run: match-at/find-substring/split-first-at-substring/main 11: (((8 boolean)) <- ((greater-or-equal)) ((7 integer)) ((4 integer)))
mem: ((7 integer)) => 0
mem: ((4 integer)) => 2
run: match-at/find-substring/split-first-at-substring/main 11: nil => ((8 boolean))
mem: ((8 boolean)): 1141 <= nil
run: match-at/find-substring/split-first-at-substring/main 12: (((jump-if)) ((8 boolean)) ((8 offset)))
mem: ((8 boolean)) => nil
run: match-at/find-substring/split-first-at-substring/main 13: (((9 character)) <- ((index)) ((1 string-address) (deref)) ((3 integer)))
mem: ((3 integer)) => 1
array-len: ((1000 string) (raw))
mem: ((1000 integer) (raw)) => 4
mem: ((1002 byte) (raw)) => /
run: match-at/find-substring/split-first-at-substring/main 13: #\/ => ((9 character))
mem: ((9 character)): 1142 <= #\/
run: match-at/find-substring/split-first-at-substring/main 14: (((10 character)) <- ((index)) ((2 string-address) (deref)) ((7 integer)))
mem: ((7 integer)) => 0
array-len: ((1005 string) (raw))
mem: ((1005 integer) (raw)) => 2
mem: ((1006 byte) (raw)) => /
run: match-at/find-substring/split-first-at-substring/main 14: #\/ => ((10 character))
mem: ((10 character)): 1143 <= #\/
run: match-at/find-substring/split-first-at-substring/main 15: (((11 boolean)) <- ((equal)) ((9 character)) ((10 character)))
mem: ((9 character)) => /
mem: ((10 character)) => /
run: match-at/find-substring/split-first-at-substring/main 15: t => ((11 boolean))
mem: ((11 boolean)): 1144 <= t
run: match-at/find-substring/split-first-at-substring/main 16: (((jump-if)) ((11 boolean)) ((1 offset)))
mem: ((11 boolean)) => t
run: match-at/find-substring/split-first-at-substring/main 18: (((3 integer)) <- ((add)) ((3 integer)) ((1 literal)))
mem: ((3 integer)) => 1
run: match-at/find-substring/split-first-at-substring/main 18: 2 => ((3 integer))
mem: ((3 integer)): 1136 <= 2
run: match-at/find-substring/split-first-at-substring/main 19: (((7 integer)) <- ((add)) ((7 integer)) ((1 literal)))
mem: ((7 integer)) => 0
run: match-at/find-substring/split-first-at-substring/main 19: 1 => ((7 integer))
mem: ((7 integer)): 1140 <= 1
run: match-at/find-substring/split-first-at-substring/main 20: (((jump)) ((-10 offset)))
run: match-at/find-substring/split-first-at-substring/main 11: (((8 boolean)) <- ((greater-or-equal)) ((7 integer)) ((4 integer)))
mem: ((7 integer)) => 1
mem: ((4 integer)) => 2
run: match-at/find-substring/split-first-at-substring/main 11: nil => ((8 boolean))
mem: ((8 boolean)): 1141 <= nil
run: match-at/find-substring/split-first-at-substring/main 12: (((jump-if)) ((8 boolean)) ((8 offset)))
mem: ((8 boolean)) => nil
run: match-at/find-substring/split-first-at-substring/main 13: (((9 character)) <- ((index)) ((1 string-address) (deref)) ((3 integer)))
mem: ((3 integer)) => 2
array-len: ((1000 string) (raw))
mem: ((1000 integer) (raw)) => 4
mem: ((1003 byte) (raw)) => /
run: match-at/find-substring/split-first-at-substring/main 13: #\/ => ((9 character))
mem: ((9 character)): 1142 <= #\/
run: match-at/find-substring/split-first-at-substring/main 14: (((10 character)) <- ((index)) ((2 string-address) (deref)) ((7 integer)))
mem: ((7 integer)) => 1
array-len: ((1005 string) (raw))
mem: ((1005 integer) (raw)) => 2
mem: ((1007 byte) (raw)) => /
run: match-at/find-substring/split-first-at-substring/main 14: #\/ => ((10 character))
mem: ((10 character)): 1143 <= #\/
run: match-at/find-substring/split-first-at-substring/main 15: (((11 boolean)) <- ((equal)) ((9 character)) ((10 character)))
mem: ((9 character)) => /
mem: ((10 character)) => /
run: match-at/find-substring/split-first-at-substring/main 15: t => ((11 boolean))
mem: ((11 boolean)): 1144 <= t
run: match-at/find-substring/split-first-at-substring/main 16: (((jump-if)) ((11 boolean)) ((1 offset)))
mem: ((11 boolean)) => t
run: match-at/find-substring/split-first-at-substring/main 18: (((3 integer)) <- ((add)) ((3 integer)) ((1 literal)))
mem: ((3 integer)) => 2
run: match-at/find-substring/split-first-at-substring/main 18: 3 => ((3 integer))
mem: ((3 integer)): 1136 <= 3
run: match-at/find-substring/split-first-at-substring/main 19: (((7 integer)) <- ((add)) ((7 integer)) ((1 literal)))
mem: ((7 integer)) => 1
run: match-at/find-substring/split-first-at-substring/main 19: 2 => ((7 integer))
mem: ((7 integer)): 1140 <= 2
run: match-at/find-substring/split-first-at-substring/main 20: (((jump)) ((-10 offset)))
run: match-at/find-substring/split-first-at-substring/main 11: (((8 boolean)) <- ((greater-or-equal)) ((7 integer)) ((4 integer)))
mem: ((7 integer)) => 2
mem: ((4 integer)) => 2
run: match-at/find-substring/split-first-at-substring/main 11: t => ((8 boolean))
mem: ((8 boolean)): 1141 <= t
run: match-at/find-substring/split-first-at-substring/main 12: (((jump-if)) ((8 boolean)) ((8 offset)))
mem: ((8 boolean)) => t
run: match-at/find-substring/split-first-at-substring/main 21: (((reply)) ((t literal)))
run: find-substring/split-first-at-substring/main 8: t => ((7 boolean))
mem: ((7 boolean)): 1047 <= t
run: find-substring/split-first-at-substring/main 9: (((jump-if)) ((7 boolean)) ((3 offset)))
mem: ((7 boolean)) => t
run: find-substring/split-first-at-substring/main 13: (((reply)) ((3 integer)))
mem: ((3 integer)) => 1
run: split-first-at-substring/main 9: 1 => ((7 integer))
mem: ((7 integer)): 1016 <= 1
run: split-first-at-substring/main 10: (((5 string-address)) <- ((string-copy)) ((1 string-address)) ((0 literal)) ((7 integer)))
mem: ((1 string-address)) => 1000
mem: ((7 integer)) => 1
run: string-copy/split-first-at-substring/main 0: (((default-space space-address)) <- ((new)) ((space literal)) ((30 literal)))
run: string-copy/split-first-at-substring/main 0: 1163 => ((default-space space-address))
run: string-copy/split-first-at-substring/main 1: (((1 string-address)) <- ((next-input)))
arg: nil 0 (1000 0 1)
run: string-copy/split-first-at-substring/main 1: 1000 => ((1 string-address))
mem: ((1 string-address)): 1165 <= 1000
run: string-copy/split-first-at-substring/main 2: (((2 integer)) <- ((next-input)))
arg: nil 1 (1000 0 1)
run: string-copy/split-first-at-substring/main 2: 0 => ((2 integer))
mem: ((2 integer)): 1166 <= 0
run: string-copy/split-first-at-substring/main 3: (((3 integer)) <- ((next-input)))
arg: nil 2 (1000 0 1)
run: string-copy/split-first-at-substring/main 3: 1 => ((3 integer))
mem: ((3 integer)): 1167 <= 1
run: string-copy/split-first-at-substring/main 4: (((4 integer)) <- ((length)) ((1 string-address) (deref)))
array-len: ((1 string-address) (deref))
mem: ((1000 integer) (raw)) => 4
run: string-copy/split-first-at-substring/main 4: 4 => ((4 integer))
mem: ((4 integer)): 1168 <= 4
run: string-copy/split-first-at-substring/main 5: (((3 integer)) <- ((min)) ((4 integer)) ((3 integer)))
mem: ((4 integer)) => 4
mem: ((3 integer)) => 1
run: min/string-copy/split-first-at-substring/main 0: (((default-space space-address)) <- ((new)) ((space literal)) ((30 literal)))
run: min/string-copy/split-first-at-substring/main 0: 1194 => ((default-space space-address))
run: min/string-copy/split-first-at-substring/main 1: (((1 integer)) <- ((next-input)))
arg: nil 0 (4 1)
run: min/string-copy/split-first-at-substring/main 1: 4 => ((1 integer))
mem: ((1 integer)): 1196 <= 4
run: min/string-copy/split-first-at-substring/main 2: (((2 integer)) <- ((next-input)))
arg: nil 1 (4 1)
run: min/string-copy/split-first-at-substring/main 2: 1 => ((2 integer))
mem: ((2 integer)): 1197 <= 1
run: min/string-copy/split-first-at-substring/main 3: (((3 boolean)) <- ((less-than)) ((1 integer)) ((2 integer)))
mem: ((1 integer)) => 4
mem: ((2 integer)) => 1
run: min/string-copy/split-first-at-substring/main 3: nil => ((3 boolean))
mem: ((3 boolean)): 1198 <= nil
run: min/string-copy/split-first-at-substring/main 4: (((jump-if)) ((3 boolean)) ((1 offset)))
mem: ((3 boolean)) => nil
run: min/string-copy/split-first-at-substring/main 5: (((reply)) ((2 integer)))
mem: ((2 integer)) => 1
run: string-copy/split-first-at-substring/main 5: 1 => ((3 integer))
mem: ((3 integer)): 1167 <= 1
run: string-copy/split-first-at-substring/main 6: (((4 integer)) <- ((subtract)) ((3 integer)) ((2 integer)))
mem: ((3 integer)) => 1
mem: ((2 integer)) => 0
run: string-copy/split-first-at-substring/main 6: 1 => ((4 integer))
mem: ((4 integer)): 1168 <= 1
run: string-copy/split-first-at-substring/main 7: (((5 string-address)) <- ((new)) ((string literal)) ((4 integer)))
mem: ((4 integer)) => 1
run: string-copy/split-first-at-substring/main 7: 1225 => ((5 string-address))
mem: ((5 string-address)): 1169 <= 1225
run: string-copy/split-first-at-substring/main 8: (((6 integer)) <- ((copy)) ((2 integer)))
mem: ((2 integer)) => 0
run: string-copy/split-first-at-substring/main 8: 0 => ((6 integer))
mem: ((6 integer)): 1170 <= 0
run: string-copy/split-first-at-substring/main 9: (((7 integer)) <- ((copy)) ((0 literal)))
run: string-copy/split-first-at-substring/main 9: 0 => ((7 integer))
mem: ((7 integer)): 1171 <= 0
run: string-copy/split-first-at-substring/main 10: (((8 boolean)) <- ((greater-or-equal)) ((6 integer)) ((3 integer)))
mem: ((6 integer)) => 0
mem: ((3 integer)) => 1
run: string-copy/split-first-at-substring/main 10: nil => ((8 boolean))
mem: ((8 boolean)): 1172 <= nil
run: string-copy/split-first-at-substring/main 11: (((jump-if)) ((8 boolean)) ((6 offset)))
mem: ((8 boolean)) => nil
run: string-copy/split-first-at-substring/main 12: (((9 character)) <- ((index)) ((1 string-address) (deref)) ((6 integer)))
mem: ((6 integer)) => 0
array-len: ((1000 string) (raw))
mem: ((1000 integer) (raw)) => 4
mem: ((1001 byte) (raw)) => a
run: string-copy/split-first-at-substring/main 12: #\a => ((9 character))
mem: ((9 character)): 1173 <= #\a
run: string-copy/split-first-at-substring/main 13: (((10 character-address)) <- ((index-address)) ((5 string-address) (deref)) ((7 integer)))
mem: ((7 integer)) => 0
array-len: ((1225 string) (raw))
mem: ((1225 integer) (raw)) => 1
run: string-copy/split-first-at-substring/main 13: 1226 => ((10 character-address))
mem: ((10 character-address)): 1174 <= 1226
run: string-copy/split-first-at-substring/main 14: (((10 character-address) (deref)) <- ((copy)) ((9 character)))
mem: ((9 character)) => a
run: string-copy/split-first-at-substring/main 14: #\a => ((10 character-address) (deref))
mem: ((10 character-address) (deref)): 1226 <= #\a
run: string-copy/split-first-at-substring/main 15: (((6 integer)) <- ((add)) ((6 integer)) ((1 literal)))
mem: ((6 integer)) => 0
run: string-copy/split-first-at-substring/main 15: 1 => ((6 integer))
mem: ((6 integer)): 1170 <= 1
run: string-copy/split-first-at-substring/main 16: (((7 integer)) <- ((add)) ((7 integer)) ((1 literal)))
mem: ((7 integer)) => 0
run: string-copy/split-first-at-substring/main 16: 1 => ((7 integer))
mem: ((7 integer)): 1171 <= 1
run: string-copy/split-first-at-substring/main 17: (((jump)) ((-8 offset)))
run: string-copy/split-first-at-substring/main 10: (((8 boolean)) <- ((greater-or-equal)) ((6 integer)) ((3 integer)))
mem: ((6 integer)) => 1
mem: ((3 integer)) => 1
run: string-copy/split-first-at-substring/main 10: t => ((8 boolean))
mem: ((8 boolean)): 1172 <= t
run: string-copy/split-first-at-substring/main 11: (((jump-if)) ((8 boolean)) ((6 offset)))
mem: ((8 boolean)) => t
run: string-copy/split-first-at-substring/main 18: (((reply)) ((5 string-address)))
mem: ((5 string-address)) => 1225
run: split-first-at-substring/main 10: 1225 => ((5 string-address))
mem: ((5 string-address)): 1014 <= 1225
run: split-first-at-substring/main 11: (((8 integer)) <- ((length)) ((2 string-address) (deref)))
array-len: ((2 string-address) (deref))
mem: ((1005 integer) (raw)) => 2
run: split-first-at-substring/main 11: 2 => ((8 integer))
mem: ((8 integer)): 1017 <= 2
run: split-first-at-substring/main 12: (((7 integer)) <- ((add)) ((7 integer)) ((8 integer)))
mem: ((7 integer)) => 1
mem: ((8 integer)) => 2
run: split-first-at-substring/main 12: 3 => ((7 integer))
mem: ((7 integer)): 1016 <= 3
run: split-first-at-substring/main 13: (((6 string-address)) <- ((string-copy)) ((1 string-address)) ((7 integer)) ((3 integer)))
mem: ((1 string-address)) => 1000
mem: ((7 integer)) => 3
mem: ((3 integer)) => 4
run: string-copy/split-first-at-substring/main 0: (((default-space space-address)) <- ((new)) ((space literal)) ((30 literal)))
run: string-copy/split-first-at-substring/main 0: 1227 => ((default-space space-address))
run: string-copy/split-first-at-substring/main 1: (((1 string-address)) <- ((next-input)))
arg: nil 0 (1000 3 4)
run: string-copy/split-first-at-substring/main 1: 1000 => ((1 string-address))
mem: ((1 string-address)): 1229 <= 1000
run: string-copy/split-first-at-substring/main 2: (((2 integer)) <- ((next-input)))
arg: nil 1 (1000 3 4)
run: string-copy/split-first-at-substring/main 2: 3 => ((2 integer))
mem: ((2 integer)): 1230 <= 3
run: string-copy/split-first-at-substring/main 3: (((3 integer)) <- ((next-input)))
arg: nil 2 (1000 3 4)
run: string-copy/split-first-at-substring/main 3: 4 => ((3 integer))
mem: ((3 integer)): 1231 <= 4
run: string-copy/split-first-at-substring/main 4: (((4 integer)) <- ((length)) ((1 string-address) (deref)))
array-len: ((1 string-address) (deref))
mem: ((1000 integer) (raw)) => 4
run: string-copy/split-first-at-substring/main 4: 4 => ((4 integer))
mem: ((4 integer)): 1232 <= 4
run: string-copy/split-first-at-substring/main 5: (((3 integer)) <- ((min)) ((4 integer)) ((3 integer)))
mem: ((4 integer)) => 4
mem: ((3 integer)) => 4
run: min/string-copy/split-first-at-substring/main 0: (((default-space space-address)) <- ((new)) ((space literal)) ((30 literal)))
run: min/string-copy/split-first-at-substring/main 0: 1258 => ((default-space space-address))
run: min/string-copy/split-first-at-substring/main 1: (((1 integer)) <- ((next-input)))
arg: nil 0 (4 4)
run: min/string-copy/split-first-at-substring/main 1: 4 => ((1 integer))
mem: ((1 integer)): 1260 <= 4
run: min/string-copy/split-first-at-substring/main 2: (((2 integer)) <- ((next-input)))
arg: nil 1 (4 4)
run: min/string-copy/split-first-at-substring/main 2: 4 => ((2 integer))
mem: ((2 integer)): 1261 <= 4
run: min/string-copy/split-first-at-substring/main 3: (((3 boolean)) <- ((less-than)) ((1 integer)) ((2 integer)))
mem: ((1 integer)) => 4
mem: ((2 integer)) => 4
run: min/string-copy/split-first-at-substring/main 3: nil => ((3 boolean))
mem: ((3 boolean)): 1262 <= nil
run: min/string-copy/split-first-at-substring/main 4: (((jump-if)) ((3 boolean)) ((1 offset)))
mem: ((3 boolean)) => nil
run: min/string-copy/split-first-at-substring/main 5: (((reply)) ((2 integer)))
mem: ((2 integer)) => 4
run: string-copy/split-first-at-substring/main 5: 4 => ((3 integer))
mem: ((3 integer)): 1231 <= 4
run: string-copy/split-first-at-substring/main 6: (((4 integer)) <- ((subtract)) ((3 integer)) ((2 integer)))
mem: ((3 integer)) => 4
mem: ((2 integer)) => 3
run: string-copy/split-first-at-substring/main 6: 1 => ((4 integer))
mem: ((4 integer)): 1232 <= 1
run: string-copy/split-first-at-substring/main 7: (((5 string-address)) <- ((new)) ((string literal)) ((4 integer)))
mem: ((4 integer)) => 1
run: string-copy/split-first-at-substring/main 7: 1289 => ((5 string-address))
mem: ((5 string-address)): 1233 <= 1289
run: string-copy/split-first-at-substring/main 8: (((6 integer)) <- ((copy)) ((2 integer)))
mem: ((2 integer)) => 3
run: string-copy/split-first-at-substring/main 8: 3 => ((6 integer))
mem: ((6 integer)): 1234 <= 3
run: string-copy/split-first-at-substring/main 9: (((7 integer)) <- ((copy)) ((0 literal)))
run: string-copy/split-first-at-substring/main 9: 0 => ((7 integer))
mem: ((7 integer)): 1235 <= 0
run: string-copy/split-first-at-substring/main 10: (((8 boolean)) <- ((greater-or-equal)) ((6 integer)) ((3 integer)))
mem: ((6 integer)) => 3
mem: ((3 integer)) => 4
run: string-copy/split-first-at-substring/main 10: nil => ((8 boolean))
mem: ((8 boolean)): 1236 <= nil
run: string-copy/split-first-at-substring/main 11: (((jump-if)) ((8 boolean)) ((6 offset)))
mem: ((8 boolean)) => nil
run: string-copy/split-first-at-substring/main 12: (((9 character)) <- ((index)) ((1 string-address) (deref)) ((6 integer)))
mem: ((6 integer)) => 3
array-len: ((1000 string) (raw))
mem: ((1000 integer) (raw)) => 4
mem: ((1004 byte) (raw)) => b
run: string-copy/split-first-at-substring/main 12: #\b => ((9 character))
mem: ((9 character)): 1237 <= #\b
run: string-copy/split-first-at-substring/main 13: (((10 character-address)) <- ((index-address)) ((5 string-address) (deref)) ((7 integer)))
mem: ((7 integer)) => 0
array-len: ((1289 string) (raw))
mem: ((1289 integer) (raw)) => 1
run: string-copy/split-first-at-substring/main 13: 1290 => ((10 character-address))
mem: ((10 character-address)): 1238 <= 1290
run: string-copy/split-first-at-substring/main 14: (((10 character-address) (deref)) <- ((copy)) ((9 character)))
mem: ((9 character)) => b
run: string-copy/split-first-at-substring/main 14: #\b => ((10 character-address) (deref))
mem: ((10 character-address) (deref)): 1290 <= #\b
run: string-copy/split-first-at-substring/main 15: (((6 integer)) <- ((add)) ((6 integer)) ((1 literal)))
mem: ((6 integer)) => 3
run: string-copy/split-first-at-substring/main 15: 4 => ((6 integer))
mem: ((6 integer)): 1234 <= 4
run: string-copy/split-first-at-substring/main 16: (((7 integer)) <- ((add)) ((7 integer)) ((1 literal)))
mem: ((7 integer)) => 0
run: string-copy/split-first-at-substring/main 16: 1 => ((7 integer))
mem: ((7 integer)): 1235 <= 1
run: string-copy/split-first-at-substring/main 17: (((jump)) ((-8 offset)))
run: string-copy/split-first-at-substring/main 10: (((8 boolean)) <- ((greater-or-equal)) ((6 integer)) ((3 integer)))
mem: ((6 integer)) => 4
mem: ((3 integer)) => 4
run: string-copy/split-first-at-substring/main 10: t => ((8 boolean))
mem: ((8 boolean)): 1236 <= t
run: string-copy/split-first-at-substring/main 11: (((jump-if)) ((8 boolean)) ((6 offset)))
mem: ((8 boolean)) => t
run: string-copy/split-first-at-substring/main 18: (((reply)) ((5 string-address)))
mem: ((5 string-address)) => 1289
run: split-first-at-substring/main 13: 1289 => ((6 string-address))
mem: ((6 string-address)): 1015 <= 1289
run: split-first-at-substring/main 14: (((reply)) ((5 string-address)) ((6 string-address)))
mem: ((5 string-address)) => 1225
mem: ((6 string-address)) => 1289
run: main 2: 1225 => ((3 string-address))
mem: ((3 string-address)): 3 <= 1225
run: main 2: 1289 => ((4 string-address))
mem: ((4 string-address)): 4 <= 1289
schedule: done with routine nil
pan class="w"> // add EBX to EAX // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) ); CHECK_TRACE_CONTENTS( "run: add EBX to r/m32\n" "run: r/m32 is EAX\n" "run: SF=0; ZF=1; CF=1; OF=0\n" "run: storing 0x00000000\n" ); } void test_add_r32_to_r32_unsigned_and_signed_overflow() { Reg[EAX].u = Reg[EBX].u = 0x80000000; // smallest negative signed integer run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " 01 d8 \n" // add EBX to EAX // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) ); CHECK_TRACE_CONTENTS( "run: add EBX to r/m32\n" "run: r/m32 is EAX\n" "run: SF=0; ZF=1; CF=1; OF=1\n" "run: storing 0x00000000\n" ); } :(code) // Implement tables 2-2 and 2-3 in the Intel manual, Volume 2. // We return a pointer so that instructions can write to multiple bytes in // 'Mem' at once. // beware: will eventually have side-effects int32_t* effective_address(uint8_t modrm) { const uint8_t mod = (modrm>>6); // ignore middle 3 'reg opcode' bits const uint8_t rm = modrm & 0x7; if (mod == 3) { // mod 3 is just register direct addressing trace(Callstack_depth+1, "run") << "r/m32 is " << rname(rm) << end(); return &Reg[rm].i; } uint32_t addr = effective_address_number(modrm); trace(Callstack_depth+1, "run") << "effective address contains 0x" << HEXWORD << read_mem_i32(addr) << end(); return mem_addr_i32(addr); } // beware: will eventually have side-effects uint32_t effective_address_number(uint8_t modrm) { const uint8_t mod = (modrm>>6); // ignore middle 3 'reg opcode' bits const uint8_t rm = modrm & 0x7; uint32_t addr = 0; switch (mod) { case 3: // mod 3 is just register direct addressing raise << "unexpected direct addressing mode\n" << end(); return 0; // End Mod Special-cases(addr) default: cerr << "unrecognized mod bits: " << NUM(mod) << '\n'; exit(1); } //: other mods are indirect, and they'll set addr appropriately // Found effective_address(addr) return addr; } string rname(uint8_t r) { switch (r) { case 0: return "EAX"; case 1: return "ECX"; case 2: return "EDX"; case 3: return "EBX"; case 4: return "ESP"; case 5: return "EBP"; case 6: return "ESI"; case 7: return "EDI"; default: raise << "invalid register " << r << '\n' << end(); return ""; } } //:: subtract :(before "End Initialize Op Names") put_new(Name, "29", "subtract r32 from rm32 (sub)"); :(code) void test_subtract_r32_from_r32() { Reg[EAX].i = 10; Reg[EBX].i = 1; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " 29 d8 \n" // subtract EBX from EAX // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) ); CHECK_TRACE_CONTENTS( "run: subtract EBX from r/m32\n" "run: r/m32 is EAX\n" "run: storing 0x00000009\n" ); } :(before "End Single-Byte Opcodes") case 0x29: { // subtract r32 from r/m32 const uint8_t modrm = next(); const uint8_t arg2 = (modrm>>3)&0x7; trace(Callstack_depth+1, "run") << "subtract " << rname(arg2) << " from r/m32" << end(); int32_t* signed_arg1 = effective_address(modrm); int32_t signed_result = *signed_arg1 - Reg[arg2].i; SF = (signed_result < 0); ZF = (signed_result == 0); int64_t signed_full_result = static_cast<int64_t>(*signed_arg1) - Reg[arg2].i; OF = (signed_result != signed_full_result); // set CF uint32_t unsigned_arg1 = static_cast<uint32_t>(*signed_arg1); uint32_t unsigned_result = unsigned_arg1 - Reg[arg2].u; uint64_t unsigned_full_result = static_cast<uint64_t>(unsigned_arg1) - Reg[arg2].u; CF = (unsigned_result != unsigned_full_result); trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); *signed_arg1 = signed_result; trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *signed_arg1 << end(); break; } :(code) void test_subtract_r32_from_r32_signed_overflow() { Reg[EAX].i = 0x80000000; // smallest negative signed integer Reg[EBX].i = 0x7fffffff; // largest positive signed integer run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " 29 d8 \n" // subtract EBX from EAX // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) ); CHECK_TRACE_CONTENTS( "run: subtract EBX from r/m32\n" "run: r/m32 is EAX\n" "run: SF=0; ZF=0; CF=0; OF=1\n" "run: storing 0x00000001\n" ); } void test_subtract_r32_from_r32_unsigned_overflow() { Reg[EAX].i = 0; Reg[EBX].i = 1; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " 29 d8 \n" // subtract EBX from EAX // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) ); CHECK_TRACE_CONTENTS( "run: subtract EBX from r/m32\n" "run: r/m32 is EAX\n" "run: SF=1; ZF=0; CF=1; OF=0\n" "run: storing 0xffffffff\n" ); } void test_subtract_r32_from_r32_signed_and_unsigned_overflow() { Reg[EAX].i = 0; Reg[EBX].i = 0x80000000; // smallest negative signed integer run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " 29 d8 \n" // subtract EBX from EAX // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) ); CHECK_TRACE_CONTENTS( "run: subtract EBX from r/m32\n" "run: r/m32 is EAX\n" "run: SF=1; ZF=0; CF=1; OF=1\n" "run: storing 0x80000000\n" ); } //:: multiply :(before "End Initialize Op Names") put_new(Name, "f7", "negate/multiply/divide rm32 (with EAX and EDX if necessary) depending on subop (neg/mul/idiv)"); :(code) void test_multiply_EAX_by_r32() { Reg[EAX].i = 4; Reg[ECX].i = 3; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " f7 e1 \n" // multiply EAX by ECX // ModR/M in binary: 11 (direct mode) 100 (subop mul) 001 (src ECX) ); CHECK_TRACE_CONTENTS( "run: operate on r/m32\n" "run: r/m32 is ECX\n" "run: subop: multiply EAX by r/m32\n" "run: storing 0x0000000c\n" ); } :(before "End Single-Byte Opcodes") case 0xf7: { const uint8_t modrm = next(); trace(Callstack_depth+1, "run") << "operate on r/m32" << end(); int32_t* arg1 = effective_address(modrm); const uint8_t subop = (modrm>>3)&0x7; // middle 3 'reg opcode' bits switch (subop) { case 4: { // mul unsigned EAX by r/m32 trace(Callstack_depth+1, "run") << "subop: multiply EAX by r/m32" << end(); const uint64_t result = static_cast<uint64_t>(Reg[EAX].u) * static_cast<uint32_t>(*arg1); Reg[EAX].u = result & 0xffffffff; Reg[EDX].u = result >> 32; OF = (Reg[EDX].u != 0); CF = OF; trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << Reg[EAX].u << end(); break; } // End Op f7 Subops default: cerr << "unrecognized subop for opcode f7: " << NUM(subop) << '\n'; exit(1); } break; } //: :(before "End Initialize Op Names") put_new(Name_0f, "af", "multiply rm32 into r32 (imul)"); :(code) void test_multiply_r32_into_r32() { Reg[EAX].i = 4; Reg[EBX].i = 2; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " 0f af d8 \n" // subtract EBX into EAX // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) ); CHECK_TRACE_CONTENTS( "run: multiply EBX by r/m32\n" "run: r/m32 is EAX\n" "run: storing 0x00000008\n" ); } :(before "End Two-Byte Opcodes Starting With 0f") case 0xaf: { // multiply r32 by r/m32 const uint8_t modrm = next(); const uint8_t arg1 = (modrm>>3)&0x7; trace(Callstack_depth+1, "run") << "multiply " << rname(arg1) << " by r/m32" << end(); const int32_t* arg2 = effective_address(modrm); int32_t result = Reg[arg1].i * (*arg2); int64_t full_result = static_cast<int64_t>(Reg[arg1].i) * (*arg2); OF = (result != full_result); CF = OF; trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); Reg[arg1].i = result; trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << Reg[arg1].i << end(); break; } //:: negate :(code) void test_negate_r32() { Reg[EBX].i = 1; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " f7 db \n" // negate EBX // ModR/M in binary: 11 (direct mode) 011 (subop negate) 011 (dest EBX) ); CHECK_TRACE_CONTENTS( "run: operate on r/m32\n" "run: r/m32 is EBX\n" "run: subop: negate\n" "run: storing 0xffffffff\n" ); } :(before "End Op f7 Subops") case 3: { // negate r/m32 trace(Callstack_depth+1, "run") << "subop: negate" << end(); // one case that can overflow if (static_cast<uint32_t>(*arg1) == 0x80000000) { trace(Callstack_depth+1, "run") << "overflow" << end(); SF = true; ZF = false; OF = true; break; } int32_t result = -(*arg1); SF = (result >> 31); ZF = (result == 0); OF = false; CF = (*arg1 != 0); trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); *arg1 = result; trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *arg1 << end(); break; } :(code) // negate can overflow in exactly one situation void test_negate_can_overflow() { Reg[EBX].i = 0x80000000; // INT_MIN run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " f7 db \n" // negate EBX // ModR/M in binary: 11 (direct mode) 011 (subop negate) 011 (dest EBX) ); CHECK_TRACE_CONTENTS( "run: operate on r/m32\n" "run: r/m32 is EBX\n" "run: subop: negate\n" "run: overflow\n" ); } //:: divide with remainder void test_divide_EAX_by_rm32() { Reg[EAX].u = 7; Reg[EDX].u = 0; Reg[ECX].i = 3; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " f7 f9 \n" // multiply EAX by ECX // ModR/M in binary: 11 (direct mode) 111 (subop idiv) 001 (divisor ECX) ); CHECK_TRACE_CONTENTS( "run: operate on r/m32\n" "run: r/m32 is ECX\n" "run: subop: divide EDX:EAX by r/m32, storing quotient in EAX and remainder in EDX\n" "run: quotient: 0x00000002\n" "run: remainder: 0x00000001\n" ); } :(before "End Op f7 Subops") case 7: { // divide EDX:EAX by r/m32, storing quotient in EAX and remainder in EDX trace(Callstack_depth+1, "run") << "subop: divide EDX:EAX by r/m32, storing quotient in EAX and remainder in EDX" << end(); int64_t dividend = static_cast<int64_t>((static_cast<uint64_t>(Reg[EDX].u) << 32) | Reg[EAX].u); int32_t divisor = *arg1; assert(divisor != 0); Reg[EAX].i = dividend/divisor; // quotient Reg[EDX].i = dividend%divisor; // remainder // flag state undefined trace(Callstack_depth+1, "run") << "quotient: 0x" << HEXWORD << Reg[EAX].i << end(); trace(Callstack_depth+1, "run") << "remainder: 0x" << HEXWORD << Reg[EDX].i << end(); break; } :(code) void test_divide_EAX_by_negative_rm32() { Reg[EAX].u = 7; Reg[EDX].u = 0; Reg[ECX].i = -3; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " f7 f9 \n" // multiply EAX by ECX // ModR/M in binary: 11 (direct mode) 111 (subop idiv) 001 (divisor ECX) ); CHECK_TRACE_CONTENTS( "run: operate on r/m32\n" "run: r/m32 is ECX\n" "run: subop: divide EDX:EAX by r/m32, storing quotient in EAX and remainder in EDX\n" "run: quotient: 0xfffffffe\n" // -2 "run: remainder: 0x00000001\n" ); } void test_divide_negative_EAX_by_rm32() { Reg[EAX].i = -7; Reg[EDX].i = -1; // sign extend Reg[ECX].i = 3; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " f7 f9 \n" // multiply EAX by ECX // ModR/M in binary: 11 (direct mode) 111 (subop idiv) 001 (divisor ECX) ); CHECK_TRACE_CONTENTS( "run: operate on r/m32\n" "run: r/m32 is ECX\n" "run: subop: divide EDX:EAX by r/m32, storing quotient in EAX and remainder in EDX\n" "run: quotient: 0xfffffffe\n" // -2 "run: remainder: 0xffffffff\n" // -1, same sign as divident (EDX:EAX) ); } void test_divide_negative_EDX_EAX_by_rm32() { Reg[EAX].i = 0; // lower 32 bits are clear Reg[EDX].i = -7; Reg[ECX].i = 0x40000000; // 2^30 (largest positive power of 2) run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " f7 f9 \n" // multiply EAX by ECX // ModR/M in binary: 11 (direct mode) 111 (subop idiv) 001 (divisor ECX) ); CHECK_TRACE_CONTENTS( "run: operate on r/m32\n" "run: r/m32 is ECX\n" "run: subop: divide EDX:EAX by r/m32, storing quotient in EAX and remainder in EDX\n" "run: quotient: 0xffffffe4\n" // (-7 << 32) / (1 << 30) = -7 << 2 = -28 "run: remainder: 0x00000000\n" ); } //:: shift left :(before "End Initialize Op Names") put_new(Name, "d3", "shift rm32 by CL bits depending on subop (sal/sar/shl/shr)"); :(code) void test_shift_left_r32_with_cl() { Reg[EBX].i = 13; Reg[ECX].i = 1; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " d3 e3 \n" // shift EBX left by CL bits // ModR/M in binary: 11 (direct mode) 100 (subop shift left) 011 (dest EBX) ); CHECK_TRACE_CONTENTS( "run: operate on r/m32\n" "run: r/m32 is EBX\n" "run: subop: shift left by CL bits\n" "run: storing 0x0000001a\n" ); } :(before "End Single-Byte Opcodes") case 0xd3: { const uint8_t modrm = next(); trace(Callstack_depth+1, "run") << "operate on r/m32" << end(); int32_t* arg1 = effective_address(modrm); const uint8_t subop = (modrm>>3)&0x7; // middle 3 'reg opcode' bits switch (subop) { case 4: { // shift left r/m32 by CL trace(Callstack_depth+1, "run") << "subop: shift left by CL bits" << end(); uint8_t count = Reg[ECX].u & 0x1f; // OF is only defined if count is 1 if (count == 1) { bool msb = (*arg1 & 0x80000000) >> 1; bool pnsb = (*arg1 & 0x40000000); OF = (msb != pnsb); } int32_t result = (*arg1 << count); ZF = (result == 0); SF = (result < 0); CF = (*arg1 << (count-1)) & 0x80000000; trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); *arg1 = result; trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *arg1 << end(); break; } // End Op d3 Subops default: cerr << "unrecognized subop for opcode d3: " << NUM(subop) << '\n'; exit(1); } break; } //:: shift right arithmetic :(code) void test_shift_right_arithmetic_r32_with_cl() { Reg[EBX].i = 26; Reg[ECX].i = 1; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " d3 fb \n" // shift EBX right by CL bits, while preserving sign // ModR/M in binary: 11 (direct mode) 111 (subop shift right arithmetic) 011 (dest EBX) ); CHECK_TRACE_CONTENTS( "run: operate on r/m32\n" "run: r/m32 is EBX\n" "run: subop: shift right by CL bits, while preserving sign\n" "run: storing 0x0000000d\n" ); } :(before "End Op d3 Subops") case 7: { // shift right r/m32 by CL, preserving sign trace(Callstack_depth+1, "run") << "subop: shift right by CL bits, while preserving sign" << end(); uint8_t count = Reg[ECX].u & 0x1f; *arg1 = (*arg1 >> count); ZF = (*arg1 == 0); SF = (*arg1 < 0); // OF is only defined if count is 1 if (count == 1) OF = false; // CF undefined trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *arg1 << end(); break; } :(code) void test_shift_right_arithmetic_odd_r32_with_cl() { Reg[EBX].i = 27; Reg[ECX].i = 1; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " d3 fb \n" // shift EBX right by CL bits, while preserving sign // ModR/M in binary: 11 (direct mode) 111 (subop shift right arithmetic) 011 (dest EBX) ); CHECK_TRACE_CONTENTS( "run: operate on r/m32\n" "run: r/m32 is EBX\n" "run: subop: shift right by CL bits, while preserving sign\n" // result: 13 "run: storing 0x0000000d\n" ); } void test_shift_right_arithmetic_negative_r32_with_cl() { Reg[EBX].i = 0xfffffffd; // -3 Reg[ECX].i = 1; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " d3 fb \n" // shift EBX right by CL bits, while preserving sign // ModR/M in binary: 11 (direct mode) 111 (subop shift right arithmetic) 011 (dest EBX) ); CHECK_TRACE_CONTENTS( "run: operate on r/m32\n" "run: r/m32 is EBX\n" "run: subop: shift right by CL bits, while preserving sign\n" // result: -2 "run: storing 0xfffffffe\n" ); } //:: shift right logical :(code) void test_shift_right_logical_r32_with_cl() { Reg[EBX].i = 26; Reg[ECX].i = 1; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " d3 eb \n" // shift EBX right by CL bits, while padding zeroes // ModR/M in binary: 11 (direct mode) 101 (subop shift right logical) 011 (dest EBX) ); CHECK_TRACE_CONTENTS( "run: operate on r/m32\n" "run: r/m32 is EBX\n" "run: subop: shift right by CL bits, while padding zeroes\n" // result: 13 "run: storing 0x0000000d\n" ); } :(before "End Op d3 Subops") case 5: { // shift right r/m32 by CL, padding zeroes trace(Callstack_depth+1, "run") << "subop: shift right by CL bits, while padding zeroes" << end(); uint8_t count = Reg[ECX].u & 0x1f; // OF is only defined if count is 1 if (count == 1) { bool msb = (*arg1 & 0x80000000) >> 1; bool pnsb = (*arg1 & 0x40000000); OF = (msb != pnsb); } uint32_t* uarg1 = reinterpret_cast<uint32_t*>(arg1); *uarg1 = (*uarg1 >> count); ZF = (*uarg1 == 0); // result is always positive by definition SF = false; // CF undefined trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *arg1 << end(); break; } :(code) void test_shift_right_logical_odd_r32_with_cl() { Reg[EBX].i = 27; Reg[ECX].i = 1; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " d3 eb \n" // shift EBX right by CL bits, while padding zeroes // ModR/M in binary: 11 (direct mode) 101 (subop shift right logical) 011 (dest EBX) ); CHECK_TRACE_CONTENTS( "run: operate on r/m32\n" "run: r/m32 is EBX\n" "run: subop: shift right by CL bits, while padding zeroes\n" // result: 13 "run: storing 0x0000000d\n" ); } void test_shift_right_logical_negative_r32_with_cl() { Reg[EBX].i = 0xfffffffd; Reg[ECX].i = 1; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " d3 eb \n" // shift EBX right by CL bits, while padding zeroes // ModR/M in binary: 11 (direct mode) 101 (subop shift right logical) 011 (dest EBX) ); CHECK_TRACE_CONTENTS( "run: operate on r/m32\n" "run: r/m32 is EBX\n" "run: subop: shift right by CL bits, while padding zeroes\n" "run: storing 0x7ffffffe\n" ); } //:: and :(before "End Initialize Op Names") put_new(Name, "21", "rm32 = bitwise AND of r32 with rm32 (and)"); :(code) void test_and_r32_with_r32() { Reg[EAX].i = 0x0a0b0c0d; Reg[EBX].i = 0x000000ff; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " 21 d8 \n" // and EBX with destination EAX // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) ); CHECK_TRACE_CONTENTS( "run: and EBX with r/m32\n" "run: r/m32 is EAX\n" "run: storing 0x0000000d\n" ); } :(before "End Single-Byte Opcodes") case 0x21: { // and r32 with r/m32 const uint8_t modrm = next(); const uint8_t arg2 = (modrm>>3)&0x7; trace(Callstack_depth+1, "run") << "and " << rname(arg2) << " with r/m32" << end(); // bitwise ops technically operate on unsigned numbers, but it makes no // difference int32_t* signed_arg1 = effective_address(modrm); *signed_arg1 &= Reg[arg2].i; trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *signed_arg1 << end(); SF = (*signed_arg1 >> 31); ZF = (*signed_arg1 == 0); CF = false; OF = false; trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); break; } //:: or :(before "End Initialize Op Names") put_new(Name, "09", "rm32 = bitwise OR of r32 with rm32 (or)"); :(code) void test_or_r32_with_r32() { Reg[EAX].i = 0x0a0b0c0d; Reg[EBX].i = 0xa0b0c0d0; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " 09 d8 \n" // or EBX with destination EAX // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) ); CHECK_TRACE_CONTENTS( "run: or EBX with r/m32\n" "run: r/m32 is EAX\n" "run: storing 0xaabbccdd\n" ); } :(before "End Single-Byte Opcodes") case 0x09: { // or r32 with r/m32 const uint8_t modrm = next(); const uint8_t arg2 = (modrm>>3)&0x7; trace(Callstack_depth+1, "run") << "or " << rname(arg2) << " with r/m32" << end(); // bitwise ops technically operate on unsigned numbers, but it makes no // difference int32_t* signed_arg1 = effective_address(modrm); *signed_arg1 |= Reg[arg2].i; trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *signed_arg1 << end(); SF = (*signed_arg1 >> 31); ZF = (*signed_arg1 == 0); CF = false; OF = false; trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); break; } //:: xor :(before "End Initialize Op Names") put_new(Name, "31", "rm32 = bitwise XOR of r32 with rm32 (xor)"); :(code) void test_xor_r32_with_r32() { Reg[EAX].i = 0x0a0b0c0d; Reg[EBX].i = 0xaabbc0d0; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " 31 d8 \n" // xor EBX with destination EAX // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) ); CHECK_TRACE_CONTENTS( "run: xor EBX with r/m32\n" "run: r/m32 is EAX\n" "run: storing 0xa0b0ccdd\n" ); } :(before "End Single-Byte Opcodes") case 0x31: { // xor r32 with r/m32 const uint8_t modrm = next(); const uint8_t arg2 = (modrm>>3)&0x7; trace(Callstack_depth+1, "run") << "xor " << rname(arg2) << " with r/m32" << end(); // bitwise ops technically operate on unsigned numbers, but it makes no // difference int32_t* signed_arg1 = effective_address(modrm); *signed_arg1 ^= Reg[arg2].i; trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *signed_arg1 << end(); SF = (*signed_arg1 >> 31); ZF = (*signed_arg1 == 0); CF = false; OF = false; trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); break; } //:: not :(code) void test_not_r32() { Reg[EBX].i = 0x0f0f00ff; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " f7 d3 \n" // not EBX // ModR/M in binary: 11 (direct mode) 010 (subop not) 011 (dest EBX) ); CHECK_TRACE_CONTENTS( "run: operate on r/m32\n" "run: r/m32 is EBX\n" "run: subop: not\n" "run: storing 0xf0f0ff00\n" ); } :(before "End Op f7 Subops") case 2: { // not r/m32 trace(Callstack_depth+1, "run") << "subop: not" << end(); *arg1 = ~(*arg1); trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *arg1 << end(); // no flags affected break; } //:: compare (cmp) :(before "End Initialize Op Names") put_new(Name, "39", "compare: set SF if rm32 < r32 (cmp)"); :(code) void test_compare_r32_with_r32_greater() { Reg[EAX].i = 0x0a0b0c0d; Reg[EBX].i = 0x0a0b0c07; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " 39 d8 \n" // compare EAX with EBX // ModR/M in binary: 11 (direct mode) 011 (rhs EBX) 000 (lhs EAX) ); CHECK_TRACE_CONTENTS( "run: compare r/m32 with EBX\n" "run: r/m32 is EAX\n" "run: SF=0; ZF=0; CF=0; OF=0\n" ); } :(before "End Single-Byte Opcodes") case 0x39: { // set SF if r/m32 < r32 const uint8_t modrm = next(); const uint8_t reg2 = (modrm>>3)&0x7; trace(Callstack_depth+1, "run") << "compare r/m32 with " << rname(reg2) << end(); const int32_t* signed_arg1 = effective_address(modrm); const int32_t signed_difference = *signed_arg1 - Reg[reg2].i; SF = (signed_difference < 0); ZF = (signed_difference == 0); const int64_t signed_full_difference = static_cast<int64_t>(*signed_arg1) - Reg[reg2].i; OF = (signed_difference != signed_full_difference); // set CF const uint32_t unsigned_arg1 = static_cast<uint32_t>(*signed_arg1); const uint32_t unsigned_difference = unsigned_arg1 - Reg[reg2].u; const uint64_t unsigned_full_difference = static_cast<uint64_t>(unsigned_arg1) - Reg[reg2].u; CF = (unsigned_difference != unsigned_full_difference); trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); break; } :(code) void test_compare_r32_with_r32_lesser_unsigned_and_signed() { Reg[EAX].i = 0x0a0b0c07; Reg[EBX].i = 0x0a0b0c0d; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " 39 d8 \n" // compare EAX with EBX // ModR/M in binary: 11 (direct mode) 011 (rhs EBX) 000 (lhs EAX) ); CHECK_TRACE_CONTENTS( "run: compare r/m32 with EBX\n" "run: r/m32 is EAX\n" "run: SF=1; ZF=0; CF=1; OF=0\n" ); } void test_compare_r32_with_r32_lesser_unsigned_and_signed_due_to_overflow() { Reg[EAX].i = 0x7fffffff; // largest positive signed integer Reg[EBX].i = 0x80000000; // smallest negative signed integer run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " 39 d8 \n" // compare EAX with EBX // ModR/M in binary: 11 (direct mode) 011 (rhs EBX) 000 (lhs EAX) ); CHECK_TRACE_CONTENTS( "run: compare r/m32 with EBX\n" "run: r/m32 is EAX\n" "run: SF=1; ZF=0; CF=1; OF=1\n" ); } void test_compare_r32_with_r32_lesser_signed() { Reg[EAX].i = 0xffffffff; // -1 Reg[EBX].i = 0x00000001; // 1 run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " 39 d8 \n" // compare EAX with EBX // ModR/M in binary: 11 (direct mode) 011 (rhs EBX) 000 (lhs EAX) ); CHECK_TRACE_CONTENTS( "run: compare r/m32 with EBX\n" "run: r/m32 is EAX\n" "run: SF=1; ZF=0; CF=0; OF=0\n" ); } void test_compare_r32_with_r32_lesser_unsigned() { Reg[EAX].i = 0x00000001; // 1 Reg[EBX].i = 0xffffffff; // -1 run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " 39 d8 \n" // compare EAX with EBX // ModR/M in binary: 11 (direct mode) 011 (rhs EBX) 000 (lhs EAX) ); CHECK_TRACE_CONTENTS( "run: compare r/m32 with EBX\n" "run: r/m32 is EAX\n" "run: SF=0; ZF=0; CF=1; OF=0\n" ); } void test_compare_r32_with_r32_equal() { Reg[EAX].i = 0x0a0b0c0d; Reg[EBX].i = 0x0a0b0c0d; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " 39 d8 \n" // compare EAX and EBX // ModR/M in binary: 11 (direct mode) 011 (rhs EBX) 000 (lhs EAX) ); CHECK_TRACE_CONTENTS( "run: compare r/m32 with EBX\n" "run: r/m32 is EAX\n" "run: SF=0; ZF=1; CF=0; OF=0\n" ); } //:: copy (mov) :(before "End Initialize Op Names") put_new(Name, "89", "copy r32 to rm32 (mov)"); :(code) void test_copy_r32_to_r32() { Reg[EBX].i = 0xaf; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " 89 d8 \n" // copy EBX to EAX // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) ); CHECK_TRACE_CONTENTS( "run: copy EBX to r/m32\n" "run: r/m32 is EAX\n" "run: storing 0x000000af\n" ); } :(before "End Single-Byte Opcodes") case 0x89: { // copy r32 to r/m32 const uint8_t modrm = next(); const uint8_t rsrc = (modrm>>3)&0x7; trace(Callstack_depth+1, "run") << "copy " << rname(rsrc) << " to r/m32" << end(); int32_t* dest = effective_address(modrm); *dest = Reg[rsrc].i; // Write multiple elements of vector<uint8_t> at once. Assumes sizeof(int) == 4 on the host as well. trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *dest << end(); break; } //:: xchg :(before "End Initialize Op Names") put_new(Name, "87", "swap the contents of r32 and rm32 (xchg)"); :(code) void test_xchg_r32_with_r32() { Reg[EBX].i = 0xaf; Reg[EAX].i = 0x2e; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " 87 d8 \n" // exchange EBX with EAX // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) ); CHECK_TRACE_CONTENTS( "run: exchange EBX with r/m32\n" "run: r/m32 is EAX\n" "run: storing 0x000000af in r/m32\n" "run: storing 0x0000002e in EBX\n" ); } :(before "End Single-Byte Opcodes") case 0x87: { // exchange r32 with r/m32 const uint8_t modrm = next(); const uint8_t reg2 = (modrm>>3)&0x7; trace(Callstack_depth+1, "run") << "exchange " << rname(reg2) << " with r/m32" << end(); int32_t* arg1 = effective_address(modrm); const int32_t tmp = *arg1; *arg1 = Reg[reg2].i; Reg[reg2].i = tmp; trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *arg1 << " in r/m32" << end(); trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << Reg[reg2].i << " in " << rname(reg2) << end(); break; } //:: increment :(before "End Initialize Op Names") put_new(Name, "40", "increment EAX (inc)"); put_new(Name, "41", "increment ECX (inc)"); put_new(Name, "42", "increment EDX (inc)"); put_new(Name, "43", "increment EBX (inc)"); put_new(Name, "44", "increment ESP (inc)"); put_new(Name, "45", "increment EBP (inc)"); put_new(Name, "46", "increment ESI (inc)"); put_new(Name, "47", "increment EDI (inc)"); :(code) void test_increment_r32() { Reg[ECX].u = 0x1f; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " 41 \n" // increment ECX ); CHECK_TRACE_CONTENTS( "run: increment ECX\n" "run: storing value 0x00000020\n" ); } :(before "End Single-Byte Opcodes") case 0x40: case 0x41: case 0x42: case 0x43: case 0x44: case 0x45: case 0x46: case 0x47: { // increment r32 const uint8_t reg = op & 0x7; trace(Callstack_depth+1, "run") << "increment " << rname(reg) << end(); ++Reg[reg].u; trace(Callstack_depth+1, "run") << "storing value 0x" << HEXWORD << Reg[reg].u << end(); break; } :(before "End Initialize Op Names") put_new(Name, "ff", "increment/decrement/jump/push/call rm32 based on subop (inc/dec/jmp/push/call)"); :(code) void test_increment_rm32() { Reg[EAX].u = 0x20; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " ff c0 \n" // increment EAX // ModR/M in binary: 11 (direct mode) 000 (subop inc) 000 (EAX) ); CHECK_TRACE_CONTENTS( "run: increment r/m32\n" "run: r/m32 is EAX\n" "run: storing value 0x00000021\n" ); } :(before "End Single-Byte Opcodes") case 0xff: { const uint8_t modrm = next(); const uint8_t subop = (modrm>>3)&0x7; // middle 3 'reg opcode' bits switch (subop) { case 0: { // increment r/m32 trace(Callstack_depth+1, "run") << "increment r/m32" << end(); int32_t* arg = effective_address(modrm); ++*arg; trace(Callstack_depth+1, "run") << "storing value 0x" << HEXWORD << *arg << end(); break; } default: cerr << "unrecognized subop for ff: " << HEXBYTE << NUM(subop) << '\n'; exit(1); // End Op ff Subops } break; } //:: decrement :(before "End Initialize Op Names") put_new(Name, "48", "decrement EAX (dec)"); put_new(Name, "49", "decrement ECX (dec)"); put_new(Name, "4a", "decrement EDX (dec)"); put_new(Name, "4b", "decrement EBX (dec)"); put_new(Name, "4c", "decrement ESP (dec)"); put_new(Name, "4d", "decrement EBP (dec)"); put_new(Name, "4e", "decrement ESI (dec)"); put_new(Name, "4f", "decrement EDI (dec)"); :(code) void test_decrement_r32() { Reg[ECX].u = 0x1f; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " 49 \n" // decrement ECX ); CHECK_TRACE_CONTENTS( "run: decrement ECX\n" "run: storing value 0x0000001e\n" ); } :(before "End Single-Byte Opcodes") case 0x48: case 0x49: case 0x4a: case 0x4b: case 0x4c: case 0x4d: case 0x4e: case 0x4f: { // decrement r32 const uint8_t reg = op & 0x7; trace(Callstack_depth+1, "run") << "decrement " << rname(reg) << end(); --Reg[reg].u; trace(Callstack_depth+1, "run") << "storing value 0x" << HEXWORD << Reg[reg].u << end(); break; } :(code) void test_decrement_rm32() { Reg[EAX].u = 0x20; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " ff c8 \n" // decrement EAX // ModR/M in binary: 11 (direct mode) 001 (subop inc) 000 (EAX) ); CHECK_TRACE_CONTENTS( "run: decrement r/m32\n" "run: r/m32 is EAX\n" "run: storing value 0x0000001f\n" ); } :(before "End Op ff Subops") case 1: { // decrement r/m32 trace(Callstack_depth+1, "run") << "decrement r/m32" << end(); int32_t* arg = effective_address(modrm); --*arg; trace(Callstack_depth+1, "run") << "storing value 0x" << HEXWORD << *arg << end(); break; } //:: push :(before "End Initialize Op Names") put_new(Name, "50", "push EAX to stack (push)"); put_new(Name, "51", "push ECX to stack (push)"); put_new(Name, "52", "push EDX to stack (push)"); put_new(Name, "53", "push EBX to stack (push)"); put_new(Name, "54", "push ESP to stack (push)"); put_new(Name, "55", "push EBP to stack (push)"); put_new(Name, "56", "push ESI to stack (push)"); put_new(Name, "57", "push EDI to stack (push)"); :(code) void test_push_r32() { Mem.push_back(vma(0xbd000000)); // manually allocate memory Reg[ESP].u = 0xbd000008; Reg[EBX].i = 0x0000000a; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " 53 \n" // push EBX to stack ); CHECK_TRACE_CONTENTS( "run: push EBX\n" "run: decrementing ESP to 0xbd000004\n" "run: pushing value 0x0000000a\n" ); } :(before "End Single-Byte Opcodes") case 0x50: case 0x51: case 0x52: case 0x53: case 0x54: case 0x55: case 0x56: case 0x57: { // push r32 to stack uint8_t reg = op & 0x7; trace(Callstack_depth+1, "run") << "push " << rname(reg) << end(); //? cerr << "push: " << NUM(reg) << ": " << Reg[reg].u << " => " << Reg[ESP].u << '\n'; push(Reg[reg].u); break; } //:: pop :(before "End Initialize Op Names") put_new(Name, "58", "pop top of stack to EAX (pop)"); put_new(Name, "59", "pop top of stack to ECX (pop)"); put_new(Name, "5a", "pop top of stack to EDX (pop)"); put_new(Name, "5b", "pop top of stack to EBX (pop)"); put_new(Name, "5c", "pop top of stack to ESP (pop)"); put_new(Name, "5d", "pop top of stack to EBP (pop)"); put_new(Name, "5e", "pop top of stack to ESI (pop)"); put_new(Name, "5f", "pop top of stack to EDI (pop)"); :(code) void test_pop_r32() { Mem.push_back(vma(0xbd000000)); // manually allocate memory Reg[ESP].u = 0xbd000008; write_mem_i32(0xbd000008, 0x0000000a); // ..before this write run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " 5b \n" // pop stack to EBX "== data 0x2000\n" // data segment "0a 00 00 00\n" // 0x0000000a ); CHECK_TRACE_CONTENTS( "run: pop into EBX\n" "run: popping value 0x0000000a\n" "run: incrementing ESP to 0xbd00000c\n" ); } :(before "End Single-Byte Opcodes") case 0x58: case 0x59: case 0x5a: case 0x5b: case 0x5c: case 0x5d: case 0x5e: case 0x5f: { // pop stack into r32 const uint8_t reg = op & 0x7; trace(Callstack_depth+1, "run") << "pop into " << rname(reg) << end(); //? cerr << "pop from " << Reg[ESP].u << '\n'; Reg[reg].u = pop(); //? cerr << "=> " << NUM(reg) << ": " << Reg[reg].u << '\n'; break; } :(code) uint32_t pop() { const uint32_t result = read_mem_u32(Reg[ESP].u); trace(Callstack_depth+1, "run") << "popping value 0x" << HEXWORD << result << end(); Reg[ESP].u += 4; trace(Callstack_depth+1, "run") << "incrementing ESP to 0x" << HEXWORD << Reg[ESP].u << end(); assert(Reg[ESP].u < AFTER_STACK); return result; }