//: Transform to maintain multiple variants of a recipe depending on the
//: number and types of the ingredients and products. Allows us to use nice
//: names like 'print' or 'length' in many mutually extensible ways.
void test_static_dispatch() {
run(
"def main [\n"
" 7:num/raw <- test 3\n"
"]\n"
"def test a:num -> z:num [\n"
" z <- copy 1\n"
"]\n"
"def test a:num, b:num -> z:num [\n"
" z <- copy 2\n"
"]\n"
);
CHECK_TRACE_CONTENTS(
"mem: storing 1 in location 7\n"
);
}
//: When loading recipes, accumulate variants if headers don't collide, and
//: flag an error if headers collide.
:(before "End Globals")
map<string, vector<recipe_ordinal> > Recipe_variants;
:(before "End One-time Setup")
put(Recipe_variants, "main", vector<recipe_ordinal>()); // since we manually added main to Recipe_ordinal
:(before "End Globals")
map<string, vector<recipe_ordinal> > Recipe_variants_snapshot;
:(before "End save_snapshots")
Recipe_variants_snapshot = Recipe_variants;
:(before "End restore_snapshots")
Recipe_variants = Recipe_variants_snapshot;
:(before "End Load Recipe Header(result)")
// there can only ever be one variant for main
if (result.name != "main" && contains_key(Recipe_ordinal, result.name)) {
const recipe_ordinal r = get(Recipe_ordinal, result.name);
if (!contains_key(Recipe, r) || get(Recipe, r).has_header) {
string new_name = matching_variant_name(result);
if (new_name.empty()) {
// variant doesn't already exist
new_name = next_unused_recipe_name(result.name);
put(Recipe_ordinal, new_name, Next_recipe_ordinal++);
get_or_insert(Recipe_variants, result.name).push_back(get(Recipe_ordinal, new_name));
}
trace(101, "load") << "switching " << result.name << " to " << new_name << end();
result.name = new_name;
result.is_autogenerated = true;
}
}
else {
// save first variant
put(Recipe_ordinal, result.name, Next_recipe_ordinal++);
get_or_insert(Recipe_variants, result.name).push_back(get(Recipe_ordinal, result.name));
}
:(code)
string matching_variant_name(const recipe& rr) {
const vector<recipe_ordinal>& variants = get_or_insert(Recipe_variants, rr.name);
for (int i = 0; i < SIZE(variants); ++i) {
if (!contains_key(Recipe, variants.at(i))) continue;
const recipe& candidate = get(Recipe, variants.at(i));
if (!all_reagents_match(rr, candidate)) continue;
return candidate.name;
}
return "";
}
bool all_reagents_match(const recipe& r1, const recipe& r2) {
if (SIZE(r1.ingredients) != SIZE(r2.ingredients)) return false;
if (SIZE(r1.products) != SIZE(r2.products)) return false;
for (int i = 0; i < SIZE(r1.ingredients); ++i) {
expand_type_abbreviations(r1.ingredients.at(i).type);
expand_type_abbreviations(r2.ingredients.at(i).type);
if (!deeply_equal_type_names(r1.ingredients.at(i), r2.ingredients.at(i)))
return false;
}
for (int i = 0; i < SIZE(r1.products); ++i) {
expand_type_abbreviations(r1.products.at(i).type);
expand_type_abbreviations(r2.products.at(i).type);
if (!deeply_equal_type_names(r1.products.at(i), r2.products.at(i)))
return false;
}
return true;
}
:(before "End Globals")
set<string> Literal_type_names;
:(before "End One-time Setup")
Literal_type_names.insert("number");
Literal_type_names.insert("character");
:(code)
bool deeply_equal_type_names(const reagent& a, const reagent& b) {
return deeply_equal_type_names(a.type, b.type);
}
bool deeply_equal_type_names(const type_tree* a, const type_tree* b) {
if (!a) return !b;
if (!b) return !a;
if (a->atom != b->atom) return false;
if (a->atom) {
if (a->name == "literal" && b->name == "literal")
return true;
if (a->name == "literal")
return Literal_type_names.find(b->name) != Literal_type_names.end();
if (b->name == "literal")
return Literal_type_names.find(a->name) != Literal_type_names.end();
return a->name == b->name;
}
return deeply_equal_type_names(a->left, b->left)
&& deeply_equal_type_names(a->right, b->right);
}
string next_unused_recipe_name(const string& recipe_name) {
for (int i = 2; /*forever*/; ++i) {
ostringstream out;
out << recipe_name << '_' << i;
if (!contains_key(Recipe_ordinal, out.str()))
return out.str();
}
}
//: Once all the recipes are loaded, transform their bodies to replace each
//: call with the most suitable variant.
void test_static_dispatch_picks_most_similar_variant() {
run(
"def main [\n"
" 7:num/raw <- test 3, 4, 5\n"
"]\n"
"def test a:num -> z:num [\n"
" z <- copy 1\n"
"]\n"
"def test a:num, b:num -> z:num [\n"
" z <- copy 2\n"
"]\n"
);
CHECK_TRACE_CONTENTS(
"mem: storing 2 in location 7\n"
);
}
//: support recipe headers in a previous transform to fill in missing types
:(before "End check_or_set_invalid_types")
for (int i = 0; i < SIZE(caller.ingredients); ++i)
check_or_set_invalid_types(caller.ingredients.at(i).type, maybe(caller.name), "recipe header ingredient");
for (int i = 0; i < SIZE(caller.products); ++i)
check_or_set_invalid_types(caller.products.at(i).type, maybe(caller.name), "recipe header product");
//: save original name of recipes before renaming them
:(before "End recipe Fields")
string original_name;
//: original name is only set during load
:(before "End Load Recipe Name")
result.original_name = result.name;
//: after filling in all missing types (because we'll be introducing 'blank' types in this transform in a later layer, for shape-shifting recipes)
:(after "Transform.push_back(transform_names)")
Transform.push_back(resolve_ambiguous_calls); // idempotent
//: In a later layer we'll introduce recursion in resolve_ambiguous_calls, by
//: having it generate code for shape-shifting recipes and then transform such
//: code. This data structure will help error messages be more useful.
//:
//: We're punning the 'call' data structure just because it has slots for
//: calling recipe and calling instruction.
:(before "End Globals")
list<call> Resolve_stack;
:(code)
void resolve_ambiguous_calls(const recipe_ordinal r) {
recipe& caller_recipe = get(Recipe, r);
trace(101, "transform") << "--- resolve ambiguous calls for recipe " << caller_recipe.name << end();
for (int index = 0; index < SIZE(caller_recipe.steps); ++index) {
instruction& inst = caller_recipe.steps.at(index);
if (inst.is_label) continue;
resolve_ambiguous_call(r, index, inst, caller_recipe);
}
}
void resolve_ambiguous_call(const recipe_ordinal r, int index, instruction& inst, const recipe& caller_recipe) {
// End resolve_ambiguous_call(r, index, inst, caller_recipe) Special-cases
if (non_ghost_size(get_or_insert(Recipe_variants, inst.name)) == 0) return;
trace(102, "transform") << "instruction " << to_original_string(inst) << end();
Resolve_stack.push_front(call(r, index));
string new_name = best_variant(inst, caller_recipe);
if (!new_name.empty())
inst.name = new_name;
assert(Resolve_stack.front().running_recipe == r);
assert(Resolve_stack.front().running_step_index == index);
Resolve_stack.pop_front();
}
string best_variant(const instruction& inst, const recipe& caller_recipe) {
const vector<recipe_ordinal>& variants = get(Recipe_variants, inst.name);
vector<recipe_ordinal> candidates;
// Static Dispatch Phase 1
//? cerr << inst.name << " phase 1\n";
candidates = strictly_matching_variants(inst, variants);
if (!candidates.empty()) return best_variant(inst, candidates).name;
//? cerr << inst.name << " phase 3\n";
// Static Dispatch Phase 2
//: (shape-shifting recipes in a later layer)
// End Static Dispatch Phase 2
// Static Dispatch Phase 3
//? cerr << inst.name << " phase 4\n";
candidates = matching_variants(inst, variants);
if (!candidates.empty()) return best_variant(inst, candidates).name;
// error messages
if (!is_primitive(get(Recipe_ordinal, inst.name))) { // we currently don't check types for primitive variants
if (SIZE(variants) == 1) {
raise << maybe(caller_recipe.name) << "types don't match in call for '" << to_original_string(inst) << "'\n" << end();
raise << " which tries to call '" << original_header_label(get(Recipe, variants.at(0))) << "'\n" << end();
}
else {
raise << maybe(caller_recipe.name) << "failed to find a matching call for '" << to_original_string(inst) << "'\n" << end();
raise << " available variants are:\n" << end();
for (int i = 0; i < SIZE(variants); ++i)
raise << " " << original_header_label(get(Recipe, variants.at(i))) << '\n' << end();
}
for (list<call>::iterator p = /*skip*/++Resolve_stack.begin(); p != Resolve_stack.end(); ++p) {
const recipe& specializer_recipe = get(Recipe, p->running_recipe);
const instruction& specializer_inst = specializer_recipe.steps.at(p->running_step_index);
if (specializer_recipe.name != "interactive")
raise << " (from '" << to_original_string(specializer_inst) << "' in " << specializer_recipe.name << ")\n" << end();
else
raise << " (from '" << to_original_string(specializer_inst) << "')\n" << end();
// One special-case to help with the rewrite_stash transform. (cross-layer)
if (specializer_inst.products.at(0).name.find("stash_") == 0) {
instruction stash_inst;
if (next_stash(*p, &stash_inst)) {
if (specializer_recipe.name != "interactive")
raise << " (part of '" << to_original_string(stash_inst) << "' in " << specializer_recipe.name << ")\n" << end();
else
raise << " (part of '" << to_original_string(stash_inst) << "')\n" << end();
}
}
}
}
return "";
}
// phase 1
vector<recipe_ordinal> strictly_matching_variants(const instruction& inst, const vector<recipe_ordinal>& variants) {
vector<recipe_ordinal> result;
for (int i = 0; i < SIZE(variants); ++i) {
if (variants.at(i) == -1) continue;
trace(102, "transform") << "checking variant (strict) " << i << ": " << header_label(variants.at(i)) << end();
if (all_header_reagents_strictly_match(inst, get(Recipe, variants.at(i))))
result.push_back(variants.at(i));
}
return result;
}
bool all_header_reagents_strictly_match(const instruction& inst, const recipe& variant) {
for (int i = 0; i < min(SIZE(inst.ingredients), SIZE(variant.ingredients)); ++i) {
if (!types_strictly_match(variant.ingredients.at(i), inst.ingredients.at(i))) {
trace(103, "transform") << "strict match failed: ingredient " << i << end();
return false;
}
}
for (int i = 0; i < min(SIZE(inst.products), SIZE(variant.products)); ++i) {
if (is_dummy(inst.products.at(i))) continue;
if (!types_strictly_match(variant.products.at(i), inst.products.at(i))) {
trace(103, "transform") << "strict match failed: product " << i << end();
return false;
}
}
return true;
}
// phase 3
vector<recipe_ordinal> matching_variants(const instruction& inst, const vector<recipe_ordinal>& variants) {
vector<recipe_ordinal> result;
for (int i = 0; i < SIZE(variants); ++i) {
if (variants.at(i) == -1) continue;
trace(102, "transform") << "checking variant " << i << ": " << header_label(variants.at(i)) << end();
if (all_header_reagents_match(inst, get(Recipe, variants.at(i))))
result.push_back(variants.at(i));
}
return result;
}
bool all_header_reagents_match(const instruction& inst, const recipe& variant) {
for (int i = 0; i < min(SIZE(inst.ingredients), SIZE(variant.ingredients)); ++i) {
if (!types_match(variant.ingredients.at(i), inst.ingredients.at(i))) {
trace(103, "transform") << "match failed: ingredient " << i << end();
return false;
}
}
for (int i = 0; i < min(SIZE(variant.products), SIZE(inst.products)); ++i) {
if (is_dummy(inst.products.at(i))) continue;
if (!types_match(variant.products.at(i), inst.products.at(i))) {
trace(103, "transform") << "match failed: product " << i << end();
return false;
}
}
return true;
}
// tie-breaker for each phase
const recipe& best_variant(const instruction& inst, vector<recipe_ordinal>& candidates) {
assert(!candidates.empty());
if (SIZE(candidates) == 1) return get(Recipe, candidates.at(0));
int min_score = 999;
int min_index = 0;
for (int i = 0; i < SIZE(candidates); ++i) {
const recipe& candidate = get(Recipe, candidates.at(i));
// prefer variants without extra or missing ingredients or products
int score = abs(SIZE(candidate.products)-SIZE(inst.products))
+ abs(SIZE(candidate.ingredients)-SIZE(inst.ingredients));
// prefer variants with non-address ingredients or products
for (int j = 0; j < SIZE(candidate.ingredients); ++j) {
if (is_mu_address(candidate.ingredients.at(j)))
++score;
}
for (int j = 0; j < SIZE(candidate.products); ++j) {
if (is_mu_address(candidate.products.at(j)))
++score;
}
assert(score < 999);
if (score < min_score) {
min_score = score;
min_index = i;
}
}
return get(Recipe, candidates.at(min_index));
}
int non_ghost_size(vector<recipe_ordinal>& variants) {
int result = 0;
for (int i = 0; i < SIZE(variants); ++i)
if (variants.at(i) != -1) ++result;
return result;
}
bool next_stash(const call& c, instruction* stash_inst) {
const recipe& specializer_recipe = get(Recipe, c.running_recipe);
int index = c.running_step_index;
for (++index; index < SIZE(specializer_recipe.steps); ++index) {
const instruction& inst = specializer_recipe.steps.at(index);
if (inst.name == "stash") {
*stash_inst = inst;
return true;
}
}
return false;
}
void test_static_dispatch_disabled_in_recipe_without_variants() {
run(
"def main [\n"
" 1:num <- test 3\n"
"]\n"
"def test [\n"
" 2:num <- next-ingredient # ensure no header\n"
" return 34\n"
"]\n"
);
CHECK_TRACE_CONTENTS(
"mem: storing 34 in location 1\n"
);
}
void test_static_dispatch_disabled_on_headerless_definition() {
Hide_errors = true;
run(
"def test a:num -> z:num [\n"
" z <- copy 1\n"
"]\n"
"def test [\n"
" return 34\n"
"]\n"
);
CHECK_TRACE_CONTENTS(
"error: redefining recipe test\n"
);
}
void test_static_dispatch_disabled_on_headerless_definition_2() {
Hide_errors = true;
run(
"def test [\n"
" return 34\n"
"]\n"
"def test a:num -> z:num [\n"
" z <- copy 1\n"
"]\n"
);
CHECK_TRACE_CONTENTS(
"error: redefining recipe test\n"
);
}
void test_static_dispatch_on_primitive_names() {
run(
"def main [\n"
" 1:num <- copy 34\n"
" 2:num <- copy 34\n"
" 3:bool <- equal 1:num, 2:num\n"
" 4:bool <- copy false\n"
" 5:bool <- copy false\n"
" 6:bool <- equal 4:bool, 5:bool\n"
"]\n"
// temporarily hardcode number equality to always fail
"def equal x:num, y:num -> z:bool [\n"
" local-scope\n"
" load-ingredients\n"
" z <- copy false\n"
"]\n"
"# comparing numbers used overload\n"
);
CHECK_TRACE_CONTENTS(
// comparing numbers used overload
"mem: storing 0 in location 3\n"
// comparing booleans continues to use primitive
"mem: storing 1 in location 6\n"
);
}
void test_static_dispatch_works_with_dummy_results_for_containers() {
run(
"def main [\n"
" _ <- test 3, 4\n"
"]\n"
"def test a:num -> z:point [\n"
" local-scope\n"
" load-ingredients\n"
" z <- merge a, 0\n"
"]\n"
"def test a:num, b:num -> z:point [\n"
" local-scope\n"
" load-ingredients\n"
" z <- merge a, b\n"
"]\n"
);
CHECK_TRACE_COUNT("error", 0);
}
void test_static_dispatch_works_with_compound_type_containing_container_defined_after_first_use() {
run(
"def main [\n"
" x:&:foo <- new foo:type\n"
" test x\n"
"]\n"
"container foo [\n"
" x:num\n"
"]\n"
"def test a:&:foo -> z:num [\n"
" local-scope\n"
" load-ingredients\n"
" z:num <- get *a, x:offset\n"
"]\n"
);
CHECK_TRACE_COUNT("error", 0);
}
void test_static_dispatch_works_with_compound_type_containing_container_defined_after_second_use() {
run(
"def main [\n"
" x:&:foo <- new foo:type\n"
" test x\n"
"]\n"
"def test a:&:foo -> z:num [\n"
" local-scope\n"
" load-ingredients\n"
" z:num <- get *a, x:offset\n"
"]\n"
"container foo [\n"
" x:num\n"
"]\n"
);
CHECK_TRACE_COUNT("error", 0);
}
void test_static_dispatch_on_non_literal_character_ignores_variant_with_numbers() {
Hide_errors = true;
run(
"def main [\n"
" local-scope\n"
" x:char <- copy 10/newline\n"
" 1:num/raw <- foo x\n"
"]\n"
"def foo x:num -> y:num [\n"
" load-ingredients\n"
" return 34\n"
"]\n"
);
CHECK_TRACE_CONTENTS(
"error: main: ingredient 0 has the wrong type at '1:num/raw <- foo x'\n"
);
CHECK_TRACE_DOESNT_CONTAIN("mem: storing 34 in location 1");
}
void test_static_dispatch_dispatches_literal_to_character() {
run(
"def main [\n"
" 1:num/raw <- foo 97\n"
"]\n"
"def foo x:char -> y:num [\n"
" local-scope\n"
" load-ingredients\n"
" return 34\n"
"]\n"
"# character variant is preferred\n"
);
CHECK_TRACE_CONTENTS(
"mem: storing 34 in location 1\n"
);
}
void test_static_dispatch_dispatches_literal_to_number_if_at_all_possible() {
run(
"def main [\n"
" 1:num/raw <- foo 97\n"
"]\n"
"def foo x:char -> y:num [\n"
" local-scope\n"
" load-ingredients\n"
" return 34\n"
"]\n"
"def foo x:num -> y:num [\n"
" local-scope\n"
" load-ingredients\n"
" return 35\n"
"]\n"
);
CHECK_TRACE_CONTENTS(
// number variant is preferred
"mem: storing 35 in location 1\n"
);
}
:(replace{} "string header_label(const recipe_ordinal r)")
string header_label(const recipe_ordinal r) {
return header_label(get(Recipe, r));
}
:(code)
string header_label(const recipe& caller) {
ostringstream out;
out << "recipe " << caller.name;
for (int i = 0; i < SIZE(caller.ingredients); ++i)
out << ' ' << to_string(caller.ingredients.at(i));
if (!caller.products.empty()) out << " ->";
for (int i = 0; i < SIZE(caller.products); ++i)
out << ' ' << to_string(caller.products.at(i));
return out.str();
}
string original_header_label(const recipe& caller) {
ostringstream out;
out << "recipe " << caller.original_name;
for (int i = 0; i < SIZE(caller.ingredients); ++i)
out << ' ' << caller.ingredients.at(i).original_string;
if (!caller.products.empty()) out << " ->";
for (int i = 0; i < SIZE(caller.products); ++i)
out << ' ' << caller.products.at(i).original_string;
return out.str();
}
void test_reload_variant_retains_other_variants() {
run(
"def main [\n"
" 1:num <- copy 34\n"
" 2:num <- foo 1:num\n"
"]\n"
"def foo x:num -> y:num [\n"
" local-scope\n"
" load-ingredients\n"
" return 34\n"
"]\n"
"def foo x:&:num -> y:num [\n"
" local-scope\n"
" load-ingredients\n"
" return 35\n"
"]\n"
"def! foo x:&:num -> y:num [\n"
" local-scope\n"
" load-ingredients\n"
" return 36\n"
"]\n"
);
CHECK_TRACE_CONTENTS(
"mem: storing 34 in location 2\n"
);
CHECK_TRACE_COUNT("error", 0);
}
void test_dispatch_errors_come_after_unknown_name_errors() {
Hide_errors = true;
run(
"def main [\n"
" y:num <- foo x\n"
"]\n"
"def foo a:num -> b:num [\n"
" local-scope\n"
" load-ingredients\n"
" return 34\n"
"]\n"
"def foo a:bool -> b:num [\n"
" local-scope\n"
" load-ingredients\n"
" return 35\n"
"]\n"
);
CHECK_TRACE_CONTENTS(
"error: main: missing type for 'x' in 'y:num <- foo x'\n"
"error: main: failed to find a matching call for 'y:num <- foo x'\n"
);
}
void test_override_methods_with_type_abbreviations() {
run(
"def main [\n"
" local-scope\n"
" s:text <- new [abc]\n"
" 1:num/raw <- foo s\n"
"]\n"
"def foo a:address:array:character -> result:number [\n"
" return 34\n"
"]\n"
// identical to previous variant once you take type abbreviations into account
"def! foo a:text -> result:num [\n"
" return 35\n"
"]\n"
);
CHECK_TRACE_CONTENTS(
"mem: storing 35 in location 1\n"
);
}
void test_ignore_static_dispatch_in_type_errors_without_overloading() {
Hide_errors = true;
run(
"def main [\n"
" local-scope\n"
" x:&:num <- copy 0\n"
" foo x\n"
"]\n"
"def foo x:&:char [\n"
" local-scope\n"
" load-ingredients\n"
"]\n"
);
CHECK_TRACE_CONTENTS(
"error: main: types don't match in call for 'foo x'\n"
"error: which tries to call 'recipe foo x:&:char'\n"
);
}
void test_show_available_variants_in_dispatch_errors() {
Hide_errors = true;
run(
"def main [\n"
" local-scope\n"
" x:&:num <- copy 0\n"
" foo x\n"
"]\n"
"def foo x:&:char [\n"
" local-scope\n"
" load-ingredients\n"
"]\n"
"def foo x:&:bool [\n"
" local-scope\n"
" load-ingredients\n"
"]\n"
);
CHECK_TRACE_CONTENTS(
"error: main: failed to find a matching call for 'foo x'\n"
"error: available variants are:\n"
"error: recipe foo x:&:char\n"
"error: recipe foo x:&:bool\n"
);
}
:(before "End Includes")
using std::abs;