:(after "Types")
// A program is a book of 'recipes' (functions)
typedef int recipe_number;
:(before "End Globals")
unordered_map<string, recipe_number> Recipe_number;
unordered_map<recipe_number, recipe> Recipe;
int Next_recipe_number = 1;
:(before "End Types")
// Recipes are lists of instructions. To run a recipe, the computer runs its
// instructions.
struct recipe {
string name;
vector<instruction> steps;
// End recipe Fields
};
:(before "struct recipe")
// Each instruction is either of the form:
// product1, product2, product3, ... <- operation ingredient1, ingredient2, ingredient3, ...
// or just a single 'label' followed by a colon
// label:
// Labels don't do anything, they're just waypoints.
struct instruction {
bool is_label;
string label; // only if is_label
string name; // only if !is_label
recipe_number operation; // Recipe_number[name]
vector<reagent> ingredients; // only if !is_label
vector<reagent> products; // only if !is_label
instruction();
void clear();
};
:(before "struct instruction")
// Ingredients and products are a single species -- a reagent. Reagents refer
// either to numbers or to locations in memory along with 'type' tags telling
// us how to interpret them. They also can contain arbitrary other lists of
// properties besides types, but we're getting ahead of ourselves.
struct reagent {
vector<pair<string, vector<string> > > properties;
string name;
int value;
bool initialized;
vector<type_number> types;
reagent(string s);
reagent();
void set_value(int v) { value = v; initialized = true; }
string to_string() const;
};
:(before "struct reagent")
struct property {
vector<string> values;
};
:(before "End Globals")
// Locations refer to a common 'memory'. Each location can store a number.
unordered_map<int, int> Memory;
:(before "End Setup")
Memory.clear();
:(after "Types")
// Mu types encode how the numbers stored in different parts of memory are
// interpreted. A location tagged as a 'character' type will interpret the
// number 97 as the letter 'a', while a different location of type 'integer'
// would not.
//
// Unlike most computers today, mu stores types in a single big table, shared
// by all the mu programs on the computer. This is useful in providing a
// seamless experience to help understand arbitrary mu programs.
typedef int type_number;
:(before "End Globals")
unordered_map<string, type_number> Type_number;
unordered_map<type_number, type_info> Type;
int Next_type_number = 1;
:(code)
void setup_types() {
Type.clear(); Type_number.clear();
Type_number["literal"] = 0;
Next_type_number = 1;
// Mu Types Initialization
int integer = Type_number["integer"] = Next_type_number++;
Type_number["location"] = Type_number["integer"]; // wildcard type
Type[integer].name = "integer";
int address = Type_number["address"] = Next_type_number++;
Type[address].name = "address";
int boolean = Type_number["boolean"] = Next_type_number++;
Type[boolean].name = "boolean";
int character = Type_number["character"] = Next_type_number++;
Type[character].name = "character";
// Array types are a special modifier to any other type. For example,
// array:integer or array:address:boolean.
int array = Type_number["array"] = Next_type_number++;
Type[array].name = "array";
// End Mu Types Initialization
}
:(before "End One-time Setup")
setup_types();
:(before "End Types")
// You can construct arbitrary new types. New types are either 'containers'
// with multiple 'elements' of other types, or 'exclusive containers' containing
// one of multiple 'variants'. (These are similar to C structs and unions,
// respectively, though exclusive containers implicitly include a tag element
// recording which variant they should be interpreted as.)
//
// For example, storing bank balance and name for an account might require a
// container, but if bank accounts may be either for individuals or groups,
// with different properties for each, that may require an exclusive container
// whose variants are individual-account and joint-account containers.
enum kind_of_type {
primitive,
container,
exclusive_container
};
struct type_info {
string name;
kind_of_type kind;
size_t size; // only if type is not primitive; primitives and addresses have size 1 (except arrays are dynamic)
vector<vector<type_number> > elements;
vector<string> element_names;
// End type_info Fields
type_info() :kind(primitive), size(0) {}
};
enum primitive_recipes {
IDLE = 0,
COPY,
// End Primitive Recipe Declarations
MAX_PRIMITIVE_RECIPES,
};
:(code)
//: It's all very well to construct recipes out of other recipes, but we need
//: to know how to do *something* out of the box. For the following
//: recipes there are only codes, no entries in the book, because mu just knows
//: what to do for them.
void setup_recipes() {
Recipe.clear(); Recipe_number.clear();
Recipe_number["idle"] = IDLE;
// Primitive Recipe Numbers
Recipe_number["copy"] = COPY;
// End Primitive Recipe Numbers
}
//: We could just reset the recipe table after every test, but that gets slow
//: all too quickly. Instead, initialize the common stuff just once at
//: startup. Later layers will carefully undo each test's additions after
//: itself.
:(before "End One-time Setup")
setup_recipes();
assert(MAX_PRIMITIVE_RECIPES < 100); // level 0 is primitives; until 99
Next_recipe_number = 100;
// End Load Recipes
// give tests a consistent starting point
assert(Next_recipe_number < 1000);
Next_recipe_number = 1000;
delete Trace_stream; Trace_stream = new trace_stream;
:(before "End Setup")
Next_recipe_number = 1000; // consistent new numbers for each test
//:: Helpers
:(code)
instruction::instruction() :is_label(false), operation(IDLE) {}
void instruction::clear() { is_label=false; label.clear(); operation=IDLE; ingredients.clear(); products.clear(); }
// Reagents have the form <name>:<type>:<type>:.../<property>/<property>/...
reagent::reagent(string s) :value(0), initialized(false) {
istringstream in(s);
in >> std::noskipws;
// properties
while (!in.eof()) {
istringstream row(slurp_until(in, '/'));
row >> std::noskipws;
string name = slurp_until(row, ':');
vector<string> values;
while (!row.eof())
values.push_back(slurp_until(row, ':'));
properties.push_back(pair<string, vector<string> >(name, values));
}
// structures for the first row of properties
name = properties[0].first;
for (size_t i = 0; i < properties[0].second.size(); ++i) {
types.push_back(Type_number[properties[0].second[i]]);
}
if (name == "_" && types.empty()) {
types.push_back(0);
properties[0].second.push_back("dummy");
}
}
reagent::reagent() :value(0), initialized(false) {
// The first property is special, so ensure we always have it.
// Other properties can be pushed back, but the first must always be
// assigned to.
properties.push_back(pair<string, vector<string> >("", vector<string>()));
}
string reagent::to_string() const {
ostringstream out;
out << "{name: \"" << name << "\", value: " << value << ", type: ";
for (size_t i = 0; i < types.size(); ++i) {
out << types[i];
if (i < types.size()-1) out << "-";
}
if (!properties.empty()) {
out << ", properties: [";
for (size_t i = 0; i < properties.size(); ++i) {
out << "\"" << properties[i].first << "\": ";
for (size_t j = 0; j < properties[i].second.size(); ++j) {
out << "\"" << properties[i].second[j] << "\"";
if (j < properties[i].second.size()-1) out << ":";
}
if (i < properties.size()-1) out << ", ";
else out << "]";
}
}
out << "}";
return out.str();
}
string slurp_until(istream& in, char delim) {
ostringstream out;
char c;
while (in >> c) {
if (c == delim) {
// drop the delim
break;
}
out << c;
}
return out.str();
}
void dump_memory() {
map<int, int> ordered(Memory.begin(), Memory.end());
for (map<int, int>::iterator p = ordered.begin(); p != ordered.end(); ++p) {
cout << p->first << ": " << p->second << '\n';
}
}
:(before "End Includes")
#include <map>
using std::map;