blob: 164bc5ace01189832694cca80ef74ee2169c8e3b (
plain) (
tree)
|
|
//: Once a recipe is loaded, we need to run it.
//:
//: So far we've seen recipes as lists of instructions, and instructions point
//: at other recipes. To kick things off mu needs to know how to run certain
//: 'primitive' recipes. That will then give the ability to run recipes
//: containing these primitives.
//:
//: This layer defines a skeleton with just two primitive recipes: IDLE which
//: does nothing, and COPY, which can copy numbers from one memory location to
//: another. Later layers will add more primitives.
:(scenario copy_literal)
recipe main [
1:integer <- copy 23:literal
]
+run: instruction main/0
+run: ingredient 0 is 23
+mem: storing 23 in location 1
:(scenario copy)
recipe main [
1:integer <- copy 23:literal
2:integer <- copy 1:integer
]
+run: instruction main/1
+run: ingredient 0 is 1
+mem: location 1 is 23
+mem: storing 23 in location 2
:(before "End Types")
// Book-keeping while running a recipe.
//: Later layers will change this.
struct routine {
recipe_number running_recipe;
size_t running_at;
routine(recipe_number r) :running_recipe(r), running_at(0) {}
};
:(before "End Globals")
routine* Current_routine = NULL;
:(code)
void run(recipe_number r) {
run(routine(r));
}
void run(routine rr) {
Current_routine = &rr;
while (!done(rr)) {
vector<instruction>& instructions = steps(rr);
size_t& pc = running_at(rr);
// Running one instruction.
if (instructions[pc].is_label) { ++pc; continue; }
//? cout << "AAA " << Trace_stream << " ^" << Trace_stream->dump_layer << "$\n"; //? 1
trace("run") << "instruction " << recipe_name(rr) << '/' << pc;
//? cout << "operation " << instructions[pc].operation << '\n'; //? 3
//? if (!instructions[pc].products.empty()) trace("foo") << "AAA product 0 is " << instructions[pc].products[0].to_string(); //? 1
switch (instructions[pc].operation) {
// Primitive Recipe Implementations
case COPY: {
trace("run") << "ingredient 0 is " << instructions[pc].ingredients[0].name;
vector<int> data = read_memory(instructions[pc].ingredients[0]);
write_memory(instructions[pc].products[0], data);
break;
}
// End Primitive Recipe Implementations
default: {
cout << "not a primitive op: " << instructions[pc].operation << '\n';
}
}
++pc;
}
Current_routine = NULL;
}
//: Some helpers.
//: We'll need to override these later as we change the definition of routine.
//: Important that they return referrences into the routine.
inline size_t& running_at(routine& rr) {
return rr.running_at;
}
inline string recipe_name(routine& rr) {
return Recipe[rr.running_recipe].name;
}
inline vector<instruction>& steps(routine& rr) {
return Recipe[rr.running_recipe].steps;
}
inline bool done(routine& rr) {
return running_at(rr) >= steps(rr).size();
}
:(before "End Main")
if (argc > 1) {
setup();
for (int i = 1; i < argc; ++i) {
load(argv[i]);
}
Trace_stream = new trace_stream;
//? Trace_stream->dump_layer = "all"; //? 2
transform_all();
recipe_number r = Recipe_number[string("main")];
if (r) run(r);
dump_memory();
}
:(code)
void load(string filename) {
ifstream fin(filename.c_str());
if (!fin) {
raise << "no such file " << filename << '\n';
return;
}
fin >> std::noskipws;
add_recipes(fin);
transform_all();
fin.close();
}
//:: On startup, load everything in core.mu
:(before "End Load Recipes")
load("core.mu");
// freeze everything so it doesn't get cleared by tests
recently_added_recipes.clear();
recently_added_types.clear();
:(code)
// helper for tests
void run(string form) {
vector<recipe_number> tmp = add_recipes(form);
transform_all();
run(tmp.front());
}
//:: Reading from memory, writing to memory.
vector<int> read_memory(reagent x) {
//? cout << "read_memory: " << x.to_string() << '\n'; //? 1
vector<int> result;
if (isa_literal(x)) {
result.push_back(x.value);
return result;
}
int base = x.value;
size_t size = size_of(x);
for (size_t offset = 0; offset < size; ++offset) {
int val = Memory[base+offset];
trace("mem") << "location " << base+offset << " is " << val;
result.push_back(val);
}
return result;
}
void write_memory(reagent x, vector<int> data) {
if (is_dummy(x)) return;
int base = x.value;
if (size_of(x) != data.size())
raise << "size mismatch in storing to " << x.to_string() << '\n';
for (size_t offset = 0; offset < data.size(); ++offset) {
trace("mem") << "storing " << data[offset] << " in location " << base+offset;
Memory[base+offset] = data[offset];
}
}
:(code)
size_t size_of(const reagent& r) {
return size_of(r.types);
}
size_t size_of(const vector<type_number>& types) {
// End size_of(types) Cases
return 1;
}
bool is_dummy(const reagent& x) {
return x.name == "_";
}
bool isa_literal(const reagent& r) {
return r.types.size() == 1 && r.types[0] == 0;
}
:(scenario run_label)
recipe main [
+foo
1:integer <- copy 23:literal
2:integer <- copy 1:integer
]
+run: instruction main/1
+run: instruction main/2
-run: instruction main/0
:(scenario run_dummy)
recipe main [
_ <- copy 0:literal
]
+run: instruction main/0
|