blob: e73612c52aeb7a95e08db5eb19b0bd011c8f1ad6 (
plain) (
tree)
|
|
; To demonstrate generic functions, we'll construct a factorial function with
; separate base and recursive cases. Compare factorial.mu.
; def factorial n = n*factorial(n-1)
(def factorial [
((default-scope scope-address) <- new (scope literal) (30 literal))
((n integer) <- arg (0 literal))
more-clauses
((x integer) <- sub (n integer) (1 literal))
((subresult integer) <- factorial (x integer))
((result integer) <- mul (subresult integer) (n integer))
(reply (result integer))
])
; def factorial 0 = 1
(after factorial/more-clauses [
{ begin
((zero? boolean) <- eq (n integer) (0 literal))
(break-unless (zero? boolean))
(reply (1 literal))
}
])
(def main [
((1 integer) <- factorial (5 literal))
(print-primitive ("result: " literal))
(print-primitive (1 integer))
(print-primitive ("\n" literal))
])
|