//: instructions that (immediately) contain an argument to act with
:(before "End Initialize Op Names")
put_new(Name, "05", "add imm32 to EAX (add)");
:(before "End Single-Byte Opcodes")
case 0x05: { // add imm32 to EAX
int32_t signed_arg2 = next32();
trace(Callstack_depth+1, "run") << "add imm32 0x" << HEXWORD << signed_arg2 << " to EAX" << end();
int32_t signed_result = Reg[EAX].i + signed_arg2;
SF = (signed_result < 0);
ZF = (signed_result == 0);
int64_t signed_full_result = static_cast<int64_t>(Reg[EAX].i) + signed_arg2;
OF = (signed_result != signed_full_result);
// set CF
uint32_t unsigned_arg2 = static_cast<uint32_t>(signed_arg2);
uint32_t unsigned_result = Reg[EAX].u + unsigned_arg2;
uint64_t unsigned_full_result = static_cast<uint64_t>(Reg[EAX].u) + unsigned_arg2;
CF = (unsigned_result != unsigned_full_result);
trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
Reg[EAX].i = signed_result;
trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << Reg[EAX].i << end();
break;
}
:(code)
void test_add_imm32_to_EAX_signed_overflow() {
Reg[EAX].i = INT32_MAX;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
" 05 01 00 00 00 \n" // add 1 to EAX
);
CHECK_TRACE_CONTENTS(
"run: add imm32 0x00000001 to EAX\n"
"run: SF=1; ZF=0; CF=0; OF=1\n"
"run: storing 0x80000000\n"
);
}
void test_add_imm32_to_EAX_unsigned_overflow() {
Reg[EAX].u = UINT32_MAX;
Reg[EBX].u = 1;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
" 05 01 00 00 00 \n" // add 1 to EAX
);
CHECK_TRACE_CONTENTS(
"run: add imm32 0x00000001 to EAX\n"
"run: SF=0; ZF=1; CF=1; OF=0\n"
"run: storing 0x00000000\n"
);
}
void test_add_imm32_to_EAX_unsigned_and_signed_overflow() {
Reg[EAX].i = INT32_MIN;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
" 05 00 00 00 80 \n" // add 0x80000000 to EAX
);
CHECK_TRACE_CONTENTS(
"run: add imm32 0x80000000 to EAX\n"
"run: SF=0; ZF=1; CF=1; OF=1\n"
"run: storing 0x00000000\n"
);
}
//:
:(before "End Initialize Op Names")
put_new(Name, "81", "combine rm32 with imm32 based on subop (add/sub/and/or/xor/cmp)");
:(code)
void test_add_imm32_to_r32() {
Reg[EBX].i = 1;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
" 81 c3 0a 0b 0c 0d\n" // add 0x0d0c0b0a to EBX
// ModR/M in binary: 11 (direct mode) 000 (subop add) 011 (dest EBX)
);
CHECK_TRACE_CONTENTS(
"run: combine r/m32 with imm32\n"
"run: r/m32 is EBX\n"
"run: imm32 is 0x0d0c0b0a\n"
"run: subop add\n"
"run: storing 0x0d0c0b0b\n"
);
}
:(before "End Single-Byte Opcodes")
case 0x81: { // combine r/m32 with imm32
trace(Callstack_depth+1, "run") << "combine r/m32 with imm32" << end();
const uint8_t modrm = next();
int32_t* signed_arg1 = effective_address(modrm);
const int32_t signed_arg2 = next32();
trace(Callstack_depth+1, "run") << "imm32 is 0x" << HEXWORD << signed_arg2 << end();
const uint8_t subop = (modrm>>3)&0x7; // middle 3 'reg opcode' bits
switch (subop) {
case 0: {
trace(Callstack_depth+1, "run") << "subop add" << end();
int32_t signed_result = *signed_arg1 + signed_arg2;
SF = (signed_result < 0);
ZF = (signed_result == 0);
int64_t signed_full_result = static_cast<int64_t>(*signed_arg1) + signed_arg2;
OF = (signed_result != signed_full_result);
// set CF
uint32_t unsigned_arg1 = static_cast<uint32_t>(*signed_arg1);
uint32_t unsigned_arg2 = static_cast<uint32_t>(signed_arg2);
uint32_t unsigned_result = unsigned_arg1 + unsigned_arg2;
uint64_t unsigned_full_result = static_cast<uint64_t>(unsigned_arg1) + unsigned_arg2;
CF = (unsigned_result != unsigned_full_result);
trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
*signed_arg1 = signed_result;
trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *signed_arg1 << end();
break;
}
// End Op 81 Subops
default:
cerr << "unrecognized subop for opcode 81: " << NUM(subop) << '\n';
exit(1);
}
break;
}
:(code)
void test_add_imm32_to_r32_signed_overflow() {
Reg[EBX].i = INT32_MAX;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
" 81 c3 01 00 00 00\n" // add 1 to EBX
// ModR/M in binary: 11 (direct mode) 000 (subop add) 011 (dest EBX)
);
CHECK_TRACE_CONTENTS(
"run: combine r/m32 with imm32\n"
"run: r/m32 is EBX\n"
"run: imm32 is 0x00000001\n"
"run: subop add\n"
"run: SF=1; ZF=0; CF=0; OF=1\n"
"run: storing 0x80000000\n"
);
}
void test_add_imm32_to_r32_unsigned_overflow() {
Reg[EBX].u = UINT32_MAX;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
" 81 c3 01 00 00 00\n" // add 1 to EBX
// ModR/M in binary: 11 (direct mode) 011 (subop add) 011 (dest EBX)
);
CHECK_TRACE_CONTENTS(
"run: combine r/m32 with imm32\n"
"run: r/m32 is EBX\n"
"run: imm32 is 0x00000001\n"
"run: subop add\n"
"run: SF=0; ZF=1; CF=1; OF=0\n"
"run: storing 0x00000000\n"
);
}
void test_add_imm32_to_r32_unsigned_and_signed_overflow() {
Reg[EBX].i = INT32_MIN;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
" 81 c3 00 00 00 80\n" // add 0x80000000 to EBX
// ModR/M in binary: 11 (direct mode) 011 (subop add) 011 (dest EBX)
);
CHECK_TRACE_CONTENTS(
"run: combine r/m32 with imm32\n"
"run: r/m32 is EBX\n"
"run: imm32 is 0x80000000\n"
"run: subop add\n"
"run: SF=0; ZF=1; CF=1; OF=1\n"
"run: storing 0x00000000\n"
);
}
//:
:(code)
void test_add_imm32_to_mem_at_rm32() {
Reg[EBX].i = 0x2000;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
" 81 03 0a 0b 0c 0d \n" // add 0x0d0c0b0a to *EBX
// ModR/M in binary: 00 (indirect mode) 000 (subop add) 011 (dest EBX)
"== data 0x2000\n"
"01 00 00 00\n" // 1
);
CHECK_TRACE_CONTENTS(
"run: combine r/m32 with imm32\n"
"run: effective address is 0x00002000 (EBX)\n"
"run: imm32 is 0x0d0c0b0a\n"
"run: subop add\n"
"run: storing 0x0d0c0b0b\n"
);
}
//:: subtract
:(before "End Initialize Op Names")
put_new(Name, "2d", "subtract imm32 from EAX (sub)");
:(code)
void test_subtract_imm32_from_EAX() {
Reg[EAX].i = 0x0d0c0baa;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
" 2d 0a 0b 0c 0d \n" // subtract 0x0d0c0b0a from EAX
);
CHECK_TRACE_CONTENTS(
"run: subtract imm32 0x0d0c0b0a from EAX\n"
"run: storing 0x000000a0\n"
);
}
:(before "End Single-Byte Opcodes")
case 0x2d: { // subtract imm32 from EAX
const int32_t signed_arg2 = next32();
trace(Callstack_depth+1, "run") << "subtract imm32 0x" << HEXWORD << signed_arg2 << " from EAX" << end();
int32_t signed_result = Reg[EAX].i - signed_arg2;
SF = (signed_result < 0);
ZF = (signed_result == 0);
int64_t signed_full_result = static_cast<int64_t>(Reg[EAX].i) - signed_arg2;
OF = (signed_result != signed_full_result);
// set CF
uint32_t unsigned_arg2 = static_cast<uint32_t>(signed_arg2);
uint32_t unsigned_result = Reg[EAX].u - unsigned_arg2;
uint64_t unsigned_full_result = static_cast<uint64_t>(Reg[EAX].u) - unsigned_arg2;
CF = (unsigned_result != unsigned_full_result);
trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
Reg[EAX].i = signed_result;
trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << Reg[EAX].i << end();
break;
}
:(code)
void test_subtract_imm32_from_EAX_signed_overflow() {
Reg[EAX].i = INT32_MIN;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
" 2d 01 00 00 00 \n" // subtract 1 from EAX
);
CHECK_TRACE_CONTENTS(
"run: subtract imm32 0x00000001 from EAX\n"
"run: SF=0; ZF=0; CF=0; OF=1\n"
"run: storing 0x7fffffff\n" // INT32_MAX
);
}
void test_subtract_imm32_from_EAX_unsigned_overflow() {
Reg[EAX].i = 0;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
" 2d 01 00 00 00 \n" // subtract 1 from EAX
);
CHECK_TRACE_CONTENTS(
"run: subtract imm32 0x00000001 from EAX\n"
"run: SF=1; ZF=0; CF=1; OF=0\n"
"run: storing 0xffffffff\n"
);
}
void test_subtract_imm32_from_EAX_signed_and_unsigned_overflow() {
Reg[EAX].i = 0;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
" 2d 00 00 00 80 \n" // subtract INT32_MIN from EAX
);
CHECK_TRACE_CONTENTS(
"run: subtract imm32 0x80000000 from EAX\n"
"run: SF=1; ZF=0; CF=1; OF=1\n"
"run: storing 0x80000000\n"
);
}
//:
void test_subtract_imm32_from_mem_at_rm32() {
Reg[EBX].i = 0x2000;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
" 81 2b 01 00 00 00 \n" // subtract 1 from *EBX
// ModR/M in binary: 00 (indirect mode) 101 (subop subtract) 011 (dest EBX)
"== data 0x2000\n"
"0a 00 00 00\n" // 0xa
);
CHECK_TRACE_CONTENTS(
"run: combine r/m32 with imm32\n"
"run: effective address is 0x00002000 (EBX)\n"
"run: imm32 is 0x00000001\n"
"run: subop subtract\n"
"run: storing 0x00000009\n"
);
}
:(before "End Op 81 Subops")
case 5: {
trace(Callstack_depth+1, "run") << "subop subtract" << end();
int32_t signed_result = *signed_arg1 - signed_arg2;
SF = (signed_result < 0);
ZF = (signed_result == 0);
int64_t signed_full_result = static_cast<int64_t>(*signed_arg1) - signed_arg2;
OF = (signed_result != signed_full_result);
// set CF
uint32_t unsigned_arg1 = static_cast<uint32_t>(*signed_arg1);
uint32_t unsigned_arg2 = static_cast<uint32_t>(signed_arg2);
uint32_t unsigned_result = unsigned_arg1 - unsigned_arg2;
uint64_t unsigned_full_result = static_cast<uint64_t>(unsigned_arg1) - unsigned_arg2;
CF = (unsigned_result != unsigned_full_result);
trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
*signed_arg1 = signed_result;
trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *signed_arg1 << end();
break;
}
:(code)
void test_subtract_imm32_from_mem_at_rm32_signed_overflow() {
Reg[EBX].i = 0x2000;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
" 81 2b ff ff ff 7f \n" // subtract INT32_MAX from *EBX
// ModR/M in binary: 00 (indirect mode) 101 (subop subtract) 011 (dest EBX)
"== data 0x2000\n"
"00 00 00 80\n" // INT32_MIN
);
CHECK_TRACE_CONTENTS(
"run: combine r/m32 with imm32\n"
"run: effective address is 0x00002000 (EBX)\n"
"run: effective address contains 0x80000000\n"
"run: imm32 is 0x7fffffff\n"
"run: subop subtract\n"
"run: SF=0; ZF=0; CF=0; OF=1\n"
"run: storing 0x00000001\n"
);
}
void test_subtract_imm32_from_mem_at_rm32_unsigned_overflow() {
Reg[EBX].i = 0x2000;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
" 81 2b 01 00 00 00 \n" // subtract 1 from *EBX
// ModR/M in binary: 00 (indirect mode) 101 (subop subtract) 011 (dest EBX)
"== data 0x2000\n"
"00 00 00 00\n" // 0
);
CHECK_TRACE_CONTENTS(
"run: combine r/m32 with imm32\n"
"run: effective address is 0x00002000 (EBX)\n"
"run: effective address contains 0x00000000\n"
"run: imm32 is 0x00000001\n"
"run: subop subtract\n"
"run: SF=1; ZF=0; CF=1; OF=0\n"
"run: storing 0xffffffff\n"
);
}
void test_subtract_imm32_from_mem_at_rm32_signed_and_unsigned_overflow() {
Reg[EBX].i = 0x2000;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
" 81 2b 00 00 00 80 \n" // subtract INT32_MIN from *EBX
// ModR/M in binary: 00 (indirect mode) 101 (subop subtract) 011 (dest EBX)
"== data 0x2000\n"
"00 00 00 00\n" // 0
);
CHECK_TRACE_CONTENTS(
"run: combine r/m32 with imm32\n"
"run: effective address is 0x00002000 (EBX)\n"
"run: effective address contains 0x00000000\n"
"run: imm32 is 0x80000000\n"
"run: subop subtract\n"
"run: SF=1; ZF=0; CF=1; OF=1\n"
"run: storing 0x80000000\n"
);
}
//:
void test_subtract_imm32_from_r32() {
Reg[EBX].i = 10;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
" 81 eb 01 00 00 00 \n" // subtract 1 from EBX
// ModR/M in binary: 11 (direct mode) 101 (subop subtract) 011 (dest EBX)
);
CHECK_TRACE_CONTENTS(
"run: combine r/m32 with imm32\n"
"run: r/m32 is EBX\n"
"run: imm32 is 0x00000001\n"
"run: subop subtract\n"
"run: storing 0x00000009\n"
);
}
//:: shift left
:(before "End Initialize Op Names")
put_new(Name, "c1", "shift rm32 by imm8 bits depending on subop (sal/sar/shl/shr)");
:(code)
void test_shift_left_r32_with_imm8() {
Reg[EBX].i = 13;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
" c1 e3 01 \n" // shift EBX left by 1 bit
// ModR/M in binary: 11 (direct mode) 100 (subop shift left) 011 (dest EBX)
);
CHECK_TRACE_CONTENTS(
"run: operate on r/m32\n"
"run: r/m32 is EBX\n"
"run: subop: shift left by CL bits\n"
"run: storing 0x0000001a\n"
);
}
:(before "End Single-Byte Opcodes")
case 0xc1: {
const uint8_t modrm = next();
trace(Callstack_depth+1, "run") << "operate on r/m32" << end();
int32_t* arg1 = effective_address(modrm);
const uint8_t subop = (modrm>>3)&0x7; // middle 3 'reg opcode' bits
switch (subop) {
case 4: { // shift left r/m32 by CL
trace(Callstack_depth+1, "run") << "subop: shift left by CL bits" << end();
uint8_t count = next() & 0x1f;
// OF is only defined if count is 1
if (count == 1) {
bool msb = (*arg1 & 0x80000000) >> 1;
bool pnsb = (*arg1 & 0x40000000);
OF = (msb != pnsb);
}
*arg1 = (*arg1 << count);
ZF = (*arg1 == 0);
SF = (*arg1 < 0);
// CF undefined
trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *arg1 << end();
break;
}
// End Op c1 Subops
default:
cerr << "unrecognized subop for opcode c1: " << NUM(subop) << '\n';
exit(1);
}
break;
}
//:: shift right arithmetic
:(code)
void test_shift_right_arithmetic_r32_with_imm8() {
Reg[EBX].i = 26;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
" c1 fb 01 \n" // shift EBX right by 1 bit
// ModR/M in binary: 11 (direct mode) 111 (subop shift right arithmetic) 011 (dest EBX)
);
CHECK_TRACE_CONTENTS(
"run: operate on r/m32\n"
"run: r/m32 is EBX\n"
"run: subop: shift right by CL bits, while preserving sign\n"
"run: storing 0x0000000d\n"
);
}
:(before "End Op c1 Subops")
case 7: { // shift right r/m32 by CL, preserving sign
trace(Callstack_depth+1, "run") << "subop: shift right by CL bits, while preserving sign" << end();
uint8_t count = next() & 0x1f;
int32_t result = (*arg1 >> count);
ZF = (*arg1 == 0);
SF = (*arg1 < 0);
// OF is only defined if count is 1
if (count == 1) OF = false;
// CF
CF = ((*arg1 >> (count-1)) & 0x1);
trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
*arg1 = result;
trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *arg1 << end();
break;
}
:(code)
void test_shift_right_arithmetic_odd_r32_with_imm8() {
Reg[EBX].i = 27;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
" c1 fb 01 \n" // shift EBX right by 1 bit
// ModR/M in binary: 11 (direct mode) 111 (subop shift right arithmetic) 011 (dest EBX)
);
CHECK_TRACE_CONTENTS(
"run: operate on r/m32\n"
"run: r/m32 is EBX\n"
"run: subop: shift right by CL bits, while preserving sign\n"
// result: 13
"run: storing 0x0000000d\n"
);
}
:(code)
void test_shift_right_arithmetic_negative_r32_with_imm8() {
Reg[EBX].i = 0xfffffffd; // -3
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
" c1 fb 01 \n" // shift EBX right by 1 bit, while preserving sign
// ModR/M in binary: 11 (direct mode) 111 (subop shift right arithmetic) 011 (dest EBX)
);
CHECK_TRACE_CONTENTS(
"run: operate on r/m32\n"
"run: r/m32 is EBX\n"
"run: subop: shift right by CL bits, while preserving sign\n"
// result: -2
"run: storing 0xfffffffe\n"
);
}
//:: shift right logical
:(code)
void test_shift_right_logical_r32_with_imm8() {
Reg[EBX].i = 26;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
" c1 eb 01 \n" // shift EBX right by 1 bit, while padding zeroes
// ModR/M in binary: 11 (direct mode) 101 (subop shift right logical) 011 (dest EBX)
);
CHECK_TRACE_CONTENTS(
"run: operate on r/m32\n"
"run: r/m32 is EBX\n"
"run: subop: shift right by CL bits, while padding zeroes\n"
"run: storing 0x0000000d\n"
);
}
:(before "End Op c1 Subops")
case 5: { // shift right r/m32 by CL, preserving sign
trace(Callstack_depth+1, "run") << "subop: shift right by CL bits, while padding zeroes" << end();
uint8_t count = next() & 0x1f;
// OF is only defined if count is 1
if (count == 1) {
bool msb = (*arg1 & 0x80000000) >> 1;
bool pnsb = (*arg1 & 0x40000000);
OF = (msb != pnsb);
}
uint32_t* uarg1 = reinterpret_cast<uint32_t*>(arg1);
*uarg1 = (*uarg1 >> count);
ZF = (*uarg1 == 0);
// result is always positive by definition
SF = false;
// CF undefined
trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *arg1 << end();
break;
}
:(code)
void test_shift_right_logical_odd_r32_with_imm8() {
Reg[EBX].i = 27;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
" c1 eb 01 \n" // shift EBX right by 1 bit, while padding zeroes
);
CHECK_TRACE_CONTENTS(
"run: operate on r/m32\n"
"run: r/m32 is EBX\n"
"run: subop: shift right by CL bits, while padding zeroes\n"
// result: 13
"run: storing 0x0000000d\n"
);
}
:(code)
void test_shift_right_logical_negative_r32_with_imm8() {
Reg[EBX].i = 0xfffffffd;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
" c1 eb 01 \n" // shift EBX right by 1 bit, while padding zeroes
// ModR/M in binary: 11 (direct mode) 101 (subop shift right logical) 011 (dest EBX)
);
CHECK_TRACE_CONTENTS(
"run: operate on r/m32\n"
"run: r/m32 is EBX\n"
"run: subop: shift right by CL bits, while padding zeroes\n"
"run: storing 0x7ffffffe\n"
);
}
//:: and
:(before "End Initialize Op Names")
put_new(Name, "25", "EAX = bitwise AND of imm32 with EAX (and)");
:(code)
void test_and_EAX_with_imm32() {
Reg[EAX].i = 0xff;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
" 25 0a 0b 0c 0d \n" // and 0x0d0c0b0a with EAX
);
CHECK_TRACE_CONTENTS(
"run: and imm32 0x0d0c0b0a with EAX\n"
"run: storing 0x0000000a\n"
);
}
:(before "End Single-Byte Opcodes")
case 0x25: { // and imm32 with EAX
// bitwise ops technically operate on unsigned numbers, but it makes no
// difference
const int32_t signed_arg2 = next32();
trace(Callstack_depth+1, "run") << "and imm32 0x" << HEXWORD << signed_arg2 << " with EAX" << end();
Reg[EAX].i &= signed_arg2;
trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << Reg[EAX].i << end();
SF = (Reg[EAX].i >> 31);
ZF = (Reg[EAX].i == 0);
CF = false;
OF = false;
trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
break;
}
//:
:(code)
void test_and_imm32_with_mem_at_rm32() {
Reg[EBX].i = 0x2000;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
" 81 23 0a 0b 0c 0d \n" // and 0x0d0c0b0a with *EBX
// ModR/M in binary: 00 (indirect mode) 100 (subop and) 011 (dest EBX)
"== data 0x2000\n"
"ff 00 00 00\n" // 0xff
);
CHECK_TRACE_CONTENTS(
"run: combine r/m32 with imm32\n"
"run: effective address is 0x00002000 (EBX)\n"
"run: imm32 is 0x0d0c0b0a\n"
"run: subop and\n"
"run: storing 0x0000000a\n"
);
}
:(before "End Op 81 Subops")
case 4: {
trace(Callstack_depth+1, "run") << "subop and" << end();
// bitwise ops technically operate on unsigned numbers, but it makes no
// difference
*signed_arg1 &= signed_arg2;
trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *signed_arg1 << end();
SF = (*signed_arg1 >> 31);
ZF = (*signed_arg1 == 0);
CF = false;
OF = false;
trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
break;
}
//:
:(code)
void test_and_imm32_with_r32() {
Reg[EBX].i = 0xff;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
" 81 e3 0a 0b 0c 0d \n" // and 0x0d0c0b0a with EBX
// ModR/M in binary: 11 (direct mode) 100 (subop and) 011 (dest EBX)
);
CHECK_TRACE_CONTENTS(
"run: combine r/m32 with imm32\n"
"run: r/m32 is EBX\n"
"run: imm32 is 0x0d0c0b0a\n"
"run: subop and\n"
"run: storing 0x0000000a\n"
);
}
//:: or
:(before "End Initialize Op Names")
put_new(Name, "0d", "EAX = bitwise OR of imm32 with EAX (or)");
:(code)
void test_or_EAX_with_imm32() {
Reg[EAX].i = 0xd0c0b0a0;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
" 0d 0a 0b 0c 0d \n" // or 0x0d0c0b0a with EAX
);
CHECK_TRACE_CONTENTS(
"run: or imm32 0x0d0c0b0a with EAX\n"
"run: storing 0xddccbbaa\n"
);
}
:(before "End Single-Byte Opcodes")
case 0x0d: { // or imm32 with EAX
// bitwise ops technically operate on unsigned numbers, but it makes no
// difference
const int32_t signed_arg2 = next32();
trace(Callstack_depth+1, "run") << "or imm32 0x" << HEXWORD << signed_arg2 << " with EAX" << end();
Reg[EAX].i |= signed_arg2;
trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << Reg[EAX].i << end();
SF = (Reg[EAX].i >> 31);
ZF = (Reg[EAX].i == 0);
CF = false;
OF = false;
trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
break;
}
//:
:(code)
void test_or_imm32_with_mem_at_rm32() {
Reg[EBX].i = 0x2000;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
" 81 0b 0a 0b 0c 0d \n" // or 0x0d0c0b0a with *EBX
// ModR/M in binary: 00 (indirect mode) 001 (subop or) 011 (dest EBX)
"== data 0x2000\n"
"a0 b0 c0 d0\n" // 0xd0c0b0a0
);
CHECK_TRACE_CONTENTS(
"run: combine r/m32 with imm32\n"
"run: effective address is 0x00002000 (EBX)\n"
"run: imm32 is 0x0d0c0b0a\n"
"run: subop or\n"
"run: storing 0xddccbbaa\n"
);
}
:(before "End Op 81 Subops")
case 1: {
trace(Callstack_depth+1, "run") << "subop or" << end();
// bitwise ops technically operate on unsigned numbers, but it makes no
// difference
*signed_arg1 |= signed_arg2;
trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *signed_arg1 << end();
SF = (*signed_arg1 >> 31);
ZF = (*signed_arg1 == 0);
CF = false;
OF = false;
trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
break;
}
:(code)
void test_or_imm32_with_r32() {
Reg[EBX].i = 0xd0c0b0a0;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
" 81 cb 0a 0b 0c 0d \n" // or 0x0d0c0b0a with EBX
// ModR/M in binary: 11 (direct mode) 001 (subop or) 011 (dest EBX)
);
CHECK_TRACE_CONTENTS(
"run: combine r/m32 with imm32\n"
"run: r/m32 is EBX\n"
"run: imm32 is 0x0d0c0b0a\n"
"run: subop or\n"
"run: storing 0xddccbbaa\n"
);
}
//:: xor
:(before "End Initialize Op Names")
put_new(Name, "35", "EAX = bitwise XOR of imm32 with EAX (xor)");
:(code)
void test_xor_EAX_with_imm32() {
Reg[EAX].i = 0xddccb0a0;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
" 35 0a 0b 0c 0d \n" // xor 0x0d0c0b0a with EAX
);
CHECK_TRACE_CONTENTS(
"run: xor imm32 0x0d0c0b0a with EAX\n"
"run: storing 0xd0c0bbaa\n"
);
}
:(before "End Single-Byte Opcodes")
case 0x35: { // xor imm32 with EAX
// bitwise ops technically operate on unsigned numbers, but it makes no
// difference
const int32_t signed_arg2 = next32();
trace(Callstack_depth+1, "run") << "xor imm32 0x" << HEXWORD << signed_arg2 << " with EAX" << end();
Reg[EAX].i ^= signed_arg2;
trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << Reg[EAX].i << end();
SF = (Reg[EAX].i >> 31);
ZF = (Reg[EAX].i == 0);
CF = false;
OF = false;
trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
break;
}
//:
:(code)
void test_xor_imm32_with_mem_at_rm32() {
Reg[EBX].i = 0x2000;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
" 81 33 0a 0b 0c 0d \n" // xor 0x0d0c0b0a with *EBX
// ModR/M in binary: 00 (indirect mode) 110 (subop xor) 011 (dest EBX)
"== data 0x2000\n"
"a0 b0 c0 d0\n" // 0xd0c0b0a0
);
CHECK_TRACE_CONTENTS(
"run: combine r/m32 with imm32\n"
"run: effective address is 0x00002000 (EBX)\n"
"run: imm32 is 0x0d0c0b0a\n"
"run: subop xor\n"
"run: storing 0xddccbbaa\n"
);
}
:(before "End Op 81 Subops")
case 6: {
trace(Callstack_depth+1, "run") << "subop xor" << end();
// bitwise ops technically operate on unsigned numbers, but it makes no
// difference
*signed_arg1 ^= signed_arg2;
trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *signed_arg1 << end();
SF = (*signed_arg1 >> 31);
ZF = (*signed_arg1 == 0);
CF = false;
OF = false;
trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
break;
}
:(code)
void test_xor_imm32_with_r32() {
Reg[EBX].i = 0xd0c0b0a0;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
" 81 f3 0a 0b 0c 0d \n" // xor 0x0d0c0b0a with EBX
// ModR/M in binary: 11 (direct mode) 110 (subop xor) 011 (dest EBX)
);
CHECK_TRACE_CONTENTS(
"run: combine r/m32 with imm32\n"
"run: r/m32 is EBX\n"
"run: imm32 is 0x0d0c0b0a\n"
"run: subop xor\n"
"run: storing 0xddccbbaa\n"
);
}
//:: compare (cmp)
:(before "End Initialize Op Names")
put_new(Name, "3d", "compare: set SF if EAX < imm32 (cmp)");
:(code)
void test_compare_EAX_with_imm32_greater() {
Reg[EAX].i = 0x0d0c0b0a;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
" 3d 07 0b 0c 0d \n" // compare EAX with 0x0d0c0b07
);
CHECK_TRACE_CONTENTS(
"run: compare EAX with imm32 0x0d0c0b07\n"
"run: SF=0; ZF=0; CF=0; OF=0\n"
);
}
:(before "End Single-Byte Opcodes")
case 0x3d: { // compare EAX with imm32
const int32_t signed_arg1 = Reg[EAX].i;
const int32_t signed_arg2 = next32();
trace(Callstack_depth+1, "run") << "compare EAX with imm32 0x" << HEXWORD << signed_arg2 << end();
const int32_t signed_difference = signed_arg1 - signed_arg2;
SF = (signed_difference < 0);
ZF = (signed_difference == 0);
const int64_t full_signed_difference = static_cast<int64_t>(signed_arg1) - signed_arg2;
OF = (signed_difference != full_signed_difference);
const uint32_t unsigned_arg1 = static_cast<uint32_t>(signed_arg1);
const uint32_t unsigned_arg2 = static_cast<uint32_t>(signed_arg2);
const uint32_t unsigned_difference = unsigned_arg1 - unsigned_arg2;
const uint64_t full_unsigned_difference = static_cast<uint64_t>(unsigned_arg1) - unsigned_arg2;
CF = (unsigned_difference != full_unsigned_difference);
trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
break;
}
:(code)
void test_compare_EAX_with_imm32_lesser_unsigned_and_signed() {
Reg[EAX].i = 0x0a0b0c07;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
" 3d 0d 0c 0b 0a \n" // compare EAX with imm32
);
CHECK_TRACE_CONTENTS(
"run: compare EAX with imm32 0x0a0b0c0d\n"
"run: SF=1; ZF=0; CF=1; OF=0\n"
);
}
void test_compare_EAX_with_imm32_lesser_unsigned_and_signed_due_to_overflow() {
Reg[EAX].i = INT32_MAX;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
" 3d 00 00 00 80\n" // compare EAX with INT32_MIN
);
CHECK_TRACE_CONTENTS(
"run: compare EAX with imm32 0x80000000\n"
"run: SF=1; ZF=0; CF=1; OF=1\n"
);
}
void test_compare_EAX_with_imm32_lesser_signed() {
Reg[EAX].i = -1;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
" 3d 01 00 00 00\n" // compare EAX with 1
);
CHECK_TRACE_CONTENTS(
"run: compare EAX with imm32 0x00000001\n"
"run: SF=1; ZF=0; CF=0; OF=0\n"
);
}
void test_compare_EAX_with_imm32_lesser_unsigned() {
Reg[EAX].i = 1;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
" 3d ff ff ff ff\n" // compare EAX with -1
);
CHECK_TRACE_CONTENTS(
"run: compare EAX with imm32 0xffffffff\n"
"run: SF=0; ZF=0; CF=1; OF=0\n"
);
}
void test_compare_EAX_with_imm32_equal() {
Reg[EAX].i = 0x0d0c0b0a;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
" 3d 0a 0b 0c 0d \n" // compare 0x0d0c0b0a with EAX
);
CHECK_TRACE_CONTENTS(
"run: compare EAX with imm32 0x0d0c0b0a\n"
"run: SF=0; ZF=1; CF=0; OF=0\n"
);
}
//:
void test_compare_imm32_with_r32_greater() {
Reg[EBX].i = 0x0d0c0b0a;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
" 81 fb 07 0b 0c 0d \n" // compare 0x0d0c0b07 with EBX
// ModR/M in binary: 11 (direct mode) 111 (subop compare) 011 (dest EBX)
);
CHECK_TRACE_CONTENTS(
"run: combine r/m32 with imm32\n"
"run: r/m32 is EBX\n"
"run: imm32 is 0x0d0c0b07\n"
"run: SF=0; ZF=0; CF=0; OF=0\n"
);
}
:(before "End Op 81 Subops")
case 7: {
trace(Callstack_depth+1, "run") << "subop compare" << end();
const int32_t tmp1 = *signed_arg1 - signed_arg2;
SF = (tmp1 < 0);
ZF = (tmp1 == 0);
const int64_t tmp2 = static_cast<int64_t>(*signed_arg1) - signed_arg2;
OF = (tmp1 != tmp2);
const uint32_t unsigned_arg1 = static_cast<uint32_t>(*signed_arg1);
const uint32_t unsigned_arg2 = static_cast<uint32_t>(signed_arg2);
const uint32_t tmp3 = unsigned_arg1 - unsigned_arg2;
const uint64_t tmp4 = static_cast<uint64_t>(unsigned_arg1) - unsigned_arg2;
CF = (tmp3 != tmp4);
trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
break;
}
:(code)
void test_compare_rm32_with_imm32_lesser_unsigned_and_signed() {
Reg[EAX].i = 0x0a0b0c07;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
" 81 f8 0d 0c 0b 0a \n" // compare EAX with imm32
// ModR/M in binary: 11 (direct mode) 111 (subop compare) 000 (dest EAX)
);
CHECK_TRACE_CONTENTS(
"run: combine r/m32 with imm32\n"
"run: r/m32 is EAX\n"
"run: imm32 is 0x0a0b0c0d\n"
"run: subop compare\n"
"run: SF=1; ZF=0; CF=1; OF=0\n"
);
}
void test_compare_rm32_with_imm32_lesser_unsigned_and_signed_due_to_overflow() {
Reg[EAX].i = INT32_MAX;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
" 81 f8 00 00 00 80\n" // compare EAX with INT32_MIN
// ModR/M in binary: 11 (direct mode) 111 (subop compare) 000 (dest EAX)
);
CHECK_TRACE_CONTENTS(
"run: combine r/m32 with imm32\n"
"run: r/m32 is EAX\n"
"run: imm32 is 0x80000000\n"
"run: subop compare\n"
"run: SF=1; ZF=0; CF=1; OF=1\n"
);
}
void test_compare_rm32_with_imm32_lesser_signed() {
Reg[EAX].i = -1;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
" 81 f8 01 00 00 00\n" // compare EAX with 1
// ModR/M in binary: 11 (direct mode) 111 (subop compare) 000 (dest EAX)
);
CHECK_TRACE_CONTENTS(
"run: combine r/m32 with imm32\n"
"run: r/m32 is EAX\n"
"run: imm32 is 0x00000001\n"
"run: subop compare\n"
"run: SF=1; ZF=0; CF=0; OF=0\n"
);
}
void test_compare_rm32_with_imm32_lesser_unsigned() {
Reg[EAX].i = 1;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
" 81 f8 ff ff ff ff\n" // compare EAX with -1
// ModR/M in binary: 11 (direct mode) 111 (subop compare) 000 (dest EAX)
);
CHECK_TRACE_CONTENTS(
"run: combine r/m32 with imm32\n"
"run: r/m32 is EAX\n"
"run: imm32 is 0xffffffff\n"
"run: subop compare\n"
"run: SF=0; ZF=0; CF=1; OF=0\n"
);
}
:(code)
void test_compare_imm32_with_r32_equal() {
Reg[EBX].i = 0x0d0c0b0a;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
" 81 fb 0a 0b 0c 0d \n" // compare 0x0d0c0b0a with EBX
// ModR/M in binary: 11 (direct mode) 111 (subop compare) 011 (dest EBX)
);
CHECK_TRACE_CONTENTS(
"run: combine r/m32 with imm32\n"
"run: r/m32 is EBX\n"
"run: imm32 is 0x0d0c0b0a\n"
"run: SF=0; ZF=1; CF=0; OF=0\n"
);
}
:(code)
void test_compare_imm32_with_mem_at_rm32_greater() {
Reg[EBX].i = 0x2000;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
" 81 3b 07 0b 0c 0d \n" // compare 0x0d0c0b07 with *EBX
// ModR/M in binary: 00 (indirect mode) 111 (subop compare) 011 (dest EBX)
"== data 0x2000\n"
"0a 0b 0c 0d\n" // 0x0d0c0b0a
);
CHECK_TRACE_CONTENTS(
"run: combine r/m32 with imm32\n"
"run: effective address is 0x00002000 (EBX)\n"
"run: imm32 is 0x0d0c0b07\n"
"run: SF=0; ZF=0; CF=0; OF=0\n"
);
}
:(code)
void test_compare_imm32_with_mem_at_rm32_lesser() {
Reg[EAX].i = 0x2000;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
" 81 38 0a 0b 0c 0d \n" // compare 0x0d0c0b0a with *EAX
// ModR/M in binary: 00 (indirect mode) 111 (subop compare) 000 (dest EAX)
"== data 0x2000\n"
"07 0b 0c 0d\n" // 0x0d0c0b07
);
CHECK_TRACE_CONTENTS(
"run: combine r/m32 with imm32\n"
"run: effective address is 0x00002000 (EAX)\n"
"run: imm32 is 0x0d0c0b0a\n"
"run: SF=1; ZF=0; CF=1; OF=0\n"
);
}
:(code)
void test_compare_imm32_with_mem_at_rm32_equal() {
Reg[EBX].i = 0x0d0c0b0a;
Reg[EBX].i = 0x2000;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
" 81 3b 0a 0b 0c 0d \n" // compare 0x0d0c0b0a with *EBX
// ModR/M in binary: 00 (indirect mode) 111 (subop compare) 011 (dest EBX)
"== data 0x2000\n"
"0a 0b 0c 0d\n" // 0x0d0c0b0a
);
CHECK_TRACE_CONTENTS(
"run: combine r/m32 with imm32\n"
"run: effective address is 0x00002000 (EBX)\n"
"run: imm32 is 0x0d0c0b0a\n"
"run: SF=0; ZF=1; CF=0; OF=0\n"
);
}
//:: copy (mov)
:(before "End Initialize Op Names")
// b8 defined earlier to copy imm32 to EAX
put_new(Name, "b9", "copy imm32 to ECX (mov)");
put_new(Name, "ba", "copy imm32 to EDX (mov)");
put_new(Name, "bb", "copy imm32 to EBX (mov)");
put_new(Name, "bc", "copy imm32 to ESP (mov)");
put_new(Name, "bd", "copy imm32 to EBP (mov)");
put_new(Name, "be", "copy imm32 to ESI (mov)");
put_new(Name, "bf", "copy imm32 to EDI (mov)");
:(code)
void test_copy_imm32_to_r32() {
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
" bb 0a 0b 0c 0d \n" // copy 0x0d0c0b0a to EBX
);
CHECK_TRACE_CONTENTS(
"run: copy imm32 0x0d0c0b0a to EBX\n"
);
}
:(before "End Single-Byte Opcodes")
case 0xb9:
case 0xba:
case 0xbb:
case 0xbc:
case 0xbd:
case 0xbe:
case 0xbf: { // copy imm32 to r32
const uint8_t rdest = op & 0x7;
const int32_t src = next32();
trace(Callstack_depth+1, "run") << "copy imm32 0x" << HEXWORD << src << " to " << rname(rdest) << end();
Reg[rdest].i = src;
break;
}
//:
:(before "End Initialize Op Names")
put_new(Name, "c7", "copy imm32 to rm32 with subop 0 (mov)");
:(code)
void test_copy_imm32_to_mem_at_rm32() {
Reg[EBX].i = 0x60;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
" c7 03 0a 0b 0c 0d \n" // copy 0x0d0c0b0a to *EBX
// ModR/M in binary: 00 (indirect mode) 000 (subop) 011 (dest EBX)
);
CHECK_TRACE_CONTENTS(
"run: copy imm32 to r/m32\n"
"run: effective address is 0x00000060 (EBX)\n"
"run: imm32 is 0x0d0c0b0a\n"
);
}
:(before "End Single-Byte Opcodes")
case 0xc7: { // copy imm32 to r32
const uint8_t modrm = next();
trace(Callstack_depth+1, "run") << "copy imm32 to r/m32" << end();
const uint8_t subop = (modrm>>3)&0x7; // middle 3 'reg opcode' bits
if (subop != 0) {
cerr << "unrecognized subop for opcode c7: " << NUM(subop) << " (only 0/copy currently implemented)\n";
exit(1);
}
int32_t* dest = effective_address(modrm);
const int32_t src = next32();
trace(Callstack_depth+1, "run") << "imm32 is 0x" << HEXWORD << src << end();
*dest = src; // Write multiple elements of vector<uint8_t> at once. Assumes sizeof(int) == 4 on the host as well.
break;
}
//:: push
:(before "End Initialize Op Names")
put_new(Name, "68", "push imm32 to stack (push)");
:(code)
void test_push_imm32() {
Mem.push_back(vma(0xbd000000)); // manually allocate memory
Reg[ESP].u = 0xbd000014;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
" 68 af 00 00 00 \n" // push *EAX to stack
);
CHECK_TRACE_CONTENTS(
"run: push imm32 0x000000af\n"
"run: ESP is now 0xbd000010\n"
"run: contents at ESP: 0x000000af\n"
);
}
:(before "End Single-Byte Opcodes")
case 0x68: {
const uint32_t val = static_cast<uint32_t>(next32());
trace(Callstack_depth+1, "run") << "push imm32 0x" << HEXWORD << val << end();
//? cerr << "push: " << val << " => " << Reg[ESP].u << '\n';
push(val);
trace(Callstack_depth+1, "run") << "ESP is now 0x" << HEXWORD << Reg[ESP].u << end();
trace(Callstack_depth+1, "run") << "contents at ESP: 0x" << HEXWORD << read_mem_u32(Reg[ESP].u) << end();
break;
}
//:: multiply
:(before "End Initialize Op Names")
put_new(Name, "69", "multiply rm32 by imm32 and store result in r32 (imul)");
:(code)
void test_multiply_imm32() {
Reg[EAX].i = 2;
Reg[EBX].i = 3;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
" 69 c3 04 00 00 00 \n" // EAX = EBX * 4
// ModR/M in binary: 11 (direct) 000 (dest EAX) 011 (src EBX)
);
CHECK_TRACE_CONTENTS(
"run: multiply r/m32 by 0x00000004 and store result in EAX\n"
"run: r/m32 is EBX\n"
"run: storing 0x0000000c\n"
);
}
:(before "End Single-Byte Opcodes")
case 0x69: {
const uint8_t modrm = next();
const uint8_t rdest = (modrm>>3)&0x7;
const int32_t val = next32();
trace(Callstack_depth+1, "run") << "multiply r/m32 by 0x" << HEXWORD << val << " and store result in " << rname(rdest) << end();
const int32_t* signed_arg1 = effective_address(modrm);
int32_t result = *signed_arg1 * val;
int64_t full_result = static_cast<int64_t>(*signed_arg1) * val;
OF = (result != full_result);
CF = OF;
trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
Reg[rdest].i = result;
trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << Reg[rdest].i << end();
break;
}