//: Since we're tagging arguments with their types, let's start checking these
//: argument types for each instruction.
void test_check_missing_imm8_argument() {
Hide_errors = true;
run(
"== code 0x1\n"
"cd\n" // interrupt ??
);
CHECK_TRACE_CONTENTS(
"error: 'cd' (software interrupt): missing imm8 argument\n"
);
}
:(before "Pack Operands(segment code)")
check_arguments(code);
if (trace_contains_errors()) return;
:(code)
void check_arguments(const segment& code) {
trace(3, "transform") << "-- check arguments" << end();
for (int i = 0; i < SIZE(code.lines); ++i) {
check_arguments(code.lines.at(i));
if (trace_contains_errors()) return; // stop at the first mal-formed instruction
}
}
void check_arguments(const line& inst) {
word op = preprocess_op(inst.words.at(0));
if (op.data == "0f") {
check_arguments_0f(inst);
return;
}
if (op.data == "f3") {
check_arguments_f3(inst);
return;
}
check_arguments(inst, op);
}
word preprocess_op(word/*copy*/ op) {
op.data = tolower(op.data.c_str());
// opcodes can't be negative
if (starts_with(op.data, "0x"))
op.data = op.data.substr(2);
if (SIZE(op.data) == 1)
op.data = string("0")+op.data;
return op;
}
void test_preprocess_op() {
word w1; w1.data = "0xf";
word w2; w2.data = "0f";
CHECK_EQ(preprocess_op(w1).data, preprocess_op(w2).data);
}
//: To check the arguments for an opcode, we'll track the permitted arguments
//: for each supported opcode in a bitvector. That way we can often compute the
//: 'received' argument bitvector for each instruction's arguments and compare
//: it with the 'expected' bitvector.
//:
//: The 'expected' and 'received' bitvectors can be different; the MODRM bit
//: in the 'expected' bitvector maps to multiple 'received' argument types in
//: an instruction. We deal in expected bitvectors throughout.
:(before "End Types")
enum expected_argument_type {
// start from the least significant bit
MODRM, // more complex, may also involve disp8 or disp32
SUBOP,
DISP8,
DISP16,
DISP32,
IMM8,
IMM32,
NUM_OPERAND_TYPES
};
:(before "End Globals")
vector<string> Operand_type_name;
map<string, expected_argument_type> Operand_type;
:(before "End One-time Setup")
init_op_types();
:(code)
void init_op_types() {
assert(NUM_OPERAND_TYPES <= /*bits in a uint8_t*/8);
Operand_type_name.resize(NUM_OPERAND_TYPES);
#define DEF(type) Operand_type_name.at(type) = tolower(#type), put(Operand_type, tolower(#type), type);
DEF(MODRM);
DEF(SUBOP);
DEF(DISP8);
DEF(DISP16);
DEF(DISP32);
DEF(IMM8);
DEF(IMM32);
#undef DEF
}
:(before "End Globals")
map</*op*/string, /*bitvector*/uint8_t> Permitted_arguments;
const uint8_t INVALID_OPERANDS = 0xff; // no instruction uses all the argument types
:(before "End One-time Setup")
init_permitted_arguments();
:(code)
void init_permitted_arguments() {
//// Class A: just op, no arguments
// halt
put(Permitted_arguments, "f4", 0x00);
// inc
put(Permitted_arguments, "40", 0x00);
put(Permitted_arguments, "41", 0x00);
put(Permitted_arguments, "42", 0x00);
put(Permitted_arguments, "43", 0x00);
put(Permitted_arguments, "44", 0x00);
put(Permitted_arguments, "45", 0x00);
put(Permitted_arguments, "46", 0x00);
put(Permitted_arguments, "47", 0x00);
// dec
put(Permitted_arguments, "48", 0x00);
put(Permitted_arguments, "49", 0x00);
put(Permitted_arguments, "4a", 0x00);
put(Permitted_arguments, "4b", 0x00);
put(Permitted_arguments, "4c", 0x00);
put(Permitted_arguments, "4d", 0x00);
put(Permitted_arguments, "4e", 0x00);
put(Permitted_arguments, "4f", 0x00);
// push
put(Permitted_arguments, "50", 0x00);
put(Permitted_arguments, "51", 0x00);
put(Permitted_arguments, "52", 0x00);
put(Permitted_arguments, "53", 0x00);
put(Permitted_arguments, "54", 0x00);
put(Permitted_arguments, "55", 0x00);
put(Permitted_arguments, "56", 0x00);
put(Permitted_arguments, "57", 0x00);
// pop
put(Permitted_arguments, "58", 0x00);
put(Permitted_arguments, "59", 0x00);
put(Permitted_arguments, "5a", 0x00);
put(Permitted_arguments, "5b", 0x00);
put(Permitted_arguments, "5c", 0x00);
put(Permitted_arguments, "5d", 0x00);
put(Permitted_arguments, "5e", 0x00);
put(Permitted_arguments, "5f", 0x00);
// sign-extend EAX into EDX
put(Permitted_arguments, "99", 0x00);
// return
put(Permitted_arguments, "c3", 0x00);
// enable/disable interrupts
// not really part of SubX; just needed in low-level boot.subx
put(Permitted_arguments, "fa", 0x00);
put(Permitted_arguments, "fb", 0x00);
//// Class B: just op and disp8
// imm32 imm8 disp32 |disp16 disp8 subop modrm
// 0 0 0 |0 1 0 0
// jump
put(Permitted_arguments, "eb", 0x04);
put(Permitted_arguments, "72", 0x04);
put(Permitted_arguments, "73", 0x04);
put(Permitted_arguments, "74", 0x04);
put(Permitted_arguments, "75", 0x04);
put(Permitted_arguments, "76", 0x04);
put(Permitted_arguments, "77", 0x04);
put(Permitted_arguments, "7c", 0x04);
put(Permitted_arguments, "7d", 0x04);
put(Permitted_arguments, "7e", 0x04);
put(Permitted_arguments, "7f", 0x04);
//// Class D: just op and disp32
// imm32 imm8 disp32 |disp16 disp8 subop modrm
// 0 0 1 |0 0 0 0
put(Permitted_arguments, "e8", 0x10); // call
put(Permitted_arguments, "e9", 0x10); // jump
//// Class E: just op and imm8
// imm32 imm8 disp32 |disp16 disp8 subop modrm
// 0 1 0 |0 0 0 0
put(Permitted_arguments, "cd", 0x20); // software interrupt
//// Class F: just op and imm32
// imm32 imm8 disp32 |disp16 disp8 subop modrm
// 1 0 0 |0 0 0 0
put(Permitted_arguments, "05", 0x40); // add
put(Permitted_arguments, "2d", 0x40); // subtract
put(Permitted_arguments, "25", 0x40); // and
put(Permitted_arguments, "0d", 0x40); // or
put(Permitted_arguments, "35", 0x40); // xor
put(Permitted_arguments, "3d", 0x40); // compare
put(Permitted_arguments, "68", 0x40); // push
// copy
put(Permitted_arguments, "b8", 0x40);
put(Permitted_arguments, "b9", 0x40);
put(Permitted_arguments, "ba", 0x40);
put(Permitted_arguments, "bb", 0x40);
put(Permitted_arguments, "bc", 0x40);
put(Permitted_arguments, "bd", 0x40);
put(Permitted_arguments, "be", 0x40);
put(Permitted_arguments, "bf", 0x40);
//// Class M: using ModR/M byte
// imm32 imm8 disp32 |disp16 disp8 subop modrm
// 0 0 0 |0 0 0 1
// add
put(Permitted_arguments, "01", 0x01);
put(Permitted_arguments, "03", 0x01);
// subtract
put(Permitted_arguments, "29", 0x01);
put(Permitted_arguments, "2b", 0x01);
// and
put(Permitted_arguments, "21", 0x01);
put(Permitted_arguments, "23", 0x01);
// or
put(Permitted_arguments, "09", 0x01);
put(Permitted_arguments, "0b", 0x01);
// xor
put(Permitted_arguments, "31", 0x01);
put(Permitted_arguments, "33", 0x01);
// compare
put(Permitted_arguments, "39", 0x01);
put(Permitted_arguments, "3b", 0x01);
// copy
put(Permitted_arguments, "88", 0x01);
put(Permitted_arguments, "89", 0x01);
put(Permitted_arguments, "8a", 0x01);
put(Permitted_arguments, "8b", 0x01);
// swap
put(Permitted_arguments, "87", 0x01);
// copy address (lea)
put(Permitted_arguments, "8d", 0x01);
//// Class N: op, ModR/M and subop (not r32)
// imm32 imm8 disp32 |disp16 disp8 subop modrm
// 0 0 0 |0 0 1 1
put(Permitted_arguments, "8f", 0x03); // pop
put(Permitted_arguments, "d3", 0x03); // shift
put(Permitted_arguments, "f7", 0x03); // test/not/mul/div
put(Permitted_arguments, "ff", 0x03); // jump/push/call
//// Class O: op, ModR/M, subop (not r32) and imm8
// imm32 imm8 disp32 |disp16 disp8 subop modrm
// 0 1 0 |0 0 1 1
put(Permitted_arguments, "c1", 0x23); // combine
put(Permitted_arguments, "c6", 0x23); // copy
//// Class P: op, ModR/M, subop (not r32) and imm32
// imm32 imm8 disp32 |disp16 disp8 subop modrm
// 1 0 0 |0 0 1 1
put(Permitted_arguments, "81", 0x43); // combine
put(Permitted_arguments, "c7", 0x43); // copy
//// Class Q: op, ModR/M and imm32
// imm32 imm8 disp32 |disp16 disp8 subop modrm
// 1 0 0 |0 0 0 1
put(Permitted_arguments, "69", 0x41); // multiply
// End Init Permitted Operands
}
#define HAS(bitvector, bit) ((bitvector) & (1 << (bit)))
#define SET(bitvector, bit) ((bitvector) | (1 << (bit)))
#define CLEAR(bitvector, bit) ((bitvector) & (~(1 << (bit))))
void check_arguments(const line& inst, const word& op) {
if (!is_hex_byte(op)) return;
uint8_t expected_bitvector = get(Permitted_arguments, op.data);
if (HAS(expected_bitvector, MODRM)) {
check_arguments_modrm(inst, op);
compare_bitvector_modrm(inst, expected_bitvector, maybe_name(op));
}
else {
compare_bitvector(inst, expected_bitvector, maybe_name(op));
}
}
//: Many instructions can be checked just by comparing bitvectors.
void compare_bitvector(const line& inst, uint8_t expected, const string& maybe_op_name) {
if (all_hex_bytes(inst) && has_arguments(inst)) return; // deliberately programming in raw hex; we'll raise a warning elsewhere
uint8_t bitvector = compute_expected_argument_bitvector(inst);
if (trace_contains_errors()) return; // duplicate argument type
if (bitvector == expected) return; // all good with this instruction
for (int i = 0; i < NUM_OPERAND_TYPES; ++i, bitvector >>= 1, expected >>= 1) {
//? cerr << "comparing " << HEXBYTE << NUM(bitvector) << " with " << NUM(expected) << '\n';
if ((bitvector & 0x1) == (expected & 0x1)) continue; // all good with this argument
const string& optype = Operand_type_name.at(i);
if ((bitvector & 0x1) > (expected & 0x1))
raise << "'" << to_string(inst) << "'" << maybe_op_name << ": unexpected " << optype << " argument\n" << end();
else
raise << "'" << to_string(inst) << "'" << maybe_op_name << ": missing " << optype << " argument\n" << end();
// continue giving all errors for a single instruction
}
// ignore settings in any unused bits
}
string maybe_name(const word& op) {
if (!is_hex_byte(op)) return "";
if (!contains_key(Name, op.data)) return "";
// strip stuff in parens from the name
const string& s = get(Name, op.data);
return " ("+s.substr(0, s.find(" ("))+')';
}
uint32_t compute_expected_argument_bitvector(const line& inst) {
set<string> arguments_found;
uint32_t bitvector = 0;
for (int i = /*skip op*/1; i < SIZE(inst.words); ++i) {
bitvector = bitvector | expected_bit_for_received_argument(inst.words.at(i), arguments_found, inst);
if (trace_contains_errors()) return INVALID_OPERANDS; // duplicate argument type
}
return bitvector;
}
bool has_arguments(const line& inst) {
return SIZE(inst.words) > first_argument(inst);
}
int first_argument(const line& inst) {
if (inst.words.at(0).data == "0f") return 2;
if (inst.words.at(0).data == "f2" || inst.words.at(0).data == "f3") {
if (inst.words.at(1).data == "0f")
return 3;
else
return 2;
}
return 1;
}
// Scan the metadata of 'w' and return the expected bit corresponding to any argument type.
// Also raise an error if metadata contains multiple argument types.
uint32_t expected_bit_for_received_argument(const word& w, set<string>& instruction_arguments, const line& inst) {
uint32_t bv = 0;
bool found = false;
for (int i = 0; i < SIZE(w.metadata); ++i) {
string/*copy*/ curr = w.metadata.at(i);
string expected_metadata = curr;
if (curr == "mod" || curr == "rm32" || curr == "r32" || curr == "xm32" || curr == "x32" || curr == "scale" || curr == "index" || curr == "base")
expected_metadata = "modrm";
else if (!contains_key(Operand_type, curr)) continue; // ignore unrecognized metadata
if (found) {
raise << "'" << w.original << "' has conflicting argument types; it should have only one\n" << end();
return INVALID_OPERANDS;
}
if (instruction_arguments.find(curr) != instruction_arguments.end()) {
raise << "'" << to_string(inst) << "': duplicate " << curr << " argument\n" << end();
return INVALID_OPERANDS;
}
instruction_arguments.insert(curr);
bv = (1 << get(Operand_type, expected_metadata));
found = true;
}
return bv;
}
void test_conflicting_argument_type() {
Hide_errors = true;
run(
"== code 0x1\n"
"cd/software-interrupt 80/imm8/imm32\n"
);
CHECK_TRACE_CONTENTS(
"error: '80/imm8/imm32' has conflicting argument types; it should have only one\n"
);
}
//: Instructions computing effective addresses have more complex rules, so
//: we'll hard-code a common set of instruction-decoding rules.
void test_check_missing_mod_argument() {
Hide_errors = true;
run(
"== code 0x1\n"
"81 0/add/subop 3/rm32/ebx 1/imm32\n"
);
CHECK_TRACE_CONTENTS(
"error: '81 0/add/subop 3/rm32/ebx 1/imm32' (combine rm32 with imm32 based on subop): missing mod argument\n"
);
}
void check_arguments_modrm(const line& inst, const word& op) {
if (all_hex_bytes(inst)) return; // deliberately programming in raw hex; we'll raise a warning elsewhere
check_argument_metadata_present(inst, "mod", op);
if (!has_argument_metadata(inst, "rm32") && !has_argument_metadata(inst, "xm32"))
raise << "'" << to_string(inst) << "'" << maybe_name(op) << ": missing rm32 (or xm32) argument\n" << end();
// no check for r32; some instructions don't use it; just assume it's 0 if missing
if (op.data == "81" || op.data == "8f" || op.data == "f7" || op.data == "ff") { // keep sync'd with 'help subop'
check_argument_metadata_present(inst, "subop", op);
check_argument_metadata_absent(inst, "r32", op, "should be replaced by subop");
check_argument_metadata_absent(inst, "x32", op, "should be replaced by subop");
}
if (trace_contains_errors()) return;
if (metadata_m32(inst).data != "4") return;
// SIB byte checks
uint8_t mod = hex_byte(metadata(inst, "mod").data);
if (mod != /*direct*/3) {
check_argument_metadata_present(inst, "base", op);
check_argument_metadata_present(inst, "index", op); // otherwise why go to SIB?
}
else {
check_argument_metadata_absent(inst, "base", op, "direct mode");
check_argument_metadata_absent(inst, "index", op, "direct mode");
}
// no check for scale; 0 (2**0 = 1) by default
}
word metadata_m32(const line& inst) {
for (int i = 0; i < SIZE(inst.words); ++i)
if (has_argument_metadata(inst.words.at(i), "rm32") || has_argument_metadata(inst.words.at(i), "xm32"))
return inst.words.at(i);
assert(false);
}
// same as compare_bitvector, with one additional exception for modrm-based
// instructions: they may use an extra displacement on occasion
void compare_bitvector_modrm(const line& inst, uint8_t expected, const string& maybe_op_name) {
if (all_hex_bytes(inst) && has_arguments(inst)) return; // deliberately programming in raw hex; we'll raise a warning elsewhere
uint8_t bitvector = compute_expected_argument_bitvector(inst);
if (trace_contains_errors()) return; // duplicate argument type
// update 'expected' bitvector for the additional exception
if (has_argument_metadata(inst, "mod")) {
int32_t mod = parse_int(metadata(inst, "mod").data);
switch (mod) {
case 0:
if (has_argument_metadata(inst, "rm32") && parse_int(metadata(inst, "rm32").data) == 5)
expected |= (1<<DISP32);
break;
case 1:
expected |= (1<<DISP8);
break;
case 2:
expected |= (1<<DISP32);
break;
}
}
if (bitvector == expected) return; // all good with this instruction
for (int i = 0; i < NUM_OPERAND_TYPES; ++i, bitvector >>= 1, expected >>= 1) {
//? cerr << "comparing for modrm " << HEXBYTE << NUM(bitvector) << " with " << NUM(expected) << '\n';
if ((bitvector & 0x1) == (expected & 0x1)) continue; // all good with this argument
const string& optype = Operand_type_name.at(i);
if ((bitvector & 0x1) > (expected & 0x1))
raise << "'" << to_string(inst) << "'" << maybe_op_name << ": unexpected " << optype << " argument\n" << end();
else
raise << "'" << to_string(inst) << "'" << maybe_op_name << ": missing " << optype << " argument\n" << end();
// continue giving all errors for a single instruction
}
// ignore settings in any unused bits
}
void check_argument_metadata_present(const line& inst, const string& type, const word& op) {
if (!has_argument_metadata(inst, type))
raise << "'" << to_string(inst) << "'" << maybe_name(op) << ": missing " << type << " argument\n" << end();
}
void check_argument_metadata_absent(const line& inst, const string& type, const word& op, const string& msg) {
if (has_argument_metadata(inst, type))
raise << "'" << to_string(inst) << "'" << maybe_name(op) << ": unexpected " << type << " argument (" << msg << ")\n" << end();
}
void test_modrm_with_displacement() {
Reg[EAX].u = 0x1;
transform(
"== code 0x1\n"
// just avoid null pointer
"8b/copy 1/mod/lookup+disp8 0/rm32/EAX 2/r32/EDX 4/disp8\n" // copy *(EAX+4) to EDX
);
CHECK_TRACE_COUNT("error", 0);
}
void test_check_missing_disp8() {
Hide_errors = true;
transform(
"== code 0x1\n"
"89/copy 1/mod/lookup+disp8 0/rm32/EAX 1/r32/ECX\n" // missing disp8
);
CHECK_TRACE_CONTENTS(
"error: '89/copy 1/mod/lookup+disp8 0/rm32/EAX 1/r32/ECX' (copy r32 to rm32): missing disp8 argument\n"
);
}
void test_check_missing_disp32() {
Hide_errors = true;
transform(
"== code 0x1\n"
"8b/copy 0/mod/indirect 5/rm32/.disp32 2/r32/EDX\n" // missing disp32
);
CHECK_TRACE_CONTENTS(
"error: '8b/copy 0/mod/indirect 5/rm32/.disp32 2/r32/EDX' (copy rm32 to r32): missing disp32 argument\n"
);
}
void test_conflicting_arguments_in_modrm_instruction() {
Hide_errors = true;
run(
"== code 0x1\n"
"01/add 0/mod 3/mod\n"
);
CHECK_TRACE_CONTENTS(
"error: '01/add 0/mod 3/mod' has conflicting mod arguments\n"
);
}
void test_conflicting_argument_type_modrm() {
Hide_errors = true;
run(
"== code 0x1\n"
"01/add 0/mod 3/rm32/r32\n"
);
CHECK_TRACE_CONTENTS(
"error: '3/rm32/r32' has conflicting argument types; it should have only one\n"
);
}
void test_check_missing_rm32_argument() {
Hide_errors = true;
run(
"== code 0x1\n"
"81 0/add/subop 0/mod 1/imm32\n"
);
CHECK_TRACE_CONTENTS(
"error: '81 0/add/subop 0/mod 1/imm32' (combine rm32 with imm32 based on subop): missing rm32 (or xm32) argument\n"
);
}
void test_check_missing_subop_argument() {
Hide_errors = true;
run(
"== code 0x1\n"
"81 0/mod 3/rm32/ebx 1/imm32\n"
);
CHECK_TRACE_CONTENTS(
"error: '81 0/mod 3/rm32/ebx 1/imm32' (combine rm32 with imm32 based on subop): missing subop argument\n"
);
}
void test_check_missing_base_argument() {
Hide_errors = true;
run(
"== code 0x1\n"
"81 0/add/subop 0/mod/indirect 4/rm32/use-sib 1/imm32\n"
);
CHECK_TRACE_CONTENTS(
"error: '81 0/add/subop 0/mod/indirect 4/rm32/use-sib 1/imm32' (combine rm32 with imm32 based on subop): missing base argument\n"
);
}
void test_check_missing_index_argument() {
Hide_errors = true;
run(
"== code 0x1\n"
"81 0/add/subop 0/mod/indirect 4/rm32/use-sib 0/base 1/imm32\n"
);
CHECK_TRACE_CONTENTS(
"error: '81 0/add/subop 0/mod/indirect 4/rm32/use-sib 0/base 1/imm32' (combine rm32 with imm32 based on subop): missing index argument\n"
);
}
void test_check_missing_base_argument_2() {
Hide_errors = true;
run(
"== code 0x1\n"
"81 0/add/subop 0/mod/indirect 4/rm32/use-sib 2/index 3/scale 1/imm32\n"
);
CHECK_TRACE_CONTENTS(
"error: '81 0/add/subop 0/mod/indirect 4/rm32/use-sib 2/index 3/scale 1/imm32' (combine rm32 with imm32 based on subop): missing base argument\n"
);
}
void test_check_extra_displacement() {
Hide_errors = true;
run(
"== code 0x1\n"
"89/copy 0/mod/indirect 0/rm32/EAX 1/r32/ECX 4/disp8\n"
);
CHECK_TRACE_CONTENTS(
"error: '89/copy 0/mod/indirect 0/rm32/EAX 1/r32/ECX 4/disp8' (copy r32 to rm32): unexpected disp8 argument\n"
);
}
void test_check_duplicate_argument() {
Hide_errors = true;
run(
"== code 0x1\n"
"89/copy 0/mod/indirect 0/rm32/EAX 1/r32/ECX 1/r32\n"
);
CHECK_TRACE_CONTENTS(
"error: '89/copy 0/mod/indirect 0/rm32/EAX 1/r32/ECX 1/r32': duplicate r32 argument\n"
);
}
void test_check_base_argument_not_needed_in_direct_mode() {
run(
"== code 0x1\n"
"81 0/add/subop 3/mod/indirect 4/rm32/use-sib 1/imm32\n"
);
CHECK_TRACE_COUNT("error", 0);
}
void test_extra_modrm() {
Hide_errors = true;
run(
"== code 0x1\n"
"59/pop-to-ECX 3/mod/direct 1/rm32/ECX 4/r32/ESP\n"
);
CHECK_TRACE_CONTENTS(
"error: '59/pop-to-ECX 3/mod/direct 1/rm32/ECX 4/r32/ESP' (pop top of stack to ECX): unexpected modrm argument\n"
);
}
//:: similarly handle multi-byte opcodes
void check_arguments_0f(const line& inst) {
assert(inst.words.at(0).data == "0f");
if (SIZE(inst.words) == 1) {
raise << "opcode '0f' requires a second opcode\n" << end();
return;
}
word op = preprocess_op(inst.words.at(1));
if (!contains_key(Name_0f, op.data)) {
raise << "unknown 2-byte opcode '0f " << op.data << "'\n" << end();
return;
}
check_arguments_0f(inst, op);
}
void check_arguments_f3(const line& inst) {
assert(inst.words.at(0).data == "f3");
if (SIZE(inst.words) == 1) {
raise << "opcode 'f3' requires a second opcode\n" << end();
return;
}
word op = preprocess_op(inst.words.at(1));
if (op.data == "0f") {
word op2 = preprocess_op(inst.words.at(2));
check_arguments_f3_0f(inst, op2);
return;
}
if (!contains_key(Name_f3, op.data)) {
raise << "unknown 2-byte opcode 'f3 " << op.data << "'\n" << end();
return;
}
check_arguments_f3(inst, op);
}
void test_check_missing_disp32_argument() {
Hide_errors = true;
run(
"== code 0x1\n"
" 0f 84 # jmp if ZF to ??\n"
);
CHECK_TRACE_CONTENTS(
"error: '0f 84' (jump disp32 bytes away if equal, if ZF is set): missing disp32 argument\n"
);
}
void test_0f_opcode_with_modrm() {
transform(
"== code 0x1\n"
"0f af/multiply 2/mod/*+disp32 5/rm32/ebp 8/disp32 0/r32\n"
);
CHECK_TRACE_DOESNT_CONTAIN_ERRORS();
}
:(before "End Globals")
map</*op*/string, /*bitvector*/uint8_t> Permitted_arguments_0f;
:(before "End Init Permitted Operands")
//// Class D: just op and disp32
// imm32 imm8 disp32 |disp16 disp8 subop modrm
// 0 0 1 |0 0 0 0
put_new(Permitted_arguments_0f, "80", 0x10);
put_new(Permitted_arguments_0f, "82", 0x10);
put_new(Permitted_arguments_0f, "83", 0x10);
put_new(Permitted_arguments_0f, "84", 0x10);
put_new(Permitted_arguments_0f, "85", 0x10);
put_new(Permitted_arguments_0f, "86", 0x10);
put_new(Permitted_arguments_0f, "87", 0x10);
put_new(Permitted_arguments_0f, "8c", 0x10);
put_new(Permitted_arguments_0f, "8d", 0x10);
put_new(Permitted_arguments_0f, "8e", 0x10);
put_new(Permitted_arguments_0f, "8f", 0x10);
//// Class M: using ModR/M byte
// imm32 imm8 disp32 |disp16 disp8 subop modrm
// 0 0 0 |0 0 0 1
put_new(Permitted_arguments_0f, "2f", 0x01); // compare floats
put_new(Permitted_arguments_0f, "af", 0x01); // multiply ints
// setcc
put_new(Permitted_arguments_0f, "92", 0x01);
put_new(Permitted_arguments_0f, "93", 0x01);
put_new(Permitted_arguments_0f, "94", 0x01);
put_new(Permitted_arguments_0f, "95", 0x01);
put_new(Permitted_arguments_0f, "96", 0x01);
put_new(Permitted_arguments_0f, "97", 0x01);
put_new(Permitted_arguments_0f, "9c", 0x01);
put_new(Permitted_arguments_0f, "9d", 0x01);
put_new(Permitted_arguments_0f, "9e", 0x01);
put_new(Permitted_arguments_0f, "9f", 0x01);
:(before "End Globals")
map</*op*/string, /*bitvector*/uint8_t> Permitted_arguments_f3;
map</*op*/string, /*bitvector*/uint8_t> Permitted_arguments_f3_0f;
:(before "End Init Permitted Operands")
//// Class M: using ModR/M byte
// imm32 imm8 disp32 |disp16 disp8 subop modrm
// 0 0 0 |0 0 0 1
put_new(Permitted_arguments_f3_0f, "10", 0x01); // copy xm32 to x32
put_new(Permitted_arguments_f3_0f, "11", 0x01); // copy x32 to xm32
put_new(Permitted_arguments_f3_0f, "2a", 0x01); // convert-to-float
put_new(Permitted_arguments_f3_0f, "2c", 0x01); // truncate-to-int
put_new(Permitted_arguments_f3_0f, "2d", 0x01); // convert-to-int
put_new(Permitted_arguments_f3_0f, "51", 0x01); // square root
put_new(Permitted_arguments_f3_0f, "52", 0x01); // inverse square root
put_new(Permitted_arguments_f3_0f, "53", 0x01); // reciprocal
put_new(Permitted_arguments_f3_0f, "58", 0x01); // add floats
put_new(Permitted_arguments_f3_0f, "59", 0x01); // multiply floats
put_new(Permitted_arguments_f3_0f, "5c", 0x01); // subtract floats
put_new(Permitted_arguments_f3_0f, "5d", 0x01); // minimum of floats
put_new(Permitted_arguments_f3_0f, "5e", 0x01); // divide floats
put_new(Permitted_arguments_f3_0f, "5f", 0x01); // maximum of floats
:(code)
void check_arguments_0f(const line& inst, const word& op) {
uint8_t expected_bitvector = get(Permitted_arguments_0f, op.data);
if (HAS(expected_bitvector, MODRM)) {
check_arguments_modrm(inst, op);
compare_bitvector_modrm(inst, expected_bitvector, maybe_name_0f(op));
}
else {
compare_bitvector(inst, CLEAR(expected_bitvector, MODRM), maybe_name_0f(op));
}
}
void check_arguments_f3(const line& inst, const word& op) {
uint8_t expected_bitvector = get(Permitted_arguments_f3, op.data);
if (HAS(expected_bitvector, MODRM)) {
check_arguments_modrm(inst, op);
compare_bitvector_modrm(inst, expected_bitvector, maybe_name_f3(op));
}
else {
compare_bitvector(inst, CLEAR(expected_bitvector, MODRM), maybe_name_f3(op));
}
}
void check_arguments_f3_0f(const line& inst, const word& op) {
uint8_t expected_bitvector = get(Permitted_arguments_f3_0f, op.data);
if (HAS(expected_bitvector, MODRM)) {
check_arguments_modrm(inst, op);
compare_bitvector_modrm(inst, expected_bitvector, maybe_name_f3_0f(op));
}
else {
compare_bitvector(inst, CLEAR(expected_bitvector, MODRM), maybe_name_f3_0f(op));
}
}
string maybe_name_0f(const word& op) {
if (!is_hex_byte(op)) return "";
if (!contains_key(Name_0f, op.data)) return "";
// strip stuff in parens from the name
const string& s = get(Name_0f, op.data);
return " ("+s.substr(0, s.find(" ("))+')';
}
string maybe_name_f3(const word& op) {
if (!is_hex_byte(op)) return "";
if (!contains_key(Name_f3, op.data)) return "";
// strip stuff in parens from the name
const string& s = get(Name_f3, op.data);
return " ("+s.substr(0, s.find(" ("))+')';
}
string maybe_name_f3_0f(const word& op) {
if (!is_hex_byte(op)) return "";
if (!contains_key(Name_f3_0f, op.data)) return "";
// strip stuff in parens from the name
const string& s = get(Name_f3_0f, op.data);
return " ("+s.substr(0, s.find(" ("))+')';
}
string tolower(const char* s) {
ostringstream out;
for (/*nada*/; *s; ++s)
out << static_cast<char>(tolower(*s));
return out.str();
}
#undef HAS
#undef SET
#undef CLEAR
:(before "End Includes")
#include<cctype>