//: operating directly on a register
:(scenario add_r32_to_r32)
% Reg[0].i = 0x10;
% Reg[3].i = 1;
# op ModR/M SIB displacement immediate
01 d8 # add EBX to EAX
# ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX)
+run: add EBX to r/m32
+run: r/m32 is EAX
+run: storing 0x00000011
:(before "End Single-Byte Opcodes")
case 0x01: { // add r32 to r/m32
uint8_t modrm = next();
uint8_t arg2 = (modrm>>3)&0x7;
trace(2, "run") << "add " << rname(arg2) << " to r/m32" << end();
int32_t* arg1 = effective_address(modrm);
BINARY_ARITHMETIC_OP(+, *arg1, Reg[arg2].i);
break;
}
:(code)
// Implement tables 2-2 and 2-3 in the Intel manual, Volume 2.
// We return a pointer so that instructions can write to multiple bytes in
// 'Mem' at once.
int32_t* effective_address(uint8_t modrm) {
uint8_t mod = (modrm>>6);
// ignore middle 3 'reg opcode' bits
uint8_t rm = modrm & 0x7;
uint32_t addr = 0;
switch (mod) {
case 3:
// mod 3 is just register direct addressing
trace(2, "run") << "r/m32 is " << rname(rm) << end();
return &Reg[rm].i;
// End Mod Special-cases(addr)
default:
cerr << "unrecognized mod bits: " << NUM(mod) << '\n';
exit(1);
}
//: other mods are indirect, and they'll set addr appropriately
assert(addr > 0);
assert(addr + sizeof(int32_t) <= Mem.size());
return reinterpret_cast<int32_t*>(&Mem.at(addr)); // rely on the host itself being in little-endian order
}
//:: subtract
:(scenario subtract_r32_from_r32)
% Reg[0].i = 10;
% Reg[3].i = 1;
# op ModR/M SIB displacement immediate
29 d8 # subtract EBX from EAX
# ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX)
+run: subtract EBX from r/m32
+run: r/m32 is EAX
+run: storing 0x00000009
:(before "End Single-Byte Opcodes")
case 0x29: { // subtract r32 from r/m32
uint8_t modrm = next();
uint8_t arg2 = (modrm>>3)&0x7;
trace(2, "run") << "subtract " << rname(arg2) << " from r/m32" << end();
int32_t* arg1 = effective_address(modrm);
BINARY_ARITHMETIC_OP(-, *arg1, Reg[arg2].i);
break;
}
//:: and
:(scenario and_r32_with_r32)
% Reg[0].i = 0x0a0b0c0d;
% Reg[3].i = 0x000000ff;
# op ModR/M SIB displacement immediate
21 d8 # and EBX with destination EAX
# ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX)
+run: and EBX with r/m32
+run: r/m32 is EAX
+run: storing 0x0000000d
:(before "End Single-Byte Opcodes")
case 0x21: { // and r32 with r/m32
uint8_t modrm = next();
uint8_t arg2 = (modrm>>3)&0x7;
trace(2, "run") << "and " << rname(arg2) << " with r/m32" << end();
int32_t* arg1 = effective_address(modrm);
BINARY_BITWISE_OP(&, *arg1, Reg[arg2].u);
break;
}
//:: or
:(scenario or_r32_with_r32)
% Reg[0].i = 0x0a0b0c0d;
% Reg[3].i = 0xa0b0c0d0;
# op ModR/M SIB displacement immediate
09 d8 # or EBX with destination EAX
# ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX)
+run: or EBX with r/m32
+run: r/m32 is EAX
+run: storing 0xaabbccdd
:(before "End Single-Byte Opcodes")
case 0x09: { // or r32 with r/m32
uint8_t modrm = next();
uint8_t arg2 = (modrm>>3)&0x7;
trace(2, "run") << "or " << rname(arg2) << " with r/m32" << end();
int32_t* arg1 = effective_address(modrm);
BINARY_BITWISE_OP(|, *arg1, Reg[arg2].u);
break;
}
//:: xor
:(scenario xor_r32_with_r32)
% Reg[0].i = 0x0a0b0c0d;
% Reg[3].i = 0xaabbc0d0;
# op ModR/M SIB displacement immediate
31 d8 # xor EBX with destination EAX
# ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX)
+run: xor EBX with r/m32
+run: r/m32 is EAX
+run: storing 0xa0b0ccdd
:(before "End Single-Byte Opcodes")
case 0x31: { // xor r32 with r/m32
uint8_t modrm = next();
uint8_t arg2 = (modrm>>3)&0x7;
trace(2, "run") << "xor " << rname(arg2) << " with r/m32" << end();
int32_t* arg1 = effective_address(modrm);
BINARY_BITWISE_OP(^, *arg1, Reg[arg2].u);
break;
}
//:: not
:(scenario not_r32)
% Reg[3].i = 0x0f0f00ff;
# op ModR/M SIB displacement immediate
f7 c3 # not EBX
# ModR/M in binary: 11 (direct mode) 000 (unused) 011 (dest EBX)
+run: 'not' of r/m32
+run: r/m32 is EBX
+run: storing 0xf0f0ff00
:(before "End Single-Byte Opcodes")
case 0xf7: { // xor r32 with r/m32
uint8_t modrm = next();
trace(2, "run") << "'not' of r/m32" << end();
int32_t* arg1 = effective_address(modrm);
*arg1 = ~(*arg1);
trace(2, "run") << "storing 0x" << HEXWORD << *arg1 << end();
SF = (*arg1 >> 31);
ZF = (*arg1 == 0);
OF = false;
break;
}
//:: compare (cmp)
:(scenario compare_r32_with_r32_greater)
% Reg[0].i = 0x0a0b0c0d;
% Reg[3].i = 0x0a0b0c07;
# op ModR/M SIB displacement immediate
39 d8 # compare EBX with EAX
# ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX)
+run: compare EBX with r/m32
+run: r/m32 is EAX
+run: SF=0; ZF=0; OF=0
:(before "End Single-Byte Opcodes")
case 0x39: { // set SF if r/m32 < r32
uint8_t modrm = next();
uint8_t reg2 = (modrm>>3)&0x7;
trace(2, "run") << "compare " << rname(reg2) << " with r/m32" << end();
int32_t* arg1 = effective_address(modrm);
int32_t arg2 = Reg[reg2].i;
int32_t tmp1 = *arg1 - arg2;
SF = (tmp1 < 0);
ZF = (tmp1 == 0);
int64_t tmp2 = *arg1 - arg2;
OF = (tmp1 != tmp2);
trace(2, "run") << "SF=" << SF << "; ZF=" << ZF << "; OF=" << OF << end();
break;
}
:(scenario compare_r32_with_r32_lesser)
% Reg[0].i = 0x0a0b0c07;
% Reg[3].i = 0x0a0b0c0d;
# op ModR/M SIB displacement immediate
39 d8 # compare EBX with EAX
# ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX)
+run: compare EBX with r/m32
+run: r/m32 is EAX
+run: SF=1; ZF=0; OF=0
:(scenario compare_r32_with_r32_equal)
% Reg[0].i = 0x0a0b0c0d;
% Reg[3].i = 0x0a0b0c0d;
# op ModR/M SIB displacement immediate
39 d8 # compare EBX with EAX
# ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX)
+run: compare EBX with r/m32
+run: r/m32 is EAX
+run: SF=0; ZF=1; OF=0
//:: copy (mov)
:(scenario copy_r32_to_r32)
% Reg[3].i = 0xaf;
# op ModR/M SIB displacement immediate
89 d8 # copy EBX to EAX
# ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX)
+run: copy EBX to r/m32
+run: r/m32 is EAX
+run: storing 0x000000af
:(before "End Single-Byte Opcodes")
case 0x89: { // copy r32 to r/m32
uint8_t modrm = next();
uint8_t reg2 = (modrm>>3)&0x7;
trace(2, "run") << "copy " << rname(reg2) << " to r/m32" << end();
int32_t* arg1 = effective_address(modrm);
*arg1 = Reg[reg2].i;
trace(2, "run") << "storing 0x" << HEXWORD << *arg1 << end();
break;
}
//:: xchg
:(scenario xchg_r32_with_r32)
% Reg[3].i = 0xaf;
% Reg[0].i = 0x2e;
# op ModR/M SIB displacement immediate
87 d8 # exchange EBX with EAX
# ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX)
+run: exchange EBX with r/m32
+run: r/m32 is EAX
+run: storing 0x000000af in r/m32
+run: storing 0x0000002e in EBX
:(before "End Single-Byte Opcodes")
case 0x87: { // exchange r32 with r/m32
uint8_t modrm = next();
uint8_t reg2 = (modrm>>3)&0x7;
trace(2, "run") << "exchange " << rname(reg2) << " with r/m32" << end();
int32_t* arg1 = effective_address(modrm);
int32_t tmp = *arg1;
*arg1 = Reg[reg2].i;
Reg[reg2].i = tmp;
trace(2, "run") << "storing 0x" << HEXWORD << *arg1 << " in r/m32" << end();
trace(2, "run") << "storing 0x" << HEXWORD << Reg[reg2].i << " in " << rname(reg2) << end();
break;
}
//:: push
:(scenario push_r32)
% Reg[ESP].u = 0x64;
% Reg[EBX].i = 0x0000000a;
# op ModR/M SIB displacement immediate
53 # push EBX to stack
+run: push EBX
+run: decrementing ESP to 0x00000060
+run: pushing value 0x0000000a
:(before "End Single-Byte Opcodes")
case 0x50:
case 0x51:
case 0x52:
case 0x53:
case 0x54:
case 0x55:
case 0x56:
case 0x57: { // push r32 to stack
uint8_t reg = op & 0x7;
trace(2, "run") << "push " << rname(reg) << end();
push(Reg[reg].u);
break;
}
:(code)
void push(uint32_t val) {
Reg[ESP].u -= 4;
trace(2, "run") << "decrementing ESP to 0x" << HEXWORD << Reg[ESP].u << end();
trace(2, "run") << "pushing value 0x" << HEXWORD << val << end();
*reinterpret_cast<uint32_t*>(&Mem.at(Reg[ESP].u)) = val;
}
//:: pop
:(scenario pop_r32)
% Reg[ESP].u = 0x60;
% SET_WORD_IN_MEM(0x60, 0x0000000a);
# op ModR/M SIB displacement immediate
5b # pop stack to EBX
+run: pop into EBX
+run: popping value 0x0000000a
+run: incrementing ESP to 0x00000064
:(before "End Single-Byte Opcodes")
case 0x58:
case 0x59:
case 0x5a:
case 0x5b:
case 0x5c:
case 0x5d:
case 0x5e:
case 0x5f: { // pop stack into r32
uint8_t reg = op & 0x7;
trace(2, "run") << "pop into " << rname(reg) << end();
Reg[reg].u = pop();
break;
}
:(code)
uint32_t pop() {
uint32_t result = *reinterpret_cast<uint32_t*>(&Mem.at(Reg[ESP].u));
trace(2, "run") << "popping value 0x" << HEXWORD << result << end();
Reg[ESP].u += 4;
trace(2, "run") << "incrementing ESP to 0x" << HEXWORD << Reg[ESP].u << end();
return result;
}