//: operating on memory at the address provided by some register
:(scenario add_r32_to_mem_at_r32)
% Reg[3].i = 0x10;
% Reg[0].i = 0x60;
% SET_WORD_IN_MEM(0x60, 1);
# op ModR/M SIB displacement immediate
01 18 # add EBX (reg 3) to *EAX (reg 0)
+run: add reg 3 to effective address
+run: effective address is mem at address 0x60 (reg 0)
+run: storing 0x00000011
:(before "End Mod Special-cases")
case 0:
// mod 0 is usually indirect addressing
switch (rm) {
default:
trace(2, "run") << "effective address is mem at address 0x" << std::hex << Reg[rm].u << " (reg " << NUM(rm) << ")" << end();
assert(Reg[rm].u + sizeof(int32_t) <= Mem.size());
result = reinterpret_cast<int32_t*>(&Mem.at(Reg[rm].u)); // rely on the host itself being in little-endian order
break;
// End Mod 0 Special-cases
}
break;
//:
:(scenario add_mem_at_r32_to_r32)
% Reg[0].i = 0x60;
% Reg[3].i = 0x10;
% SET_WORD_IN_MEM(0x60, 1);
# op ModR/M SIB displacement immediate
03 18 # add *EAX (reg 0) to EBX (reg 3)
+run: add effective address to reg 3
+run: effective address is mem at address 0x60 (reg 0)
+run: storing 0x00000011
:(before "End Single-Byte Opcodes")
case 0x03: { // add r/m32 to r32
uint8_t modrm = next();
uint8_t arg1 = (modrm>>3)&0x7;
trace(2, "run") << "add effective address to reg " << NUM(arg1) << end();
const int32_t* arg2 = effective_address(modrm);
BINARY_ARITHMETIC_OP(+, Reg[arg1].i, *arg2);
break;
}
//:: subtract
:(scenario subtract_r32_from_mem_at_r32)
% Reg[0].i = 0x60;
% SET_WORD_IN_MEM(0x60, 10);
% Reg[3].i = 1;
# op ModRM SIB displacement immediate
29 18 # subtract EBX (reg 3) from *EAX (reg 0)
+run: subtract reg 3 from effective address
+run: effective address is mem at address 0x60 (reg 0)
+run: storing 0x00000009
//:
:(scenario subtract_mem_at_r32_from_r32)
% Reg[0].i = 0x60;
% SET_WORD_IN_MEM(0x60, 1);
% Reg[3].i = 10;
# op ModRM SIB displacement immediate
2b 18 # subtract *EAX (reg 0) from EBX (reg 3)
+run: subtract effective address from reg 3
+run: effective address is mem at address 0x60 (reg 0)
+run: storing 0x00000009
:(before "End Single-Byte Opcodes")
case 0x2b: { // subtract r/m32 from r32
uint8_t modrm = next();
uint8_t arg1 = (modrm>>3)&0x7;
trace(2, "run") << "subtract effective address from reg " << NUM(arg1) << end();
const int32_t* arg2 = effective_address(modrm);
BINARY_ARITHMETIC_OP(-, Reg[arg1].i, *arg2);
break;
}
//:: and
:(scenario and_r32_with_mem_at_r32)
% Reg[0].i = 0x60;
% SET_WORD_IN_MEM(0x60, 0x0a0b0c0d);
% Reg[3].i = 0xff;
# op ModRM SIB displacement immediate
21 18 # and EBX (reg 3) with *EAX (reg 0)
+run: and reg 3 with effective address
+run: effective address is mem at address 0x60 (reg 0)
+run: storing 0x0000000d
//:
:(scenario and_mem_at_r32_with_r32)
% Reg[0].i = 0x60;
% SET_WORD_IN_MEM(0x60, 0x000000ff);
% Reg[3].i = 0x0a0b0c0d;
# op ModRM SIB displacement immediate
23 18 # and *EAX (reg 0) with EBX (reg 3)
+run: and effective address with reg 3
+run: effective address is mem at address 0x60 (reg 0)
+run: storing 0x0000000d
:(before "End Single-Byte Opcodes")
case 0x23: { // and r/m32 with r32
uint8_t modrm = next();
uint8_t arg1 = (modrm>>3)&0x7;
trace(2, "run") << "and effective address with reg " << NUM(arg1) << end();
const int32_t* arg2 = effective_address(modrm);
BINARY_BITWISE_OP(&, Reg[arg1].u, *arg2);
break;
}
//:: or
:(scenario or_r32_with_mem_at_r32)
% Reg[0].i = 0x60;
% SET_WORD_IN_MEM(0x60, 0x0a0b0c0d);
% Reg[3].i = 0xa0b0c0d0;
# op ModRM SIB displacement immediate
09 18 # or EBX (reg 3) with *EAX (reg 0)
+run: or reg 3 with effective address
+run: effective address is mem at address 0x60 (reg 0)
+run: storing 0xaabbccdd
//:
:(scenario or_mem_at_r32_with_r32)
% Reg[0].i = 0x60;
% SET_WORD_IN_MEM(0x60, 0x0a0b0c0d);
% Reg[3].i = 0xa0b0c0d0;
# op ModRM SIB displacement immediate
0b 18 # or *EAX (reg 0) with EBX (reg 3)
+run: or effective address with reg 3
+run: effective address is mem at address 0x60 (reg 0)
+run: storing 0xaabbccdd
:(before "End Single-Byte Opcodes")
case 0x0b: { // or r/m32 with r32
uint8_t modrm = next();
uint8_t arg1 = (modrm>>3)&0x7;
trace(2, "run") << "or effective address with reg " << NUM(arg1) << end();
const int32_t* arg2 = effective_address(modrm);
BINARY_BITWISE_OP(|, Reg[arg1].u, *arg2);
break;
}
//:: xor
:(scenario xor_r32_with_mem_at_r32)
% Reg[0].i = 0x60;
% SET_WORD_IN_MEM(0x60, 0xaabb0c0d);
% Reg[3].i = 0xa0b0c0d0;
# op ModRM SIB displacement immediate
31 18 # xor EBX (reg 3) with *EAX (reg 0)
+run: xor reg 3 with effective address
+run: effective address is mem at address 0x60 (reg 0)
+run: storing 0x0a0bccdd
//:
:(scenario xor_mem_at_r32_with_r32)
% Reg[0].i = 0x60;
% SET_WORD_IN_MEM(0x60, 0x0a0b0c0d);
% Reg[3].i = 0xa0b0c0d0;
# op ModRM SIB displacement immediate
33 18 # xor *EAX (reg 0) with EBX (reg 3)
+run: xor effective address with reg 3
+run: effective address is mem at address 0x60 (reg 0)
+run: storing 0xaabbccdd
:(before "End Single-Byte Opcodes")
case 0x33: { // xor r/m32 with r32
uint8_t modrm = next();
uint8_t arg1 = (modrm>>3)&0x7;
trace(2, "run") << "xor effective address with reg " << NUM(arg1) << end();
const int32_t* arg2 = effective_address(modrm);
BINARY_BITWISE_OP(|, Reg[arg1].u, *arg2);
break;
}
//:: not
:(scenario not_r32_with_mem_at_r32)
% Reg[3].i = 0x60;
# word at 0x60 is 0x0f0f00ff
% SET_WORD_IN_MEM(0x60, 0x0f0f00ff);
# op ModRM SIB displacement immediate
f7 03 # negate *EBX (reg 3)
+run: 'not' of effective address
+run: effective address is mem at address 0x60 (reg 3)
+run: storing 0xf0f0ff00
//:: compare (cmp)
:(scenario compare_mem_at_r32_with_r32_greater)
% Reg[0].i = 0x60;
% SET_WORD_IN_MEM(0x60, 0x0a0b0c0d);
% Reg[3].i = 0x0a0b0c07;
# op ModRM SIB displacement immediate
39 18 # compare EBX (reg 3) with *EAX (reg 0)
+run: compare reg 3 with effective address
+run: effective address is mem at address 0x60 (reg 0)
+run: SF=0; ZF=0; OF=0
:(scenario compare_mem_at_r32_with_r32_lesser)
% Reg[0].i = 0x60;
% SET_WORD_IN_MEM(0x60, 0x0a0b0c07);
% Reg[3].i = 0x0a0b0c0d;
# op ModRM SIB displacement immediate
39 18 # compare EBX (reg 3) with *EAX (reg 0)
+run: compare reg 3 with effective address
+run: effective address is mem at address 0x60 (reg 0)
+run: SF=1; ZF=0; OF=0
:(scenario compare_mem_at_r32_with_r32_equal)
% Reg[0].i = 0x60;
% SET_WORD_IN_MEM(0x60, 0x0a0b0c0d);
% Reg[3].i = 0x0a0b0c0d;
# op ModRM SIB displacement immediate
39 18 # compare EBX (reg 3) with *EAX (reg 0)
+run: compare reg 3 with effective address
+run: effective address is mem at address 0x60 (reg 0)
+run: SF=0; ZF=1; OF=0
//:
:(scenario compare_r32_with_mem_at_r32_greater)
% Reg[0].i = 0x60;
% SET_WORD_IN_MEM(0x60, 0x0a0b0c07);
% Reg[3].i = 0x0a0b0c0d;
# op ModRM SIB displacement immediate
3b 18 # compare *EAX (reg 0) with EBX (reg 3)
+run: compare effective address with reg 3
+run: effective address is mem at address 0x60 (reg 0)
+run: SF=0; ZF=0; OF=0
:(before "End Single-Byte Opcodes")
case 0x3b: { // set SF if r32 < r/m32
uint8_t modrm = next();
uint8_t reg1 = (modrm>>3)&0x7;
trace(2, "run") << "compare effective address with reg " << NUM(reg1) << end();
int32_t arg1 = Reg[reg1].i;
int32_t* arg2 = effective_address(modrm);
int32_t tmp1 = arg1 - *arg2;
SF = (tmp1 < 0);
ZF = (tmp1 == 0);
int64_t tmp2 = arg1 - *arg2;
OF = (tmp1 != tmp2);
trace(2, "run") << "SF=" << SF << "; ZF=" << ZF << "; OF=" << OF << end();
break;
}
:(scenario compare_r32_with_mem_at_r32_lesser)
% Reg[0].i = 0x60;
% SET_WORD_IN_MEM(0x60, 0x0a0b0c0d);
% Reg[3].i = 0x0a0b0c07;
# op ModRM SIB displacement immediate
3b 18 # compare *EAX (reg 0) with EBX (reg 3)
+run: compare effective address with reg 3
+run: effective address is mem at address 0x60 (reg 0)
+run: SF=1; ZF=0; OF=0
:(scenario compare_r32_with_mem_at_r32_equal)
% Reg[0].i = 0x60;
% SET_WORD_IN_MEM(0x60, 0x0a0b0c0d);
% Reg[3].i = 0x0a0b0c0d;
# op ModRM SIB displacement immediate
3b 18 # compare *EAX (reg 0) with EBX (reg 3)
+run: compare effective address with reg 3
+run: effective address is mem at address 0x60 (reg 0)
+run: SF=0; ZF=1; OF=0
//:: copy (mov)
:(scenario copy_r32_to_mem_at_r32)
% Reg[3].i = 0xaf;
% Reg[0].i = 0x60;
# op ModRM SIB displacement immediate
89 18 # copy EBX (reg 3) to *EAX (reg 0)
+run: copy reg 3 to effective address
+run: effective address is mem at address 0x60 (reg 0)
+run: storing 0x000000af
//:
:(scenario copy_mem_at_r32_to_r32)
% Reg[0].i = 0x60;
% SET_WORD_IN_MEM(0x60, 0x000000af);
# op ModRM SIB displacement immediate
8b 18 # copy *EAX (reg 0) to EBX (reg 3)
+run: copy effective address to reg 3
+run: effective address is mem at address 0x60 (reg 0)
+run: storing 0x000000af
:(before "End Single-Byte Opcodes")
case 0x8b: { // copy r32 to r/m32
uint8_t modrm = next();
uint8_t reg1 = (modrm>>3)&0x7;
trace(2, "run") << "copy effective address to reg " << NUM(reg1) << end();
int32_t* arg2 = effective_address(modrm);
Reg[reg1].i = *arg2;
trace(2, "run") << "storing 0x" << HEXWORD << *arg2 << end();
break;
}
//:: jump
:(scenario jump_mem_at_r32)
% Reg[0].i = 0x60;
% SET_WORD_IN_MEM(0x60, 8);
# op ModRM SIB displacement immediate
ff 20 # jump to *EAX (reg 0)
05 00 00 00 01
05 00 00 00 02
+run: inst: 0x00000001
+run: jump to effective address
+run: effective address is mem at address 0x60 (reg 0)
+run: jumping to 0x00000008
+run: inst: 0x00000008
-run: inst: 0x00000003
:(before "End Single-Byte Opcodes")
case 0xff: {
uint8_t modrm = next();
uint8_t subop = (modrm>>3)&0x7; // middle 3 'reg opcode' bits
switch (subop) {
case 4: { // jump to r/m32
trace(2, "run") << "jump to effective address" << end();
int32_t* arg2 = effective_address(modrm);
EIP = *arg2;
trace(2, "run") << "jumping to 0x" << HEXWORD << EIP << end();
break;
}
// End Op ff Subops
}
break;
}
//:: push
:(scenario push_mem_at_r32)
% Reg[0].i = 0x60;
% SET_WORD_IN_MEM(0x60, 0x000000af);
% Reg[ESP].u = 0x14;
# op ModRM SIB displacement immediate
ff 30 # push *EAX (reg 0) to stack
+run: push effective address
+run: effective address is mem at address 0x60 (reg 0)
+run: decrementing ESP to 0x00000010
+run: pushing value 0x000000af
:(before "End Op ff Subops")
case 6: { // push r/m32 to stack
trace(2, "run") << "push effective address" << end();
const int32_t* val = effective_address(modrm);
push(*val);
break;
}
//:: pop
:(scenario pop_mem_at_r32)
% Reg[0].i = 0x60;
% Reg[ESP].u = 0x10;
% SET_WORD_IN_MEM(0x10, 0x00000030);
# op ModRM SIB displacement immediate
8f 00 # pop stack into *EAX (reg 0)
+run: pop into effective address
+run: effective address is mem at address 0x60 (reg 0)
+run: popping value 0x00000030
+run: incrementing ESP to 0x00000014
:(before "End Single-Byte Opcodes")
case 0x8f: { // pop stack into r/m32
uint8_t modrm = next();
uint8_t subop = (modrm>>3)&0x7;
switch (subop) {
case 0: {
trace(2, "run") << "pop into effective address" << end();
int32_t* dest = effective_address(modrm);
*dest = pop();
break;
}
}
break;
}