//: instructions that (immediately) contain an argument to act with
:(scenario add_imm32_to_r32)
% Reg[3].i = 1;
# op ModR/M SIB displacement immediate
81 c3 0a 0b 0c 0d # add 0x0d0c0b0a to EBX
# ModR/M in binary: 11 (direct mode) 000 (add imm32) 011 (dest EBX)
+run: combine imm32 0x0d0c0b0a with effective address
+run: effective address is EBX
+run: subop add
+run: storing 0x0d0c0b0b
:(before "End Single-Byte Opcodes")
case 0x81: { // combine imm32 with r/m32
uint8_t modrm = next();
int32_t arg2 = imm32();
trace(2, "run") << "combine imm32 0x" << HEXWORD << arg2 << " with effective address" << end();
int32_t* arg1 = effective_address(modrm);
uint8_t subop = (modrm>>3)&0x7; // middle 3 'reg opcode' bits
switch (subop) {
case 0:
trace(2, "run") << "subop add" << end();
BINARY_ARITHMETIC_OP(+, *arg1, arg2);
break;
// End Op 81 Subops
default:
cerr << "unrecognized sub-opcode after 81: " << NUM(subop) << '\n';
exit(1);
}
break;
}
//:
:(scenario add_imm32_to_mem_at_r32)
% Reg[3].i = 0x60;
% SET_WORD_IN_MEM(0x60, 1);
# op ModR/M SIB displacement immediate
81 03 0a 0b 0c 0d # add 0x0d0c0b0a to *EBX
# ModR/M in binary: 00 (indirect mode) 000 (add imm32) 011 (dest EBX)
+run: combine imm32 0x0d0c0b0a with effective address
+run: effective address is mem at address 0x60 (EBX)
+run: subop add
+run: storing 0x0d0c0b0b
//:: subtract
:(scenario subtract_imm32_from_eax)
% Reg[EAX].i = 0x0d0c0baa;
# op ModR/M SIB displacement immediate
2d 0a 0b 0c 0d # subtract 0x0d0c0b0a from EAX
+run: subtract imm32 0x0d0c0b0a from EAX
+run: storing 0x000000a0
:(before "End Single-Byte Opcodes")
case 0x2d: { // subtract imm32 from EAX
int32_t arg2 = imm32();
trace(2, "run") << "subtract imm32 0x" << HEXWORD << arg2 << " from EAX" << end();
BINARY_ARITHMETIC_OP(-, Reg[EAX].i, arg2);
break;
}
//:
:(scenario subtract_imm32_from_mem_at_r32)
% Reg[3].i = 0x60;
% SET_WORD_IN_MEM(0x60, 10);
# op ModR/M SIB displacement immediate
81 2b 01 00 00 00 # subtract 1 from *EBX
# ModR/M in binary: 00 (indirect mode) 101 (subtract imm32) 011 (dest EBX)
+run: combine imm32 0x00000001 with effective address
+run: effective address is mem at address 0x60 (EBX)
+run: subop subtract
+run: storing 0x00000009
:(before "End Op 81 Subops")
case 5: {
trace(2, "run") << "subop subtract" << end();
BINARY_ARITHMETIC_OP(-, *arg1, arg2);
break;
}
//:
:(scenario subtract_imm32_from_r32)
% Reg[3].i = 10;
# op ModR/M SIB displacement immediate
81 eb 01 00 00 00 # subtract 1 from EBX
# ModR/M in binary: 11 (direct mode) 101 (subtract imm32) 011 (dest EBX)
+run: combine imm32 0x00000001 with effective address
+run: effective address is EBX
+run: subop subtract
+run: storing 0x00000009
//:: and
:(scenario and_imm32_with_eax)
% Reg[EAX].i = 0xff;
# op ModR/M SIB displacement immediate
25 0a 0b 0c 0d # and 0x0d0c0b0a with EAX
+run: and imm32 0x0d0c0b0a with EAX
+run: storing 0x0000000a
:(before "End Single-Byte Opcodes")
case 0x25: { // and imm32 with EAX
int32_t arg2 = imm32();
trace(2, "run") << "and imm32 0x" << HEXWORD << arg2 << " with EAX" << end();
BINARY_BITWISE_OP(&, Reg[EAX].i, arg2);
break;
}
//:
:(scenario and_imm32_with_mem_at_r32)
% Reg[3].i = 0x60;
% SET_WORD_IN_MEM(0x60, 0x000000ff);
# op ModR/M SIB displacement immediate
81 23 0a 0b 0c 0d # and 0x0d0c0b0a with *EBX
# ModR/M in binary: 00 (indirect mode) 100 (and imm32) 011 (dest EBX)
+run: combine imm32 0x0d0c0b0a with effective address
+run: effective address is mem at address 0x60 (EBX)
+run: subop and
+run: storing 0x0000000a
:(before "End Op 81 Subops")
case 4: {
trace(2, "run") << "subop and" << end();
BINARY_BITWISE_OP(&, *arg1, arg2);
break;
}
//:
:(scenario and_imm32_with_r32)
% Reg[3].i = 0xff;
# op ModR/M SIB displacement immediate
81 e3 0a 0b 0c 0d # and 0x0d0c0b0a with EBX
# ModR/M in binary: 11 (direct mode) 100 (and imm32) 011 (dest EBX)
+run: combine imm32 0x0d0c0b0a with effective address
+run: effective address is EBX
+run: subop and
+run: storing 0x0000000a
//:: or
:(scenario or_imm32_with_eax)
% Reg[EAX].i = 0xd0c0b0a0;
# op ModR/M SIB displacement immediate
0d 0a 0b 0c 0d # or 0x0d0c0b0a with EAX
+run: or imm32 0x0d0c0b0a with EAX
+run: storing 0xddccbbaa
:(before "End Single-Byte Opcodes")
case 0x0d: { // or imm32 with EAX
int32_t arg2 = imm32();
trace(2, "run") << "or imm32 0x" << HEXWORD << arg2 << " with EAX" << end();
BINARY_BITWISE_OP(|, Reg[EAX].i, arg2);
break;
}
//:
:(scenario or_imm32_with_mem_at_r32)
% Reg[3].i = 0x60;
% SET_WORD_IN_MEM(0x60, 0xd0c0b0a0);
# op ModR/M SIB displacement immediate
81 0b 0a 0b 0c 0d # or 0x0d0c0b0a with *EBX
# ModR/M in binary: 00 (indirect mode) 001 (or imm32) 011 (dest EBX)
+run: combine imm32 0x0d0c0b0a with effective address
+run: effective address is mem at address 0x60 (EBX)
+run: subop or
+run: storing 0xddccbbaa
:(before "End Op 81 Subops")
case 1: {
trace(2, "run") << "subop or" << end();
BINARY_BITWISE_OP(|, *arg1, arg2);
break;
}
:(scenario or_imm32_with_r32)
% Reg[3].i = 0xd0c0b0a0;
# op ModR/M SIB displacement immediate
81 cb 0a 0b 0c 0d # or 0x0d0c0b0a with EBX
# ModR/M in binary: 11 (direct mode) 001 (or imm32) 011 (dest EBX)
+run: combine imm32 0x0d0c0b0a with effective address
+run: effective address is EBX
+run: subop or
+run: storing 0xddccbbaa
//:: xor
:(scenario xor_imm32_with_eax)
% Reg[EAX].i = 0xddccb0a0;
# op ModR/M SIB displacement immediate
35 0a 0b 0c 0d # xor 0x0d0c0b0a with EAX
+run: xor imm32 0x0d0c0b0a with EAX
+run: storing 0xd0c0bbaa
:(before "End Single-Byte Opcodes")
case 0x35: { // xor imm32 with EAX
int32_t arg2 = imm32();
trace(2, "run") << "xor imm32 0x" << HEXWORD << arg2 << " with EAX" << end();
BINARY_BITWISE_OP(^, Reg[EAX].i, arg2);
break;
}
//:
:(scenario xor_imm32_with_mem_at_r32)
% Reg[3].i = 0x60;
% SET_WORD_IN_MEM(0x60, 0xd0c0b0a0);
# op ModR/M SIB displacement immediate
81 33 0a 0b 0c 0d # xor 0x0d0c0b0a with *EBX
# ModR/M in binary: 00 (indirect mode) 110 (xor imm32) 011 (dest EBX)
+run: combine imm32 0x0d0c0b0a with effective address
+run: effective address is mem at address 0x60 (EBX)
+run: subop xor
+run: storing 0xddccbbaa
:(before "End Op 81 Subops")
case 6: {
trace(2, "run") << "subop xor" << end();
BINARY_BITWISE_OP(^, *arg1, arg2);
break;
}
:(scenario xor_imm32_with_r32)
% Reg[3].i = 0xd0c0b0a0;
# op ModR/M SIB displacement immediate
81 f3 0a 0b 0c 0d # xor 0x0d0c0b0a with EBX
# ModR/M in binary: 11 (direct mode) 110 (xor imm32) 011 (dest EBX)
+run: combine imm32 0x0d0c0b0a with effective address
+run: effective address is EBX
+run: subop xor
+run: storing 0xddccbbaa
//:: compare (cmp)
:(scenario compare_imm32_with_eax_greater)
% Reg[0].i = 0x0d0c0b0a;
# op ModR/M SIB displacement immediate
3d 07 0b 0c 0d # compare 0x0d0c0b07 with EAX
+run: compare EAX and imm32 0x0d0c0b07
+run: SF=0; ZF=0; OF=0
:(before "End Single-Byte Opcodes")
case 0x3d: { // subtract imm32 from EAX
int32_t arg1 = Reg[EAX].i;
int32_t arg2 = imm32();
trace(2, "run") << "compare EAX and imm32 0x" << HEXWORD << arg2 << end();
int32_t tmp1 = arg1 - arg2;
SF = (tmp1 < 0);
ZF = (tmp1 == 0);
int64_t tmp2 = arg1 - arg2;
OF = (tmp1 != tmp2);
trace(2, "run") << "SF=" << SF << "; ZF=" << ZF << "; OF=" << OF << end();
break;
}
:(scenario compare_imm32_with_eax_lesser)
% Reg[0].i = 0x0d0c0b07;
# op ModR/M SIB displacement immediate
3d 0a 0b 0c 0d # compare 0x0d0c0b0a with EAX
+run: compare EAX and imm32 0x0d0c0b0a
+run: SF=1; ZF=0; OF=0
:(scenario compare_imm32_with_eax_equal)
% Reg[0].i = 0x0d0c0b0a;
# op ModR/M SIB displacement immediate
3d 0a 0b 0c 0d # compare 0x0d0c0b0a with EAX
+run: compare EAX and imm32 0x0d0c0b0a
+run: SF=0; ZF=1; OF=0
//:
:(scenario compare_imm32_with_r32_greater)
% Reg[3].i = 0x0d0c0b0a;
# op ModR/M SIB displacement immediate
81 fb 07 0b 0c 0d # compare 0x0d0c0b07 with EBX
# ModR/M in binary: 11 (direct mode) 111 (compare imm32) 011 (dest EBX)
+run: combine imm32 0x0d0c0b07 with effective address
+run: effective address is EBX
+run: SF=0; ZF=0; OF=0
:(before "End Op 81 Subops")
case 7: {
trace(2, "run") << "subop compare" << end();
int32_t tmp1 = *arg1 - arg2;
SF = (tmp1 < 0);
ZF = (tmp1 == 0);
int64_t tmp2 = *arg1 - arg2;
OF = (tmp1 != tmp2);
trace(2, "run") << "SF=" << SF << "; ZF=" << ZF << "; OF=" << OF << end();
break;
}
:(scenario compare_imm32_with_r32_lesser)
% Reg[3].i = 0x0d0c0b07;
# op ModR/M SIB displacement immediate
81 fb 0a 0b 0c 0d # compare 0x0d0c0b0a with EBX
# ModR/M in binary: 11 (direct mode) 111 (compare imm32) 011 (dest EBX)
+run: combine imm32 0x0d0c0b0a with effective address
+run: effective address is EBX
+run: SF=1; ZF=0; OF=0
:(scenario compare_imm32_with_r32_equal)
% Reg[3].i = 0x0d0c0b0a;
# op ModR/M SIB displacement immediate
81 fb 0a 0b 0c 0d # compare 0x0d0c0b0a with EBX
# ModR/M in binary: 11 (direct mode) 111 (compare imm32) 011 (dest EBX)
+run: combine imm32 0x0d0c0b0a with effective address
+run: effective address is EBX
+run: SF=0; ZF=1; OF=0
:(scenario compare_imm32_with_mem_at_r32_greater)
% Reg[3].i = 0x60;
% SET_WORD_IN_MEM(0x60, 0x0d0c0b0a);
# op ModR/M SIB displacement immediate
81 3b 07 0b 0c 0d # compare 0x0d0c0b07 with *EBX
# ModR/M in binary: 00 (indirect mode) 111 (compare imm32) 011 (dest EBX)
+run: combine imm32 0x0d0c0b07 with effective address
+run: effective address is mem at address 0x60 (EBX)
+run: SF=0; ZF=0; OF=0
:(scenario compare_imm32_with_mem_at_r32_lesser)
% Reg[3].i = 0x60;
% SET_WORD_IN_MEM(0x60, 0x0d0c0b07);
# op ModR/M SIB displacement immediate
81 3b 0a 0b 0c 0d # compare 0x0d0c0b0a with *EBX
# ModR/M in binary: 00 (indirect mode) 111 (compare imm32) 011 (dest EBX)
+run: combine imm32 0x0d0c0b0a with effective address
+run: effective address is mem at address 0x60 (EBX)
+run: SF=1; ZF=0; OF=0
:(scenario compare_imm32_with_mem_at_r32_equal)
% Reg[3].i = 0x0d0c0b0a;
% Reg[3].i = 0x60;
% SET_WORD_IN_MEM(0x60, 0x0d0c0b0a);
# op ModR/M SIB displacement immediate
81 3b 0a 0b 0c 0d # compare 0x0d0c0b0a with *EBX
# ModR/M in binary: 00 (indirect mode) 111 (compare imm32) 011 (dest EBX)
+run: combine imm32 0x0d0c0b0a with effective address
+run: effective address is mem at address 0x60 (EBX)
+run: SF=0; ZF=1; OF=0
//:: copy (mov)
:(scenario copy_imm32_to_r32)
# op ModR/M SIB displacement immediate
bb 0a 0b 0c 0d # copy 0x0d0c0b0a to EBX
+run: copy imm32 0x0d0c0b0a to EBX
:(before "End Single-Byte Opcodes")
case 0xb8:
case 0xb9:
case 0xba:
case 0xbb:
case 0xbc:
case 0xbd:
case 0xbe:
case 0xbf: { // copy imm32 to r32
uint8_t reg1 = op & 0x7;
int32_t arg2 = imm32();
trace(2, "run") << "copy imm32 0x" << HEXWORD << arg2 << " to " << rname(reg1) << end();
Reg[reg1].i = arg2;
break;
}
//:
:(scenario copy_imm32_to_mem_at_r32)
% Reg[3].i = 0x60;
# op ModR/M SIB displacement immediate
c7 03 0a 0b 0c 0d # copy 0x0d0c0b0a to *EBX
# ModR/M in binary: 00 (indirect mode) 000 (unused) 011 (dest EBX)
+run: copy imm32 0x0d0c0b0a to effective address
+run: effective address is mem at address 0x60 (EBX)
:(before "End Single-Byte Opcodes")
case 0xc7: { // copy imm32 to r32
uint8_t modrm = next();
int32_t arg2 = imm32();
trace(2, "run") << "copy imm32 0x" << HEXWORD << arg2 << " to effective address" << end();
int32_t* arg1 = effective_address(modrm);
*arg1 = arg2;
break;
}
//:: push
:(scenario push_imm32)
% Reg[ESP].u = 0x14;
# op ModR/M SIB displacement immediate
68 af 00 00 00 # push *EAX to stack
+run: push imm32 0x000000af
+run: ESP is now 0x00000010
+run: contents at ESP: 0x000000af
:(before "End Single-Byte Opcodes")
case 0x68: {
int32_t val = imm32();
trace(2, "run") << "push imm32 0x" << HEXWORD << val << end();
Reg[ESP].u -= 4;
*reinterpret_cast<uint32_t*>(&Mem.at(Reg[ESP].u)) = val;
trace(2, "run") << "ESP is now 0x" << HEXWORD << Reg[ESP].u << end();
trace(2, "run") << "contents at ESP: 0x" << HEXWORD << *reinterpret_cast<uint32_t*>(&Mem.at(Reg[ESP].u)) << end();
break;
}